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The objective of a global sensitivity analysis is to provide indices to rank the importance of each and every system inputs when considering the impact on a given system output. This paper discusses few of the methods proposed throughout the literature when dealing with a linear model for which part or all the input variable can not be considered independent. The aim is here to review methods from the late eighties in order to compare them to more recent developments, by investigating their underlying hypothesis, cost (in term of resources usage) and results. This paper focuses on the case where no assumption on the knowledge of the probability density functions, assuming that the analysis can be done from a provided sample, without the use of refined techniques which would require a dedicated surrogate model generation. After an introduction of the general problem, as often discussed in the independent approach, a review of solutions not sorely relying on the variance decomposition is presented, along with their underlying hypothesis. A protocol is proposed, based on a statistical approach relying on random correlation matrix generation, to test and compare all methods with an increasing complexity, step-by-step procedure. Finally, dependencies with respect to parameters defining the problem, such as the input space size, the sample size, the nature of the input laws are tested before drawing conclusions on the methods and their usefulness.

INTRODUCTION

Many research or engineering problems can be mathematically modelled as an input-output system structure linked together by a deterministic relation f : X → Y, such as

Y = f (X) = f (X 1 , . . . , X n X ) (1) 
= u∈S f u (X u ), (2) 
where x i is the ith element of the input space X whose dimension is set to be n X (X ⊆ R n X ). For the sake of simplicity, without loss of genericity, the output of this system is set to be a scalar (meaning that Y = Y ∈ Y ∈ R).

This relation can also be written as done in equation ( 2) using a multi-index of elements of 1, n X : considering S the collection of subset of 1, n X (and S * = S \ {∅}), for all u ∈ S, one can write x u the variables in x whose indices are in u. In order to complete this picture, x u will be used to denote the complementary subset of x whose variables are not in u while for all i ∈ u, x u i will denote x u without its element x i . Finally, the collection of subset of S that does not include the ith input variable is written S i = S \ {i}, ∀i ∈ 1, n X .

Since there might be uncertainty about the true input values of the system structure, leading to potentially large fluctuations in the output response, it is common to treat the elements of the input space X (the set of {X i } 1≤i≤n X , called hereafter input variables, or inputs) as random variables. This can, for instance, be done in the probabilistic framework by associating a given (well chosen) probability density function (PDF) for each and every input variable.

Even though this is not the only possible approach (one can consider imprecise probabilities [START_REF] Walley | Statistical reasoning with imprecise probabilities[END_REF], the theory of belief functions [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF]. . . ) it is a widespread one, that, along with all the others, turns the output response of our system into a random variable, later referred to as output variable, or the output. Characterising the empirical output distribution is the purpose of uncertainty analysis, while asserting the relative importance of each and every inputs on the system output is the sole objective of sensitivity analysis.

Unlike a local sensitivity analysis that focuses on the vicinity of a chosen "working point" x 0 , the global sensitivity analysis (GSA) aims at establishing the rank of importance of inputs while being truthful in the full input space this method, in order to ensure the uniqueness of the ANOVA decomposition, is a strong hypothesis on the the input variables: they have to be independent.

Unfortunately, in many fields such as nuclear engineering [START_REF] Jacques | Sensitivity analysis in presence of model uncertainty and correlated inputs[END_REF], mechanical engineering [START_REF] Keitel | Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input parameters[END_REF], extinction risks assessments in biology [START_REF] Ferson | Correlations, dependency bounds and extinction risks[END_REF], just to name a few, input variables are dependent. The dependency can arise as the result of constraints in the inputs space due to properties of inputs (i.e. composition constraints in material science for instance) or because of the complex input structure where inputs may be themselves the output of some other model or experiment [START_REF] Brell | An efficient algorithm to accelerate the discovery of complex material formulations[END_REF]. In these cases the simple description of input uncertainty through independent marginal distribution functions is not adequate. Correct procedures require sampling from the joint and conditional distribution functions of inputs.

The purpose of this paper is to review and compare some ways to perform GSA when no information are known on either the joint or the conditional probability density functions (for a more exhaustive review of GSA methods, see [START_REF] Da Veiga | Basics and trends in sensitivity analysis: theory and practice in R[END_REF]). In order to circumvent this, there have been many developments, in various fields of research, sometimes limiting the investigation to the linear case for the sake of simplicity. This is the starting point of this paper: using methods that allow estimation of sensitivity indices from a provided sample (disregarding whether it might arise from simulation or experimental data) without any specific information on the inputs supposed behaviour but the fact that our system response is well suited to be a linear combination of all the inputs (independent or not). To be more generic, investigations are done on various parameters such as n X the dimension of X , the size of the provided sample n S . . . In order to be as generic as possible, to be able to probe low n S cases for instance, only methods without explicit construction of a dedicated surrogate model are considered.

After setting the mathematical conventions and notations that will be used throughout this paper in § 1.1, a reminder of the concept of global sensitivity analysis from the high dimensional model representation (HDMR) decomposition is provided in § 1.2. The methods chosen in this paper (Shapley value, the Lindeman, Merenda and Gold or General Dominance indices, Johnson's Relative weight, the Structural and Correlative Sensitivity Analysis, Sobol indices) are later introduced in § 2, bearing in mind that the resulting indices might be evaluated in different ways given the context and the chosen algorithm. These methods are then tested in § 3, using a dedicated practical protocol introduced in § 3.1, at first to throw a glance at the indices behaviour in § 3.2, but also to test their robustness against n S , n X , few properties of the input PDF along with the resource consumption, in § 4. A discussion in which these results are compared, both for their results and their implementation, is kept for § 5 before concluding this paper.
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Mathematical conventions

The following notation conventions will be used when dealing with generic methodology description.

Upper case letters represent random variable, the output can then be written Y = f (X), while upper case bold letters represent matrices, so the following notation, Y = f (X), will now described an output sample generated from an input design-of-experiments for instance.

Lower case letters are realisation of a random variable: y = f (x) is a realisation of the output variable when considering a specific realisation of the input vector x. With the index, x i represents the ith coordinate (i = 1, . . . , n X ) of a realisation x = (x 1 , . . . , x n X ). It is a realisation of the ith random variable X i .

As already discussed, {X i } 1≤i≤n X are the input variables of our system, Y = f (X) is its output variable, for f : R n X → R a L 2 function, assuming Var(Y ) = 0. Using the notation introduced previously for the subset u ∈ S, few more conventions are introduced:

• V u is the variance of the expectation of Y conditioned to X u , denoted V u = Var(E(Y |X u )). (3) 
• E u is the expectation of the variance of Y conditioned to X u , denoted

E u = E(Var(Y |X u )). (4) 
• R 2 u is the coefficient of determination of Y , when considered only as a function of X u , denoted

R 2 u = R 2 y=f (Xu) . (5) 
The underlying hypothesis used throughout this paper is the assumption that the system output can be written as a linear combination of the input variables, so

Y = Xβ, (6) 
where β is a vector of n X constant coefficients * . Finally, the theoretical correlation matrix of the (X, Y ) system, or the empirical one computed from a randomly-drawn sample (X, Y), will be denoted Γ (respectively Γ) and two ways of splitting it by blocks will be used. On the one hand, the first one (first part of equation ( 7)), is splitting the input and output. On the other hand, the second one (second part of equation ( 7)) splits it into three parts: a subset u of the inputs (u ∈ S), its complementary, denoted u and the output.

Γ =       Γ XX Γ XY Γ Y X Γ Y Y       =       Γ uu Γ u u Γ uY Γ uu Γ u u Γ uY Γ Y u Γ Y u Γ Y Y       . (7) 
Finally, a large part of this paper will focus on a dichotomous approach, considering either the uncorrelated case, implying that Γ XX = 1 n X (there are no statistical correlation between all inputs two-by-two) or, on the contrary, the correlated case, when Γ XX = 1 n X .

Decomposition of the system function

Many of the methods introduced later-on are using a decomposition of the system function, assuming that it is integrable in its definition domain, into an ensemble of sub-functions (hereafter referred to as summands) which can be written as such [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF] 

y = f 0 + n X i=1 f i (x i ) + 1≤i<j≤n X f i,j (x i , x j ) + . . . + f x1,x2,...,xn X (x 1 , x 2 , . . . , x n X ). (8) 
Each and every terms are functions of the different interaction degrees of the inputs {x i } 1≤i≤n X , leading to a total of 2 n X 1 summands on top of the constant term f 0 . This decomposition is also referred to as the high dimensional model representation (HDMR [START_REF] Li | High dimensional model representations[END_REF]) and is not unique since there might be an infinity of choice to define the summands. Even though this approach has been combined as of 1948 by Hoeffding [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF] with the analysis of variance approach (first introduced by Fisher [START_REF] Fisher | Statistical methods for research workers[END_REF] and commonly referred to as ANOVA, it has been popularised with the orthogonality constraints used to ensure its uniqueness. In 1993, Sobol [START_REF] Sobol | Sensitivity indices for nonlinear mathematical models[END_REF] defined these orthogonality constraints (in its original case where X = [0, 1] n X ) as

f u (x u )dx i = 0 ∀u ∈ S, ∀i ∈ u. (9) 
As a direct consequence, all the summands are orthogonal, meaning that

E[f u (x u )f v (x v )] = 0, ∀u = v ∈ S. (10) 
Finally, if the function f is square integrable (f ∈ L 2 ), Sobol [START_REF] Sobol | Sensitivity indices for nonlinear mathematical models[END_REF] introduces the following quantities denoted D u , defined as:

D u = f 2 u (x u )dx u , ∀u ∈ S, (11) 
and shows that they are all finite. Once this procedure is applied to all summands of equation ( 8), on both sides, it leads in the functional ANOVA decomposition, written as

Var(f (x)) = E[(f (x) -f 0 ) 2 ] = u∈S * E[f u (x u ) 2 ] = u∈S * Var(f u (x u )). (12) 
Suppose now that (R n X , B(R n X ), µ) is a probability space where R n X is the sample space, B(R n X ) is the Borel σ-algebra and µ the probability measure with dµ = p(x)dx, where p x is the probability density function of

x. This decomposition has been further investigated and generalised by Li et al. [START_REF] Li | General formulation of hdmr component functions with independent and correlated variables[END_REF] with the introduction of the hierarchical orthogonal condition (based on the work from Stone [START_REF] Stone | The use of polynomial splines and their tensor products in multivariate function estimation[END_REF] and Hooker [START_REF] Hooker | Generalized functional anova diagnostics for high-dimensional functions of dependent variables[END_REF]), providing a criterion to state that the HDMR component functions are uniquely determined. The existence of this decomposition is formally demonstrated, under suitable conditions on the joint distribution function of the input variables, by Chastaing et al. [START_REF] Chastaing | Generalized hoeffding-sobol decomposition for dependent variables-application to sensitivity analysis[END_REF] resulting in the HOFD: the hierarchically orthogonal functional decomposition. The functional expansion introduced in equation ( 2) is then still valid, with the summands being defined as

f u (x u ) = f (x)p u (x u )dx u - v⊂u f v (x v ) - u v∈S u∩v =∅ f v (x v )p u (x u )dx u , u ∈ S. ( 13 
)
This definition is given providing that all summands fulfil the relaxed vanishing condition

f u (x u )p u (x u )dx i = 0, ∀u ∈ S * and i ∈ u, (14) 
or equivalently the hierarchical orthogonal condition

E[f u (x u )f v (x v )] = 0, ∀u ∈ S * and ∀v ⊂ u. (15) 
This statement means that a higher order component function is only required to be orthogonal to all nested lower order component functions whose variables are a subset of those in the higher order component function. Further details (or ways to introduce this decomposition) can be found in the literature [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF][START_REF] Li | Analytical hdmr formulas for functions expressed as quadratic polynomials with a multivariate normal distribution[END_REF][START_REF] Rahman | A generalized anova dimensional decomposition for dependent probability measures[END_REF].
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Since the HDMR component functions with correlated variables are not mutually orthogonal, the standard variance decomposition of the unconditional variance of the output does not hold. A new covariance decomposition of the unconditional variance of the output was introduced [START_REF] Chastaing | Generalized hoeffding-sobol decomposition for dependent variables-application to sensitivity analysis[END_REF][START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF] 

Var(f (x)) = E[(f (x) -f 0 ) 2 ] = E u∈S * f u (x u )(f (x) -f 0 ) = u∈S * Cov(f u (x u ), f (x)) = u∈S * Cov f u (x u ), v∈S * f v (x v ) = u∈S * Var(f u (x u )) + Cov f u (x u ), v∈S * u =v f v (x v ) . ( 16 
)
This summarises briefly the theoretical development on the breakdown of a function into a finite number of summands, from a very specific decomposition in 1948 [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF] to its more recent generalised presentation even in dependent case. Several of the methods tested in this paper partly rely on the equation introduced beforehand.

Independent variables

This last section is briefly reminding concepts of global sensitivity analysis used in the independent case. It is not meant to be neither a reference nor an exhaustive list, as many articles and books are compiling and discussing these aspects [START_REF] Saltelli | Global Sensitivity Analysis: The Primer[END_REF][START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF][START_REF] Saltelli | Sensitivity Analysis[END_REF][START_REF] Monod | Uncertainty and sensitivity analysis for crop models[END_REF][START_REF] Iooss | A review on global sensitivity analysis methods[END_REF], but some of these quantities are mentioned later-on in § 2.

In the general independent case, two common sensitivity indices can be defined, ∀i ∈ 1, n X , as

S S i = Var(E(Y |X i )) Var(Y ) and S Ti = 1 - Var(E(Y |X ∼i )) Var(Y ) , (17) 
where ∼ i represents all the input variables but the ith one. These indices are respectively called the first-order sensitivity index S S i † and the total-order sensitivity index S Ti (but it is not unusual to see names like first-order Sobol index and total-order Sobol index). The former one has been introduced by Sobol [START_REF] Sobol | Sensitivity indices for nonlinear mathematical models[END_REF], as it ensues from equation [START_REF] Fisher | Statistical methods for research workers[END_REF], once both sides are divided by Var(f (x)), transforming it into

1 = u∈S * S S u = u∈S * Var(f u (x u )) Var(Y ) , (18) 
where the f u are expressed as

f u = E(Y |X u ) -v⊂u f v .
The first-order index only describes the impact of the input X i on the output, it does not take into account the possible interaction between inputs. This name implies that there might be higher-order indices coping for the crossed impact of X i with any other set of inputs. Once all these higher-order indices are considered, meaning the full set of 2 n X -1 values to be computed (the cardinal of S * ), it provides a perfect breakdown of the output variance. A general form for these indices can be written as

S S u = 1 Var(Y ) v⊆u (-1) |u|-|v| V v , ∀u ∈ S * . ( 19 
)
where |u| and |v| represent respectively the cardinal of u and the cardinal of any of its subset v. Even though it is possible to find another general form for the Sobol indices, sometimes referred to as "closed Sobol indices" [START_REF] Iooss | Shapley effects for sensitivity analysis with correlated inputs: comparisons with sobol'indices, numerical estimation and applications[END_REF],

defined by S cl u = V u /Var(Y ) which assess the total impact of the inputs (X i ) i∈u , this paper will focus on the one written in equation [START_REF] Rahman | A generalized anova dimensional decomposition for dependent probability measures[END_REF]. In order to prevent from having to estimate all these indices, Homma and Saltelli introduce the total-order index [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF], shown as the right-hand part of equation [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF], which is equivalent to sum all the indices that would include the input i in consideration, so in the general form:

S Ti = u⊆({i}∩S\{i}) S S u . (20) 

Special case of the linear model

Whatever the problem may be, it is possible to measure the linear correlation coefficient of the ith input with the given output, also named Pearson, or Bravais-Pearson coefficient [START_REF] Heumann | Introduction to statistics and data analysis[END_REF], defined, ∀i ∈ 1, n X , as

ρ i = ρ(X i , Y ) = Cov(X i , Y ) Var(X i ) Var(Y ) . ( 21 
)
Another estimator currently used is the standard regression coefficient (SRC), also called the standardised coefficient [START_REF] Greenland | Standardized regression coefficients: a further critique and review of some alternatives[END_REF], which is computed using the β coefficients (the regression coefficients that multiply the input variables in the linear regression form introduced in equation ( 6)). It can indeed be written, ∀i = 1, n X as

SRC i = SRC(X i , Y ) = β i Var(X i ) Var(Y ) . ( 22 
)
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In the simple linear and independent case, it is possible to link all these coefficients by the following relation

ρ 2 i = SRC 2 i = S S i = S Ti , ∀i ∈ 1, n X . (23) 
Since the same quantity can be estimated in various ways, following Occam's razor principle implies that the simplest method is the best solution. If the independence hypothesis has to be dropped, meaning in the context of this paper that Γ XX = 1 n X but is nonetheless invertible, the ANOVA decomposition as introduced in equation ( 18) can not hold. New sensitivity indices should be found in this general case.

THEORETICAL DESCRIPTION OF THE CONSIDERED METHODS

This section is providing a description of the methods proposed in order to get a quantitative estimation of the impact of an input variable on the output of the system, in a linear-dependent case. To prevent from drawing any conclusion on their usefulness, they are discussed in order of first appearance in the scientific literature.

Shapley value

Historical formulation

The concept of Shapley value has been introduced in the game theory context, when considering the case of a coalitional game, i.e. a couple (n X , c) where

• n X is the number of players;

• c is the characteristic function, c : S → R with c(∅) = 0 and ∀A ⊂ B, c(A) ≤ c(B).

The characteristic function c has the following meaning: if u is a coalition of players, then c(u), called the worth of coalition u, describes the total expected sum of payoffs the members of u can obtain through cooperation.

Shapley [START_REF] Shapley | A value for n-person games[END_REF] proposed a way to distribute the total gains to the players, assuming that they all collaborate. It is a "fair" distribution in the sense that it is the only distribution with certain desirable properties listed below. According to the Shapley value, the amount received by player i, in a coalitional game (n X , c), is

ϕ i := 1 n X u⊂S i n X -1 |u| 1 (c(u ∪ {i}) -c(u)). (24) 
The main properties of the Shapley values are the following ones:
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• efficiency:

n X i=1 ϕ i = c(S)
• symmetry: if i and j are two equivalent players, meaning c(u ∪ {i}) = c(u ∪ {j}), ∀u ⊂ S \ {i, j}, then

ϕ i = ϕ j
• additivity: combining two coalitional games (n X , c) and (n X , d), results in a new coalitional game (n X , c + d)

where

(c + d)(u) = c(u) + d(u), ∀u ⊂ S and ϕ i (c + d) = ϕ i (c) + ϕ i (d), ∀i ∈ 1, n X .
• nullity:

ϕ i = 0 for a null player. A player i is null if c(u ∪ {i}) = c(u), ∀u ⊂ S i
The concept of Shapley value has been used in economy for sometimes [START_REF] Owen | Values of games with a priori unions[END_REF][START_REF] Hart | Endogenous formation of coalitions[END_REF][START_REF] Winter | The shapley value, Handbook of game theory with economic applications[END_REF] but has only recently been brought up in the uncertainty community.

Formulation for sensitivity analysis

Given the convention above and bearing in mind the general formula for Sobol indices given in equation ( 19),

Owen [START_REF] Owen | Sobol'indices and shapley value[END_REF] has defined the Shapley value, in the sensitivity analysis framework, for a given input i ∈ 1, n X , as:

η i := 1 n X Var(Y ) u⊂S i n X -1 |u| 1 (V u∪{i} -V u ). (25) 
Based on this definition, Shapley values have been exhibited as proper sensitivity indices in [START_REF] Iooss | Shapley effects for sensitivity analysis with correlated inputs: comparisons with sobol'indices, numerical estimation and applications[END_REF] when the inputs are dependent. There is indeed only one value for each input variable, this value always lies in [0, 1] and their sum equals to one, once all input variables are considered (even with correlation).

Linear Gaussian case

In the case where X ∼ N (µ, Γ XX ), assuming µ = 0, for the sake of simplicity without genericity loss, one can rewrite the sensitivity indices, as they can be calculated explicitly. Sobol' indices, for instance, can be expressed with expectations of conditional variances [START_REF] Broto | Sensitivity indices for independent groups of variables[END_REF], as done below:

S S u := (-1) |u| Var(Y ) v⊂u (-1) |v|+1 E v , ∀u = 0, (26) 
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η i := 1 n X Var(Y ) u⊂ i n X -1 |u| 1 (E u -E u∪{i} ). (27) 
Using the Gaussian framework, one can express the conditional variance as shown here [START_REF] Owen | On shapley value for measuring importance of dependent inputs[END_REF]:

V u = Var(X u β u |X u ) = β T u (Γ u, u -Γ u,u Γ 1 u,u Γ u, u )β u . ( 28 
)
This expression is constant for a given subset u, so it is equal to its expectation which provide a way to compute all Shapley values. A step-by-step procedure, called LG-Shapley, is proposed by Broto et al. in [START_REF] Broto | Sensitivity indices for independent groups of variables[END_REF].

LMG or General Dominance indices

Another way to quantify the impact of correlated inputs seemed to have arisen in a book by Lindeman, Merenda and Gold (LMG) [START_REF] Lindeman | Introduction to bivariate and multivariate analysis[END_REF] (but as stated in [START_REF] Owen | On shapley value for measuring importance of dependent inputs[END_REF], this reference is very difficult to obtain). The rest of this paper uses the formalism provided by Budescu et al. [START_REF] Budescu | Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression[END_REF][START_REF] Azen | Comparing predictors in multivariate regression models: An extension of dominance analysis[END_REF] that defines the General Dominance (GD) indices as the average increment in the coefficient of determination associated with the predictor X i in all possible sub-models. Bearing in mind that this method is also discussed as the LMG one (c.f. [START_REF] Lindeman | Introduction to bivariate and multivariate analysis[END_REF]), the resulting indices will hereafter be called the LMG-GDI.

The idea is to call D k i the average increase in the coefficient of determination due to adding X i to the n X -1 k different sub-models, each with k variables, k = 0, ..., (n X -1); thus

D k i = u⊆S i,|u|=k n X -1 k 1 (R 2 u∪i -R 2 u ). (29) 
Then, another coefficient D i is obtained by averaging the D k i across all S sub-model sizes. This can be written as

D i = 1 n X n X -1 k=0 D k i = 1 n X u⊂ i n X -1 |u| 1 (R 2 u∪i -R 2 u ). (30) 
Finally the coefficient of determination can be computed through the multiple correlation equation, which is shown below when considering, for illustration purpose, the full model (under linear Gaussian hypothesis):

R 2 = Γ Y X Γ 1 XX Γ XY . (31) 
One can also express the R 2 u formula (c.f. equation ( 5)) using the second form of the correlation matrix by block introduced in equation ( 7), which represents the quality of the regression if it were to be done only using input variables in the subset u, ∀u ⊂ S.

R 2 u = Γ Y u Γ 1 uu Γ uY . (32) 
The complexity in terms of number of configurations is exactly the same as the one for the Shapley value.

The relative weight method

The idea here is very similar to the standard regression coefficients introduced in § 1.3, as one will use orthogonal transformation to represent our data, with dependent inputs. The method has been introduced by Johnson [START_REF] Johnson | A heuristic method for estimating the relative weight of predictor variables in multiple regression[END_REF] and its principle can be split into three steps:

• transform the dependent input variables X through a linear transformation into Z so that Z T Z = 1 n X ;

• compute sensitivity index of the output Y with respect to Z;

• reconstruct the sensitivity index of the output Y with respect to the component of X.

Practically, the method proposed in [START_REF] Johnson | A heuristic method for estimating the relative weight of predictor variables in multiple regression[END_REF] relies on the singular value decomposition of X, written as X = UΣV T for which U contains the eigenvectors of XX T , V contains the eigenvectors of X T X and Σ is a diagonal matrix containing the singular values of X (the squared form of the singular values corresponds to the eigenvalues of X T X).

From there, the best-fitting orthogonal approximation of X can be obtained (see Johnson [40] for the demonstration) as

Z = UV T . ( 33 
)
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The second steps consists in regressing Y onto Z, which is obtained by

β * = (Z T Z) 1 Z T Y = (VU T UV T ) 1 VU T Y = VU T Y. (34) 
The squared elements of β * represent the proportion of predictable variance in Y accounted for by the (Z i ) i=1,...,p , but in the case where two or more original variables are highly correlated, the Z variables are not a close representation of the X ones. To take this into account, Johnson propose to regress X onto Z, leading to another set of weights defined as:

Λ * = (Z T Z) 1 Z T X = (VU T UV T ) 1 VU T UΣV T = VΣV T . ( 35 
)
From there, the variance of Y explained by X i can be denoted as ∆ 2 i and estimated from the following formula

∆ 2 i = n X j=1 λ * 2 ij β * 2 j , (36) 
where λ * ij = (Λ * ) ij , ∀i, j ∈ 1, n X and bearing in mind that

Var(Y ) = n X i=1 ∆ 2 i = n X i=1 β * 2 i . (37) 
The resulting sensitivity indices are written

∆ * i = ∆ 2 i Var(Y ) , 1 ≤ i ≤ n X , (38) 
and are commonly referred to as relative weights, or Johnson's relative weights.

The variance-covariance approach

As stated in § 1.2, the decomposition into a finite set of summands can be generalised, (as long as f ∈ Ł 2 ) and leads to the decomposition of the system output variance as shown in equation ( 16), where the breakdown is done as the sum of the covariance of all summands with respect to every summands of the original function. As for the Sobol indices, this decomposition can be written as a sum equals to 1 by dividing both sides as done below:

1 = u∈S * Var(f u (x u )) Var(f (x)) + Cov f u (x u ), v∈S * u =v f v (x v ) Var(f (x)) (39) 
= u∈S * [S Cu u + S Cc u ] = u∈S * S C u . (40) 
Even though the decomposition of the variance remains very general as written in equation ( 39), a choice has been made mixing the original notation from [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF] and the one from [START_REF] Chastaing | Indices de sobol généralisés pour variables dépendantes[END_REF] mainly to prevent any kind of confusion while discussing the indices. The resulting indices are written S C u where the superscript C stands for covariance, implying covariance-based measurements, this notation has been added on top of the notation from the structural and correlative sensitivity analysis method (SCSA) [START_REF] Li | General formulation of hdmr component functions with independent and correlated variables[END_REF][START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF][START_REF] Li | Analytical hdmr formulas for functions expressed as quadratic polynomials with a multivariate normal distribution[END_REF] to prevent from introducing confusions with the general form of Sobol indices.

This sensitivity index is further split into two contribution: S Cu u and S Cc u . The former term ensues from the structural independent contribution, meaning related to f u (x u ) and the marginal probability density function p u (x u )

only. On the other hand, the latter arises from the correlative contribution, meaning the relation between f u (x u ) and the other functions along with the joint probability density function p(x). The superscripts have been modified to Cu and Cc standing respectively for covariance-uncorrelated and covariance-correlated parts (this notation are inspired from [START_REF] Chastaing | Indices de sobol généralisés pour variables dépendantes[END_REF] since this convention is far more transparent than the a and b ones from [START_REF] Li | General formulation of hdmr component functions with independent and correlated variables[END_REF]).

The first interesting thing to notice about these new definitions is the fact that as soon as independent case is considered, the correlative contribution S Cc u = 0 leading back to S C u = S Cu u = S S u , which makes Sobol indices a special case of the decomposition introduced in equation ( 39). If the system is dependent, as discussed by Chastaing et al. [START_REF] Chastaing | Generalized sobol sensitivity indices for dependent variables: numerical methods[END_REF], the value of S C i is the sum of two contributions which can compensate one-another leading to five possible configurations:

• when X i has importance mainly through its dependence with other variables, it can lead to a positive or negative S C i value. In the former case, the other variables are reinforcing the influence of the input under consideration while in the latter case, it is relevant to wonder about it significance.

• when X i has a significant importance on its own, it can be either reinforced or weakened by the contribution induced by the dependence;

• when S C i is null, either coming from negligible direct and indirect contribution, or by a complete compensation
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As this paper focuses on the linear dependent case, the simple estimation proposed in [START_REF] Li | Relationship between sensitivity indices defined by variance-and covariance-based methods[END_REF] is used to provide a accurate values for all contributions (S C i , S Cu i , S Cv i ) which are then used as reference guides when comparing the results of other methods. There are other techniques available to estimate these coefficients in the general approach:

Li et al. [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF] propose to approximate these summands expanded on a suitable basis, bypassing some technical problem of degenerate design matrix by using a continuous descent technique through the D-MORPH algorithm. More recently, Chastaing et al. [START_REF] Chastaing | Generalized sobol sensitivity indices for dependent variables: numerical methods[END_REF] propose an alternative to directly construct a hierarchical orthogonal basis, by recursively constructing for each summand a multidimensional basis that satisfies the hierarchical orthogonal conditions, leading to a procedure named hierarchically orthogonal Gram-Schmidt (HOGS).

The weighted first last method

This method has been proposed by Wallard in his PhD manuscript [START_REF] Wallard | Analyse des leviers: effets de colinéarité et hiérarchisation des impacts dans les études de marché et sociales[END_REF], which also provides a far more extensive review on linear dependent sensitivity analysis than this paper (however it is written in french). It is called weifila, whose name stands for weighted first last, and it combines two measurements:

• the first sensitivity index, is the squared Bravais-Pearson coefficient, called ρ 2 i in this paper (c.f. equation ( 21));

• the last sensitivity index, called I last i and defined as

I last i = R 2 X -R 2 X i
which quantities the impact of X i on the coefficient of determination when added last in the model.

Summing each of these indices over the number of input variables leads to the definition of the first and last effects, shown below

F = i ρ 2 i and L = i I last i , (41) 
The weifila index ensues from these effects, so when considering a specific input variable:definition of the weifila index as

W i = I last i |F -R 2 | |F -L| + ρ 2 i |R 2 -L| |F -L| . ( 42 
)
This very simple index should yield i W i = R 2 and should provide, according to [START_REF] Wallard | Analyse des leviers: effets de colinéarité et hiérarchisation des impacts dans les études de marché et sociales[END_REF], results very close to the Shapley values. It might be useful to state that for an independent linear model (meaning when R 2 = 1), both first and last index are equivalent, so are their sum, respectively F and L, both equal to 1. This shed an interesting light on the weifila index for this peculiar case.

DEFINING THE PROTOCOL AND LOOKING AT DISTRIBUTIONS

This section introduces the framework used to test the sensitivity indices, by means of random correlation matrix generation. The procedure is discussed in § 3.1 testing different configurations in order to robustify the results and a glimpse on obtained data is shown in § 3.2 for few given configurations in order to compare the indices values.

Randomly-drawn correlation matrices

The protocol used in this paper to test all the sensitivity indices consists in generating a large number of random correlation matrices, designed not be singular ‡ , in order to cover as much realistic configurations as possible. The idea behind this is to be estimate all sensitivity indices introduced previously and compared them, the covariancebased ones being used as references (since in the linear dependent case, their estimation is simple and is a perfect breakdown of the system output variance, c.f. § 2.4).

The Gram approach

The first implemented way to do this is by using a given number of centred-reduced Gaussian input variables, which can be written as fixing X ∼ N (0, Γ XX ) and Y = i X i . The correlation matrix of the input variables is defined by generating a random matrix A(p, p) where every coefficient is drawn from a centred-reduced Gaussian law. A G(p, p) matrix is then generated as G = p 1 AA T and from there, once the following diagonal matrix S is defined as S(p, p) = diag(1./ √ G ii ), the random correlation matrix is obtained as:

Γ XX = SGS. (43) 
This procedure, sometimes referred to as the Gram one, ensures that the resulting correlation matrix is non-singular while creating dependence between the input variables, as stated by Marsaglia et al. [START_REF] Marsaglia | Generating correlation matrices[END_REF]. Apart from the diagonal elements (always set to 1), the marginal distributions of all the correlation coefficient are the same, following a beta distribution of the form

ρ ij ∼ β( n X -1 2 , n X -1 2 , -1, 1), ∀i, j ∈ 1, n X , i = j, (44) 
‡ no input variable i, ∀i 1, n X should be fully defined as a function of the other inputs, so no function g should exist so that Xi = g(X1, . . . , X i-1 , X i+1 , . . . , Xn X ).

International Journal for Uncertainty Quantification whose mean value is 0 and whose standard deviation is known to be σ ρ = n X -2 . This introduces an issue in the representativity of the possible correlation coefficients since, with increasing dimension n X , the correlation coefficient distribution is shrinking and leaves large fraction of the possible space empty. This is illustrated in Figure 1, for four values of input space (n X = 4, 8, 12, 16), with the marginal distribution on top and the bi-variate representation of (ρ 0,1 , ρ 0,2 ). 

The Archakov-Hansen approach

In order to circumvent this issue, another procedure is used, referred to as the Archakov-Hansen one [START_REF] Archakov | A new parametrization of correlation matrices[END_REF], based on the fact that there is a one-to-one correspondence between the set of n X × n X non-singular correlation matrices, denoted This can be written as γ ∼ N (γ 0 , Iω 0 ) where γ 0 is a vector of constant mean value and ω 0 is a weight that is used to multiply the identity matrix I. For illustration purpose, one value of the input space has been chosen (n X = 12) while four values have been used both for γ 0 (γ 0 = -0.6, -0.3, 0, 0.15) and for ω 0 (ω 0 = 1, 1/2, 1/5, 1/25) in order to produce a matrix of bi-variate representation of (ρ 0,1 , ρ 0,2 ) gathered in Figure 2. All these distributions should be balanced with those from the Gram method, shown in Figure 1(c).

C n X ,n X and R d for d = n X (n X - 1 
By varying both the γ 0 and ω 0 parameters, it is possible to change the marginal distribution of the correlation coefficient by impacting respectively its central value and its spread. From Figure 2 and comparing these distributions to the one of interest in Figure 1(c), it is fair to conclude that, even though results drawn from the Gram method should not be discarded, they should be at least completed and reinforced by the use of the Archakov-Hansen approach. It could indeed, on the one hand, ensure a better coverage of the correlation phase space and also, on the other hand, allows to focus on different part of this correlation phase space. The proposed protocol here is to use the Archakov-

Hansen approach with the central configuration shown in Figure 2(b)(A) and check that all conclusions hold with the non-symmetric cases displayed in Figures 2(a)(A) and 2(c)(A).

Generalising the interpretation: groundwork and vocabulary

The goal of this paper is to compare the various sensitivity methods introduced in § 2, starting from a simple introduction in § 3.2, to more refined investigations (looking at the impact of various parameters that can influence either the sensitivity indices behaviour, the resource consumption. . . ). From now on, configuration will refer to as a given set of these parameters value, knowing that these can be split into two kinds:

• the size of the input space n X , the size of the sample n S , the nature of the input variable laws (choice of pdfs for instance). . .

• the approach chosen to generate the correlation matrix.

While the latter kind is sorely specific to our chosen methodology, the former is the problem definition: every sensitivity analysis is defined by these parameters along with the chosen SA method.

For a given configuration, two metrics are considered in order to compare the results of the sensitivity methods:

• the value of the indices themselves. The comparison from one sensitivity method to another (for a given input variable) is rather straightforward.

• the rank of the indices. By ordering the index values, for a given method, in increasing order, the rank is a number that goes from 1 to n X which organise into a hierarchy the input variables, the smallest rank value corresponding to the input variable with the lowest impact on our quantity of interest.

International Journal for Uncertainty Quantification For every configuration, there is a set of index and a set of rank for each and every sensitivity method. Since both the correlation matrix, whatever the chosen approach may be, and the sample, on which the indices estimation is performed, are randomly drawn, this procedure, latter referred to as an estimation, is repeated to overcome statistical fluctuations: few thousands of times in § 3.2 and from about 50 to about 150 times in § 4.

Applying all methods: first observations

In order to investigate the behaviour of all the indices, a given basis configuration is chosen to serve as a reference:

• the dimensions of the problem are set to (n X , n S ) = (12, 1000);

• all the inputs variables are set to have the same variance;

• the input variables are drawn as a multivariate normal distribution, X ∼ N (0, Γ XX ) where Γ XX is taken either as the unitary matrix or drawn from the Gram or the Archakov-Hansen approach;

The last aforementioned item is let opened as starting with an already complicated correlated situation might complicate the interpretation due to a possible entanglement of various effects.

Independent case with same variances

In this section, large number of estimations have been done § in order to throw a first glance at the behaviour of the five indices introduced in § 2, along with the usual first-order coefficient ¶ . To check that our estimations are consistent with the expectations from the theory introduced in both Section 1 and 2, but also to look for any interesting trends, a first attempt is done setting Γ XX = 1 n X .

Figure 3 shows all sensitivity indices distribution, for this peculiar configuration and few points can be raised from it:

• all the distributions, but weifila, are centred around 8.33 % which is expected as this correspond to a twelfth of the system output variance (since all variables are independent and have the same variance);

• the weifila index seems to provide very off-estimations. This instability (pointed out in the introduction of the method in § 2.5) is not particularly related to the size of the sample provided: it has been tested with n S = 10000 and in both cases, about 30 % of the events are in tails. § unless otherwise specified, it exactly 8330 estimations, so that the total number of indices is roughly matching 100 000 entries. ¶ The first-order coefficient results here used for illustration purposes will be computed throughout this paper using the pick-and-freeze method [START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF][START_REF] Saltelli | Sensitivity Analysis[END_REF]. This is out of the scope of this paper as the linear assumption has to be done (the sensitivity indices can not be estimated only with a provided sample) but the information drawn is interesting nonetheless.

International Journal for Uncertainty Quantification • the standard deviation from these distribution is directly linked to the size of the statistical sample (n S ). When a sample of size 10000 locations is used instead of n S = 1000, all these values shrink. This is further illustrated in § 4.

• most of the distributions are very similar, at least from their statistical momentum point of view as they all derived from the same events and should lead (in this very simple case) to the same values (c.f. § 2).

In order to investigate further the fourth observation, the difference of all indices value is computed for all selected pairs of methods, some of which are represented in Figure 4 for example. The two left-handed plots show that whatever the configuration considered, the covariance-based, relative weight and Shapley values are fairly close but not exactly the same. The comparison of the classical first-order coefficients with all other measurements is also consistent, as shown by the third plot of Figure 4 once compared to covariance-based values, but limited by the size of the sample (as discussed later in § 4). Finally, the latest plot (the right one) focus on the fact that Shapley values and LMG-GDI ones seem to be exactly equivalent. This is confirmed throughout all cases in this paper and is proven analytically in § 5.1. To further investigate this, it is possible to look at the rank distributions. By construction, in this case where n X is set to 12, the rank distribution is the exact same one from one method to another: it is a Dirac comb with integer value going from 1 to 12, each of the corresponding bins having exactly the same number of entries. International Journal for Uncertainty Quantification

Independent case with different variances

Another important hypothesis, from the basis configuration defined at the beginning of § 3.2, is the fact that all input variables have the same variance which leads to the equal contribution of each of them to the system output (a twelfth when n X = 12). In this part, the variance distribution is split into two groups: in the first one, half the input variables still have a variance of 1, while in the second group it is set to σ = 5. Looking at Figure 6, that shows that all sensitivity indices distribution are very similar:

• all the distributions have an average value around 8.33 % (still the twelfth of the system output variance) but this time split into two regions, as expected;

• the weifila index seems to provide more stable results, in agreement with the rest of the methods;

• the standard deviation from these distribution is now driven by the fact that the indices are split into two regions.

The spread of both peaks, on the other side, are still directly linked to the size of the statistical sample (n S ). As for the independent case where all input variables bring the same contributions, the first observation mentioned Volume x, Issue x, 2022 previously can be tested by looking at the difference of of all indices with both metrics: their values in Figure 7 or their ranks in Figure 8. The conclusions drawn from § 3.2.1 remain: there is a very good agreement between all indices with very low variations between covariance-based, LMG-GDI, relative weight and Shapley values, as shown by the left and middle-left parts of both Figures 7 and8. The first-order coefficient results are still very limited by the sample size while the weifila results, even though stable now for every configurations, show tails with respect to every other indices, as shown respectively by the middle-right and right parts of both Figures 7 and8. 

Gram and Archakov-Hansen random matrix cases

In this section, another large number of estimations have been done and the distributions of all the methods introduced in § 2, along with the usual first-order coefficient, using now random correlation matrices, either drawn from International Journal for Uncertainty Quantification the Gram or the Archakov-Hansen approach, are shown respectively in Figures 9 and10. As a remainder, the corresponding distribution of correlation coefficients can be seen respectively in Figure 1(c) and in Figure 2(b)(A), as in the Archakov-Hansen approach, the chosen setup is (γ 0 , ω 0 ) = (0, 1). Few observations can be drawn from these two sets of distribution:

• the weifila results using the Gram approach is still suffering from instabilities which would suggest that one might be tempted to discard them;

• once again, all the distributions, but the aforementioned one, have an average value around 8.33 % (the twelfth of the system output variance) but this time the methods can be split into two kinds: the positive-only ones (Shapley valuev, LMG-GDI, relative weight and weifila) and the others with possibly negative results (covariance-based, first-order coefficient);

• bearing in mind the split in methods introduced in previous item, the variances of the distribution, going from the Gram to the Archakov-Hansen approach, are fairly stable for the positive-only methods while they are increasing significantly for the others.

The first and third observations above are completing the analysis done when looking at the distributions of the correlation coefficient taken out of either the Gram or the Archakov-Hansen approach: the former is providing correlation coefficients closer and closer to 0 as the input dimension is increasing (c.f. Figure 1 and the expected PDF of these coefficients introduced in equation ( 44)) while the latter is more representative of the full possible variability.

The second observation is of utmost importance: as already discussed in § 2.4 when introducing the covariancebased method, some total indices might be negative or null. The former case implies that the correlative contribution is weakening so much its structural counterpart that it flips the global index sign but the amplitude helps pointing out that the variable under study should not be dropped. Interpreting the latter case might be a bit more tricky as a close to 0 value might arise either when both the structural and correlative contributions are negligible, meaning that the impact of the variable is indeed negligible, but also when both contributions have equivalent amplitude but cancel out one another.

Combining these two aspects explains why going from the Gram to the Archakov-Hansen approach means having a significant increase in the standard deviation of the indices distributions for the non-positive-only methods: the covariance are allowed to be larger in the latter case (given our chosen parameter values γ 0 and ω 0 ) so there might be more widely spread resulting indices. Since the covariance can significantly impact the influence of a given variable, International Journal for Uncertainty Quantification in order to be as exhaustive as possible, the Gram approach is discarded in the rest of this paper and the Archakov-Hansen one is kept as a baseline, with (γ 0 , ω 0 ) = (0, 1), changing this couple of parameter from time to time to check the consistency of the following conclusions.

Finally, in order to be able to compare indices numerically, all indices have been normalised in a similar fashion, in order to circumvent the difference in behaviour between positive-only and non-positive-only methods, following this principle:

|κ i | = |κ i | n X j=1 |κ j | . ( 45 
)
Figure 11 shows the distributions of the indices in their normalised form which can be compared to their original form already shown in Figure 10. This step allows to get all sets of indices evolving in a common range, helping sorting out the non-positive-only in a very common way to the rest of the positive-only methods. Indeed, for a given estimation, a negative value of a covariance-based index for instance, reflect that the correlative part is larger than its structural counterpart for the input under consideration. By considering only its value, its ranking will be smaller than every other input variables with a positive index, even those whose index is lower than the absolute value of the one under consideration, hence this normalisation proposition. This provides, when computing the difference between all the methods and the covariancebased values, fairly coherent results from one method to another as shown by the distributions in value in Figure 12 and in rank in Figure 13. With our basis configuration, using the (γ 0 , ω 0 ) = (0, 1) configuration which results in widely distributed correlation coefficients, all the differences are unbiased (from a statistical point of view), with a reasonable standard deviation. The conclusions seen above are completed with new ones:

• as expected, the impact of the normalisation on the positive-only results is nonexistent: all the n X results where already positive for each and every estimations and their sum is set to 1 by construction;

• the covariance-based results and first-order coefficients are very likely before and after normalisation. This can be seen both from the values and the rankings distributions.

• all the positive-only measurements are in a nice agreement with the normalised covariance-based results, which can be seen from both the values and rankings distributions

• even though there are more tails in the comparison of covariance-based results and weifila ones (probably due to the stability of the weifila method), the rankings are more coherent for covariance-based and weifila than for covariance-based and the rest of originally positive-only methods (LMG-GDI, Shapley values and relative weight).

The agreement seen and discussed here is getting better once choosing a stronger correlation in between the variable: the exact same procedure has been redone with random correlation matrices drawn with the Archakov-Hansen procedure, setting now the parameters to the following values (γ 0 , ω 0 ) = (0.15, 1), as already introduced in Figure 2(c)(A). Using this peculiar configuration leads to higher correlation coefficient values and an even better agreement between all the methods, as can be seen in Figures A. 20 and A.21 Now that all these methods have been shown to have their differences but to converge to common conclusion, the dependence to all the parameters used to define the basis configuration will be studied in more details in § 4.

TESTING DEPENDENCIES

In this part, the conclusions drawn from § 3.2 are set aside in order to focus on the way the considered methods might be depending on some of the basis configuration parameters considered fixed (those detailed in the preamble of § 3.2). The idea is to investigate a possible impact on several interesting features such as the average difference International Journal for Uncertainty Quantification between normalised method results, the spread of the difference between normalised method results and the running time for every methods, when varying

• the sample size n S ;

• the input space size n X ;

• the nature of the input law;

• the variability of the input laws;

As for the preliminary analysis done in § 3.2, estimations have been generated to test several steps in the all the aforementioned parameters, the number of estimation going from 50 to 166, so that the estimators used to the average and standard deviation estimation might be accurate enough while the total number of estimated indices is as close to a thousand as possible. Every following sections will deal with on the item defined above.

In each case, disregarding the parameter under investigation, tests are done in order, on the one hand, to check the consistency of the sensitivity indices measurements from one method to the other, but also, on the other hand, to investigate the self consistency of every methods (average and spread evolution) when the parameter is changing.

For the rest of this section, the time measurement is done with the chrono C++-package for every estimation of each method separately, using a regular i9-9880H processor with 8 cores (16 threads) on a laptop. In order not to affect too much the measured time, the number of parallelised processes have been limited to 6 at the same time.

Impact of the sample size

In this section, the sample size is tested, going from a hundred locations to four thousand ones. The most interesting results are gathered in Figure 14.

Figure 14(a) shows both the average and spread of the differences in the values of all sensitivity indices with the covariance-based results. The first observation is that no bias is seen through all the n S steps tested, as the average bias is well below 10 -10 . However, the spread is evolving as displayed in Figure 14(b), which shows that all the methods but the first-order coefficients have a very stable spread with respect to the number of locations. For the latter, on the other hand the spread is decreasing fast with the number of locations which is expected from the pick-and-freeze method used with the provided sample.

As for the resource, the time consumption is displayed in Figure 14(c) in logarithmic scale with respect to the sample size, and shows that all the methods but the first-order coefficients are fairly stable. For the latter, the evolution is the one expected from the pick-and-freeze method.
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Impact of the input space size

In this section, the input space size is tested, going from 4 to 20 input variables. The most interesting results are gathered in Figure 15. the covariance-based results. The first observation is that no bias is seen through all the n X steps tested, as the average bias is again well below 10 -10 . However, the spread is evolving significantly for all methods as displayed in Figure 15(b), but two groups can be seen: the first-order coefficients on one side and the rest of the indices on the other. For the former it has already been stated than the first-order coefficients and the covariance-based results are in a very good agreement while for the latter all the other methods share the same pattern with a quick reduction of the spread with the input space size.

As for the resource, the time consumption is displayed in Figure 15(c) in logarithmic scale with respect to the International Journal for Uncertainty Quantification input space size, and shows that all the methods are sensitive to the input space size but with very different impact:

relative weights, covariance-based and first-order coefficients time consumption is increasing slightly, with less than an order of magnitude when going from 4 to 20 inputs even though their respective starting point is different. The computation time evolution for the weifila method is not so far from the three previously discussed ones, it changes by a bit less than two orders of magnitude. The two remaining methods suffers from severe time dependencies has, the evolution of their average computation time seems linear in logarithmic scale with respect to the input space size, increasing by more than 5 orders of magnitudes in our current testing conditions.

From all these observations, the input space size does not seem to be of utmost importance when only considering the precision and consistency of one method with respect to the others. On the other hand, it remains crucial in the limitation of resources and might become a stopping points once this parameters is set to be too high to be properly handled with the current proposed implementation for at least the Shapley value and LMG-GDI approaches.

Impact of the input law

Even though no effect is expected from the input law hypothesis stated in the basis configuration definition in § 3.2, it might be fair to test this by changing the input law, keeping the rest of the covariance structure. Figure 16 shows that changing the input law from the Gaussian hypothesis to seven other probability density functions with well chosen parameters so that their statistical momentum are equivalent, does not affect the three important metric under investigation. The averages and the spreads of the differences in value of all sensitivity indices with respect to the covariance-based results are indeed completely consistent from one law to the other, as shown in Figure 16(a), as the computation time requested by each and every algorithm to get a single estimation (c.f. Figure 16(b)).

Impact of the variance of the input variables

As discussed, at least in the independent case in § 3.2.2, one of the basis configuration hypothesis is the fact that all input variables have the same variance which leads to the equal contribution of each of them to the system output variance. In the correlated case, this sentence can be rephrased as "this leads to the equal structural contribution" meaning that the differences in importance between all input variables come as the by-product of the correlation structure injected.

In this part it is interesting to vary the input variables variance, exactly as done in § 3.2.2. The variance division is indeed split into two groups: in the first one, half the input variables still have a variance of 1, while in the second group the standard deviation of the rest of the inputs is set to one of the seven pre-selected values {0.01, 0. meaningful impact of these modifications is shown in Figure 17 and further explained, for instance, by distributions like those displayed in Figure 18.

The overall impact of the variation of the standard deviation of half the input variables, meaning when considering all these variables at once, seem negligible on the average bias, c.f. Figure 17(a), which only shows wide (and significant) variations of the spread (increasing as soon as σ half var = 1). This can be explained once one focuses on the two groups of input variables, the same plot being done only for the variable with unchanged standard deviation, c.f. Figure 17(b). In this case, a significant bias seems to arise as soon as σ half var = 1, for three methods at least: Shapley values, relative weightand LMG-GDI. This is further illustrated by Figures 17(c) and 17(d) which display only the average bias of input variables respectively for unchanged and varied standard deviation.

Bearing in mind that the bias under consideration is with respect to the covariance-based method, all these plots show that there are, if considered with a coarse approximation, two kind of methods:

1. methods that share evenly the full contribution between correlated variables, later referred to as "Type-I";

2. methods that disentangle the structural and correlated parts, later referred to as "Type-II".

With this, it appears that the non-positive-only methods are "Type-II" methods, while most of the positive-only methods are "Type-I" ones. This interpretation is in agreement with the definition itself of some of these methods: the Shapley values are constructed to be a "fair" distribution of the "gain" when all players are collaborating (c.f. § 2.1.1);

On the other hand, the covariance-based results are constructed from the dichotomic separation of the structural International Journal for Uncertainty Quantification and correlated contributions. The LMG-GDI results being equivalent to the Shapley values (see § 5.1), the only other "Type-I" behaviour methods, the relative weight, was also expected from its definition. The second step indeed regresses X onto Z in order, in the case where the original variables are highly correlated, to take into account the fact that the Z variables are not a close representation of the X, hence producing a set of weights that redistribute the variance in between correlated variable. This is why the relative weight, from the author point of view [START_REF] Johnson | A heuristic method for estimating the relative weight of predictor variables in multiple regression[END_REF], and confirmed by all the results discussed so far, are a very good approximation of the Shapley values. The only positive-only method which is not really a "Type-I" kind is the weifila one. For this one, even though the average bias is changing with respect to σ half var , it remains consistent with a null bias when considering the spread (c.f. Figure 17(b)), which has been confirmed with a very large statistic sample, as those used in § 3.2, with σ half var was set to 5: no significant bias was seen with respect to the spread. A last attempt was done with σ half var case, choosing the (γ 0 , ω 0 ) = (0.15, 0.04) configuration, shown in Figure 2(c)(D) which generates high values of correlation coefficient with a narrow standard deviation: all these conclusions hold, the weifila average bias being consistent with 0, even though on the very edge, once considering one standard deviation of the bias distribution.

DISCUSSION AND CONCLUSIONS

This final section provides a mathematical demonstration of the equality of the LG-Shapley method and the LMG-GDI one in the linear-Gaussian case before further summarise all the conclusions drawn at every steps of this paper.

International Journal for Uncertainty Quantification

Comparing LG-Shapley and LMG-GDI

In the linear model assumption, the β coefficients can be estimated from the minimisation of ||Y -Xβ|| 2 which leads to the usual β = (X T X) 1 X T Y (when n > n X and if (X T X) is invertible). With the hypothesis that our input variables X have been centred and reduced, it is possible to express the estimation of the β coefficients using correlation matrix, as done below:

β = (X T X) 1 X T Y = (n ΓXX ) 1 (nσ Y ΓXY ) = σ Y Γ 1 XX ΓXY . ( 46 
)
The variance of the linear model can be written, using this notation, as:

Var(Y) = 1 n Y T Y = 1 n βT X T X β = βT ΓXX β = (σ Y ΓYX Γ 1 XX ) ΓXX (σ Y Γ 1 XX ΓXY ) = σ 2 Y ΓYX Γ 1 XX ΓXY = σ 2 Y R 2 . ( 47 
)
This simple exercise emphasise the already known relationship between the coefficient of determination and the variance of the considered variable: the linear regression being a projection on the subspace spanned by the regressors, the variance of the projected variable is decomposed into a part explained by the linear model and its complementary part. If the variable under study follows a pure linear relation, then its variance is fully explained by the regressors and the coefficient of determination is therefore equal to 1.

Comparing both equations ( 27) and [START_REF] Hart | Endogenous formation of coalitions[END_REF] shows interesting similarities, and one could try to express the coefficient of determination when dealing only with a subset u of input variables, as a function of the input variables properties and the β coefficients. Given the linear hypothesis, not focusing on a specific sample anymore, one can indeed write:

Γ uy = E(X T u Y ) = E(X T u Xβ) = Γ uu Γ u u    β u β u    = Γ uu β u + Γ u u β u . ( 48 
)
system of the form of a linear combination of inputs is considered which remains useful as stated in the § 1 where various field of research and engineering facing this problem are introduced. There have been many developments to circumvent this, arising from various fields of research. This is the starting point of this paper: using methods that allow estimation of sensitivity indices from a provided sample (disregarding whether it might arise from simulation or experimental data) without any specific information on the inputs correlation assuming only that our system response is well described by a linear combination of all the inputs.

An introduction is setting the historical approach, from the decomposition of a function in § 1.2 with independent input variables to a more generalised description without any hypothesis on the probability density functions and the covariance structure. The textbook techniques, in the independent case, have been recalled in § 1.3 before introducing all the methods of interest used throughout this paper in § 2: the covariance-based measurement, the Shapley values, the first-order coefficients, the LMG-GDI, the relative weights and the weifila method. As this paper focuses on the linear dependent case, the simple covariance-based estimation proposed in [START_REF] Li | Relationship between sensitivity indices defined by variance-and covariance-based methods[END_REF] is used as reference when comparisons are done.

A protocol to compare all methods is defined in § 3.1 by generating a very large number of non-singular correlation matrix with a non-trivial intrinsic correlation structure. Two approaches have been tested, the classical one, referred to as the Gram method, and a new one, referred to as the Archakov-Hansen one in this paper, which allows to handle with a great precision the way the correlation coefficients are distributed. The latter has been shown to be more compelling as it can represent a large variety of possible correlation configuration which cannot be achieved by the former, the historical Gram one, which only provides very small correlation coefficients as soon as the input space dimension grows. Using this historical approach is not representative of the full available spectrum and the conclusions that might be drawn out of this procedure might be biased.

From there, a first set of tests have been performed using dedicated high-statistics samples, once a basis configuration has been defined in § 3.2. The first conclusion drawn from this configuration is the complete equivalence between the Shapley values and the LMG-GDI results in the linear case, which is mathematically established in § 5.1.

The second one is the stability problem that arises from the weifila definition itself, as stated as soon as the equations are provided in § 2.5, which is problematic as soon as the correlation structure is not too strong and which diminish considerably the trust in a singled-out measurement.

Finally all these methods are tested, still in a statistical approach, to test the dependencies and the consistency of their results (with themselves or the rest of the methods) once the size of the sample, the size of the input space or the nature of the input laws are varied. The main conclusions are that, once all methods are normalised, their results are As for the distributions in Figure 11, those in Figure A.19 have an average value of 8.33 % so about a twelfth of the system output variance, but their standard deviations are consistently smaller, which is expected as the spread of the correlation is more constrained in this configuration of the Archakov-Hansen approach. International Journal for Uncertainty Quantification

16 FIG. 1 :

 161 FIG. 1: Marginal distribution of the correlation coefficient (top) and bi-variate representation of (ρ 0,1 , ρ 0,2 ) (bottom), when drawn with the Gram procedure with n X is set to 4 (a), 8 (b), 12 (c) and 16 (d).

)/ 2 .

 2 In other words, any vector γ ∈ R d corresponds to a unique correlation matrix C(γ) ≡ g 1 (γ), where this g function has been introduced in[START_REF] Archakov | A new parametrization of correlation matrices[END_REF] as γ = g(C) := vecl(logC) given that the operator vecl(•) vectorises the lower off-diagonal elements and log C is the matrix logarithm of C. The proposal is to draw the vector of R d as a multivariate normal distribution whose dimension is wisely chosen to get a d-size sample.

(A) ω0 = 1 ( 15 FIG. 2 :

 1152 FIG. 2: Bivariate representation of (ρ 0,1 , ρ 0,2 ) when drawn with the Archakov-Hansen procedure with n X = 12, ω 0 set to 1 (line A), 1/2 (line B), 1/5 (line C) and 1/25 (line D) while γ 0 is set to -0.6 (a), 0 (b) and 0.15 (c).
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 3 FIG. 3: Distribution of the sensitivity indices for several thousand estimations of the basis configuration in the independent case. From left to right and top to bottom, the indices are: covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the first-order coefficient.
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 20224 FIG. 4: Distribution of the difference of sensitivity indices measured for several thousand estimations of the basis configuration in the independent case. These differences are taken from the covariance-based with other methods such as relative weight (left), Shapley values (middle-left) and LMG-GDI ones (middle-right). The right plot shows the difference of sensitivity indices measured from the Shapley values and the LMG-GDI ones.

  All the observations above are confirmed by looking at the other metric, the indices rank: when the indices value computations are mainly tainted with statistical fluctuations, the difference in indices rank should reflect this with a wide standard deviation and a regular distribution of difference as shown in the middle-right part of Figure 5. This is mainly because all variables should account for a twelfth of the output system variance. Apart from the absolute equality between Shapley values and LMG-GDIones, confirmed by the right part of Figure 5, the observations done between the other pairs of indices, setting aside weifila for the moment, are confirmed respectively by the left and middle-left part of Figure 5: the methods, in this particular configuration, provide almost the same results.
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 5 FIG. 5: Distribution of the difference in ranking of sensitivity indices measured for several thousand estimations of the basis configuration in the independent case. These differences are taken from the covariance-based with other methods such as relative weight (left), Shapley values (middle-left) and LMG-GDI ones (middle-right). The right plot shows the difference of sensitivity indices measured from the Shapley values and the LMG-GDI ones.

FIG. 6 :

 6 FIG. 6: Distribution of the sensitivity indices for several thousand estimations of the basis configuration in the independent case with two variance values for the input variables. From left to right and top to bottom, the indices are: covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the first-order coefficient.

FIG. 7 :

 7 FIG. 7: Distribution of the difference of sensitivity indices measured for several thousand estimations of the basis configuration in the independent case with two variance values for the input variables. These differences are taken from the covariance-based with other methods such as relative weight (left), Shapley values (middle-left), LMG-GDI ones (middle-right) and weifila (right).
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 8 FIG. 8: Distribution of the difference of sensitivity indices measured for several thousand estimations of the basis configuration in the independent case with two variance values for the input variables . These differences are taken from the covariance-based with other methods such as relative weight (left), Shapley values (middle-left), LMG-GDI ones (middle-right) and weifila (right).
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 20229 FIG. 9: Distribution of the sensitivity indices for several thousand estimations of the basis configuration using the Gram approach. From left to right and top to bottom, the indices are: covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the first-order coefficient.
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 11 FIG. 11: Distribution of the sensitivity indices for several thousand estimations of the basis configuration using the Archakov-Hansen approach with (γ 0 , ω 0 ) = (0, 1). From left to right and top to bottom, the indices are shown in their normalised version as defined in equation (45): covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the first-order coefficient.
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 1213 FIG. 12: Differences of the normalised sensitivity indices with the normalised covariance-based results, for several thousand estimations using the Archakov-Hansen with (γ 0 , ω 0 ) = (0, 1). The methods used are the Shapley values (top-left), the LMG-GDI (top-middle), the relative weight (top-right), the weifila (bottom-left) and the first-order coefficient (bottom-right).

  FIG.14: Evolution, as a function of the sample size, of the average differences and spreads in normalised value (14(a)), of the spread of these differences (14(b)), and the average time consumption for every methods (14(c)).
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 15 Figure 15(a) shows both the average and spread of the differences in the value of all sensitivity indices with

  FIG.15: Evolution, as a function of the input space size, of the average differences and spreads in normalised value (15(a)), of the spread of these differences (15(b)), and the average time consumption for every methods (15(c)).

  FIG. 16: Evolution, as a function of the input law, of the average differences and spreads in normalised value (16(a)) and the average time consumption for every methods (16(b)).

1 FIG. 17 :

 117 FIG. 17: Evolution, as a function of the standard deviation of half the input variables, of the average differences and spreads in normalised value for all variables (17(a)), for those whose variance has not changed (17(b)). A focus is done specifically on the averages, for variables with changing σ (17(c)) and for variables with σ = 1 (17(d)).

FIG. 18 :

 18 FIG. 18: Distribution of the difference of normalised sensitivity indices measured in the Archakov-Hansen (γ 0 , ω 0 ) = (0, 1) configuration when half the input variables have σ = 5. These differences are taken from the covariance-based with other methods such as Shapley values (top-left), LMG-GDI ones (top-middle), relative weights (top-right), weifila results (bottom-left) and firstorder coefficients (bottom-middle).

FIG. A. 20 :

 20 FIG. A.20: Differences of the normalised sensitivity indices with the normalised covariance-based results, for several thousand estimations using the Archakov-Hansen with (γ 0 , ω 0 ) = (0.15, 1). The methods used are the Shapley values (top-left), the LMG-GDI (top-middle), the relative weight (top-right), the weifila (bottom-left) and the first-order coefficient (bottom-right).
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† the superscript S stands for Sobol and is used here to prevent from any misleading in order not to state that one index should be written as Si that might be understood as a premium index.Volume x, Issue x, 2022
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Injecting this into equation [START_REF] Owen | Sobol'indices and shapley value[END_REF] leads to:

By looking at equations ( 27) and ( 30), the two interesting quantities that should be linked are: the difference between the coefficient of determination and the difference between the conditional variance, both when using the subset v (defined as v = u ∪ i) and the subset u of input variables. Writing the difference between the coefficient of determination using equation ( 49) is done below:

The equality in equation ( 51) is straightforward once the equation ( 50) is compared to the difference between the conditional variance, expressed thanks to the equation [START_REF] Shapley | A value for n-person games[END_REF], established in the Gaussian framework. It shows indeed that both methods, disregarding the fact that they have been developed at different moments, from different paradigms and applied in different fields of research, lead rigorously to the same estimation. The main difference arise from the genericity of the LMG-GDI one: the only strong hypothesis is the linear assumption, and even if the global coefficient of determination were to be different from 1 but close (let's say 0.95), this would mean that the GD indices provide the hierarchy of the input variables for 95% of the variance. On the other hand, the equation ( 27) has been derived using the Gaussian conditioning theorem meaning that the paradigm was to only consider problem were the linear assumption is correct and X ∼ N (µ, Γ XX ).

Conclusions

This paper is a review that aims in comparing some ways to perform global sensitivity analysis for highly correlated model (meaning when the input variable are not independent) and when no information are known on either the join or the conditional probability density functions. To limit the scope and the complexity of this issue, only an output

International Journal for Uncertainty Quantification fairly consistent but some might suffer from instability (the weifila method as already stated), severe time limitation when the input space size increase (Shapley values and the LMG-GDI method) leading to the interesting trade-off of the relative weight approach, when focusing on the "Type-I" methods. Finally the study of the impact of changing the variance of some input variables shows that more investigations should be done to develop methods which can provide a dichotomy between the structural and correlative nature of the importance: this might be of a greater help in the purpose of ranking the variables.

APPENDIX A. APPENDIX APPENDIX A.1 Normalised distributions and differences with higher correlation coefficients

In this section the distributions of the sensitivity indices and their differences in value and ranking are shown in International Journal for Uncertainty Quantification