

Atomic exchange correction in

forbidden unique beta transitions

X. Mougeot

ICRM conference | 27 March 2023

 $_{\mathcal{A}} \mathsf{E}_{\beta} \mathsf{-} \mathsf{E}_{\mathsf{X}}$

Z+1

β⁻

N.C. Pyper, M.R. Harston, Proc.

Ζ

⁶³Ni and ²⁴¹Pu beta spectra

60000

Impact in radionuclide metrology

Improvement of primary activity determination by Liquid Scintillation Counting

- ⁶³Ni: K. Kossert, X. Mougeot, Appl. Radiat. Isot. 101, 40 (2015)
- ⁶⁰Co: K. Kossert et al., Appl. Radiat. Isot. 134, 212 (2018)
- See presentation of C. Bobin on Thursday (LSC session) about ¹⁰⁶Ru/¹⁰⁶Rh

 ✓ ⁹⁰Sr/⁹⁰Y: K. Kossert, X. Mougeot, Appl. Radiat. Isot. 168, 109478 (2021)

First forbidden unique transitions, applying exchange correction as for allowed transitions.

→ Accuracy of this approximation? How to go beyond?

Beta spectrum shape

W electron energy, W_0 transition energy p electron momentum, q neutrino momentum

AllowedC(First forbidden uniqueC(Second forbidden uniqueC(Third forbidden uniqueC(

C(W) = 1 $C(W) = q^{2} + \lambda_{2}p^{2}$ $C(W) = q^{4} + \lambda_{2}q^{2}p^{2} + \lambda_{3}p^{4}$ $C(W) = q^{6} + \lambda_{2}q^{4}p^{2} + \lambda_{3}q^{2}p^{4} + \lambda_{4}p^{6}$ Etc.

For forbidden non-unique transitions, coupling with nuclear structure is needed.

In Behrens and Bühring formalism, with k the main electron quantum number:

Coulomb amplitudes of the relativistic electron wave functions, determined by normalization conditions.

Extension of the formalism 1/2

Allowed transitions

Beta electrons in k = 1 states \rightarrow Exchange only with atomic k = 1 states, i.e. $s_{1/2}$ and $p_{1/2}$. $C(W_e) = 1 \longrightarrow C(W_e) \times (1 + \eta_1)$

Shape factors of forbidden unique transitions are established considering only the dominant matrix elements.

Derivation was restarted from the beginning, keeping every *k* state.

- \rightarrow In general, atomic, nuclear and lepton matrix elements are coupled altogether.
- \rightarrow Forbidden non-unique transitions: there is no possibility to simplify the calculation.
- Forbidden unique transitions: it is still possible to keep the dominant matrix elements and factor out the nuclear component.

Each term in the shape factor depends on its *k* value, and has its specific exchange correction.

Example: First forbidden unique transition

$$C(W_e) = q^2 + \lambda_2 p^2$$
$$q^2 \longrightarrow q^2 \times (1 + \eta_1) \quad \text{and} \quad \lambda_2 p^2 \longrightarrow \lambda_2 p^2 \times (1 + \eta_2)$$

Exchange with atomic electrons in $s_{1/2}$ and $p_{1/2}$ states and with atomic electrons in $p_{3/2}$ and $d_{3/2}$ states.

Extension of the formalism 2/2

The exchange correction factor has been established to be:

$$\eta_k = \frac{T_{+k}(T_{+k} - 2\alpha_{+k}) + T_{-k}(T_{-k} - 2\alpha_{-k})}{\alpha_{+k}^2 + \alpha_{-k}^2}$$

Assuming full orbitals and no shaking processes (auto-excitation and auto-ionization), one find:

$$T_{k} = \sum_{n} \frac{\langle \phi_{c,\kappa}' | \phi_{b,n\kappa} \rangle}{\langle \phi_{b,n\kappa}' | \phi_{b,n\kappa} \rangle} \beta_{n\kappa}' \left(\frac{p_{n\kappa}'}{p} \right)^{k-1}$$

- Ratio of two overlaps between: initial atomic state and final continuum state; and the same initial and final atomic states. Harston and Pyper assumed $\langle \phi'_{b,n\kappa} | \phi_{b,n\kappa} \rangle = 1$.
- $\beta'_{n\kappa}$ is the Coulomb amplitude of the atomic wave function in the final state.
- Last term is the ratio of electron momenta.

✓ This extended formalism is fully consistent with the allowed formalism.

- > The dominant contribution comes from k = 1 (upper overlap, ratio of momenta).
- > In the shape factor, q dominates over p at low energy, where exchange effect is significant.
- → Applying the allowed exchange correction simply to the Fermi function is a good approximation for the forbidden unique transitions.

Background of DarkSide experiment

Pushing the limits of dark matter detection requires describing the background with high accuracy, especially at low energy.

³⁹Ar and ⁸⁵Kr decays are of special importance in the background of the DarkSide experiment.

- P. Agnes et al., Physical Review D 107, 063001 (2023)
- P. Agnes et al., Physical Review Letters 130, 101001 (2023)
- P. Agnes et al., Physical Review Letters 130, 101002 (2023)

Inclusion in BetaShape

Problems

- Precise exchange correction requires precise screening correction.
- Full numerical, precise calculations of relativistic electron wave functions including atomic screening are very time-consuming, especially at high kinetic energies where the effect is negligible.
- Full numerical, precise calculations of atomic exchange effect are much more time-consuming than for screening.
- ✓ **Solution:** Extensive tabulation of both corrections, screening and exchange.
 - → Screening: Parameters up to 30 MeV, Z = 120 and 6th forbidden unique β[±] transitions (λ_7). Covers more than the currently known transitions.
 - \rightarrow Exchange: All atomic orbital included, up to Z = 120. Correction factors converge to unity: tabulation up to a precision < 0.001 %.
 - \rightarrow Exponential energy grid for better accuracy at low energy.

These corrections may be not accurate enough in the case of ultra-low endpoint energies. Further studies (experimental and theoretical) are needed.

Application to ⁶³Ni and ²⁴¹Pu spectra

00000

63 63 63 | | | |

Conclusion

- ✓ Formalism of atomic exchange effect extended to forbidden unique transitions.
- Precise atomic screening and exchange included in the forthcoming version of BetaShape thanks to extensive tabulations.
- ✓ Can be applied to forbidden non-unique transitions in first approximation, correcting the Fermi function and the λ_k parameters.
 - \rightarrow Done in recent studies: ⁹⁹Tc, ¹⁵¹Sm, ¹⁷⁶Lu (see BS WG session on Tuesday).

There is still some work to do:

- Need more high-precision measurements to test the predictions, and to revise them if necessary. ¹⁰⁷Pd decay could be a good candidate.
- Use of high-precision atomic wave functions.
- Complete calculations in forbidden non-unique transitions, including realistic nuclear structure.

Thank you for attention

