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The objective of a global sensitivity analysis is to provide indices to rank the importance of each and every system inputs

when considering the impact on a given system output. This paper discusses few of the methods proposed throughout

the literature when dealing with a linear model for which part or all the input variable can not be considered indepen-

dent. The aim is here to review methods from the late eighties in order to compare them to more recent developments,

by investigating their underlying hypothesis, cost (in term of resources usage) and results. This paper focuses on the

case where no assumption on the knowledge of the probability density functions, assuming that the analysis can be

done from a provided sample, without the use of refined techniques which would require a dedicated surrogate model

generation. After an introduction of the general problem, as often discussed in the independent approach, a review of

solutions not sorely relying on the variance decomposition is presented, along with their underlying hypothesis. A pro-

tocol is proposed, based on a statistical approach relying on random correlation matrix generation, to test and compare

all methods with an increasing complexity, step-by-step procedure. Finally, dependencies with respect to parameters

defining the problem, such as the input space size, the sample size, the nature of the input laws are tested before drawing

conclusions on the methods and their usefulness.

KEY WORDS: Uncertainty quantification, Stochastic sensitivity analysis, Random variables, Correlated

models
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2 J-B. Blanchard

1. INTRODUCTION1

Many research or engineering problems can be mathematically modelled as an input-output system structure linked2

together by a deterministic relation f : X → Y , such as3

Y = f(X) = f(X1, . . . , XnX
) (1)

=
∑
u∈S

fu(Xu), (2)

where xi is the ith element of the input space X whose dimension is set to be nX (X ⊆ RnX ). For the sake of4

simplicity, without loss of genericity, the output of this system is set to be a scalar (meaning that Y = Y ∈ Y ∈ R).5

This relation can also be written as done in equation (2) using a multi-index of elements of J1, nXK: considering S6

the collection of subset of J1, nXK (and S∗ = S \ {∅}), for all u ∈ S, one can write xu the variables in x whose7

indices are in u. In order to complete this picture, x9u will be used to denote the complementary subset of x whose8

variables are not in u while for all i ∈ u, xu9i will denote xu without its element xi. Finally, the collection of subset9

of S that does not include the ith input variable is written S9i = S \ {i}, ∀i ∈ J1, nXK.10

Since there might be uncertainty about the true input values of the system structure, leading to potentially large11

fluctuations in the output response, it is common to treat the elements of the input space X (the set of {Xi}1≤i≤nX
,12

called hereafter input variables, or inputs) as random variables. This can, for instance, be done in the probabilistic13

framework by associating a given (well chosen) probability density function (PDF) for each and every input variable.14

Even though this is not the only possible approach (one can consider imprecise probabilities [1], the theory of belief15

functions [2]. . . ) it is a widespread one, that, along with all the others, turns the output response of our system into16

a random variable, later referred to as output variable, or the output. Characterising the empirical output distribution17

is the purpose of uncertainty analysis, while asserting the relative importance of each and every inputs on the system18

output is the sole objective of sensitivity analysis.19

Unlike a local sensitivity analysis that focuses on the vicinity of a chosen “working point” x0, the global sensi-20

tivity analysis (GSA) aims at establishing the rank of importance of inputs while being truthful in the full input space21

X . To tackle this, it is common to consider variance-based methods, one of its most famous representative, in the22

uncertainty community, being the “so-called” Sobol indices. Its first version has been introduced by Sobol [3] and23

later completed by Homma and Saltelli [4] in order to form a couple of indices for every input, whose derivation is24

based on the analysis of variance (ANOVA) decomposition of the output variable’s variance. The main limitation of25
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Sensitivity analysis with correlated inputs: comparison of indices for the linear case 3

this method, in order to ensure the uniqueness of the ANOVA decomposition, is a strong hypothesis on the the input1

variables: they have to be independent.2

Unfortunately, in many fields such as nuclear engineering [5], mechanical engineering [6], extinction risks as-3

sessments in biology [7], just to name a few, input variables are dependent. The dependency can arise as the result4

of constraints in the inputs space due to properties of inputs (i.e. composition constraints in material science for in-5

stance) or because of the complex input structure where inputs may be themselves the output of some other model or6

experiment [8]. In these cases the simple description of input uncertainty through independent marginal distribution7

functions is not adequate. Correct procedures require sampling from the joint and conditional distribution functions8

of inputs.9

The purpose of this paper is to review and compare some ways to perform GSA when no information are known10

on either the joint or the conditional probability density functions (for a more exhaustive review of GSA methods,11

see [9]). In order to circumvent this, there have been many developments, in various fields of research, sometimes12

limiting the investigation to the linear case for the sake of simplicity. This is the starting point of this paper: using13

methods that allow estimation of sensitivity indices from a provided sample (disregarding whether it might arise14

from simulation or experimental data) without any specific information on the inputs supposed behaviour but the15

fact that our system response is well suited to be a linear combination of all the inputs (independent or not). To be16

more generic, investigations are done on various parameters such as nX the dimension of X , the size of the provided17

sample nS . . . In order to be as generic as possible, to be able to probe low nS cases for instance, only methods without18

explicit construction of a dedicated surrogate model are considered.19

After setting the mathematical conventions and notations that will be used throughout this paper in § 1.1, a20

reminder of the concept of global sensitivity analysis from the high dimensional model representation (HDMR)21

decomposition is provided in § 1.2. The methods chosen in this paper (Shapley value, the Lindeman, Merenda and22

Gold or General Dominance indices, Johnson’s Relative weight, the Structural and Correlative Sensitivity Analysis,23

Sobol indices) are later introduced in § 2, bearing in mind that the resulting indices might be evaluated in different24

ways given the context and the chosen algorithm. These methods are then tested in § 3, using a dedicated practical25

protocol introduced in § 3.1, at first to throw a glance at the indices behaviour in § 3.2, but also to test their robustness26

against nS , nX , few properties of the input PDF along with the resource consumption, in § 4. A discussion in which27

these results are compared, both for their results and their implementation, is kept for § 5 before concluding this paper.28
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4 J-B. Blanchard

1.1 Mathematical conventions1

The following notation conventions will be used when dealing with generic methodology description.2

Upper case letters represent random variable, the output can then be written Y = f(X), while upper case bold3

letters represent matrices, so the following notation, Y = f(X), will now described an output sample generated from4

an input design-of-experiments for instance.5

Lower case letters are realisation of a random variable: y = f(x) is a realisation of the output variable when6

considering a specific realisation of the input vector x. With the index, xi represents the ith coordinate (i = 1, . . . , nX )7

of a realisation x = (x1, . . . , xnX
). It is a realisation of the ith random variable Xi.8

As already discussed, {Xi}1≤i≤nX
are the input variables of our system, Y = f(X) is its output variable, for9

f : RnX → R a L2 function, assuming Var(Y ) 6= 0. Using the notation introduced previously for the subset u ∈ S ,10

few more conventions are introduced:11

• Vu is the variance of the expectation of Y conditioned to Xu, denoted12

Vu = Var(E(Y |Xu)). (3)

• Eu is the expectation of the variance of Y conditioned to Xu, denoted13

Eu = E(Var(Y |Xu)). (4)

• R2
u is the coefficient of determination of Y , when considered only as a function of Xu, denoted14

R2
u = R2

y=f(Xu)
. (5)

The underlying hypothesis used throughout this paper is the assumption that the system output can be written as15

a linear combination of the input variables, so16

Y = Xβ, (6)

where β is a vector of nX9constant coefficients∗. Finally, the theoretical correlation matrix of the (X,Y ) system,17

or the empirical one computed from a randomly-drawn sample (X,Y), will be denoted Γ (respectively Γ̂) and two18

∗for the sake of simplicity, without genericity loss, β0 = E(Y ) can be set to 0

International Journal for Uncertainty Quantification



Sensitivity analysis with correlated inputs: comparison of indices for the linear case 5

ways of splitting it by blocks will be used. On the one hand, the first one (first part of equation (7)), is splitting the1

input and output. On the other hand, the second one (second part of equation (7)) splits it into three parts: a subset u2

of the inputs (u ∈ S), its complementary, denoted 9u and the output.3

Γ =

 ΓXX ΓXY

ΓY X ΓY Y

 =


Γuu Γu9u ΓuY

Γ9uu Γ9u9u Γ9uY

ΓY u ΓY 9u ΓY Y

 . (7)

Finally, a large part of this paper will focus on a dichotomous approach, considering either the uncorrelated case,4

implying that ΓXX = 1nX
(there are no statistical correlation between all inputs two-by-two) or, on the contrary, the5

correlated case, when ΓXX 6= 1nX
.6

1.2 Decomposition of the system function7

Many of the methods introduced later-on are using a decomposition of the system function, assuming that it is inte-8

grable in its definition domain, into an ensemble of sub-functions (hereafter referred to as summands) which can be9

written as such [10]10

y = f0 +

nX∑
i=1

fi(xi) +
∑

1≤i<j≤nX

fi,j(xi, xj) + . . . + fx1,x2,...,xnX
(x1, x2, . . . , xnX

). (8)

Each and every terms are functions of the different interaction degrees of the inputs {xi}1≤i≤nX
, leading to a total of11

2nX 91 summands on top of the constant term f0. This decomposition is also referred to as the high dimensional model12

representation (HDMR [11]) and is not unique since there might be an infinity of choice to define the summands. Even13

though this approach has been combined as of 1948 by Hoeffding [10] with the analysis of variance approach (first14

introduced by Fisher [12] and commonly referred to as ANOVA, it has been popularised with the orthogonality15

constraints used to ensure its uniqueness. In 1993, Sobol [3] defined these orthogonality constraints (in its original16

case where X = [0, 1]nX ) as17 ∫
fu(xu)dxi = 0 ∀u ∈ S, ∀i ∈ u. (9)

As a direct consequence, all the summands are orthogonal, meaning that18

E[fu(xu)fv(xv)] = 0, ∀u 6= v ∈ S. (10)

Volume x, Issue x, 2022



6 J-B. Blanchard

Finally, if the function f is square integrable (f ∈ L2), Sobol [3] introduces the following quantities denoted Du,1

defined as:2

Du =

∫
f 2
u(xu)dxu, ∀u ∈ S, (11)

and shows that they are all finite. Once this procedure is applied to all summands of equation (8), on both sides, it3

leads in the functional ANOVA decomposition, written as4

Var(f(x)) = E[(f(x)− f0)2] =
∑
u∈S∗

E[fu(xu)2] =
∑
u∈S∗

Var(fu(xu)). (12)

Suppose now that (RnX ,B(RnX ),µ) is a probability space where RnX is the sample space, B(RnX ) is the5

Borel σ-algebra and µ the probability measure with dµ = p(x)dx, where px is the probability density function of6

x. This decomposition has been further investigated and generalised by Li et al. [13] with the introduction of the7

hierarchical orthogonal condition (based on the work from Stone [14] and Hooker [15]), providing a criterion to8

state that the HDMR component functions are uniquely determined. The existence of this decomposition is formally9

demonstrated, under suitable conditions on the joint distribution function of the input variables, by Chastaing et10

al. [16] resulting in the HOFD: the hierarchically orthogonal functional decomposition. The functional expansion11

introduced in equation (2) is then still valid, with the summands being defined as12

fu(xu) =

∫
f(x)p9u(x9u)dx9u −

∑
v⊂u

fv(xv)−
∑

u+v∈S
u∩v 6=∅

∫
fv(xv)p9u(x9u)dx9u, u ∈ S. (13)

This definition is given providing that all summands fulfil the relaxed vanishing condition13

∫
fu(xu)pu(xu)dxi = 0, ∀u ∈ S∗ and i ∈ u, (14)

or equivalently the hierarchical orthogonal condition14

E[fu(xu)fv(xv)] = 0, ∀u ∈ S∗ and ∀v ⊂ u. (15)

This statement means that a higher order component function is only required to be orthogonal to all nested lower15

order component functions whose variables are a subset of those in the higher order component function. Further16

details (or ways to introduce this decomposition) can be found in the literature [17–19].17
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Sensitivity analysis with correlated inputs: comparison of indices for the linear case 7

Since the HDMR component functions with correlated variables are not mutually orthogonal, the standard vari-1

ance decomposition of the unconditional variance of the output does not hold. A new covariance decomposition of2

the unconditional variance of the output was introduced [16,17]3

Var(f(x)) = E[(f(x)− f0)2] = E
[ ∑
u∈S∗

fu(xu)(f(x)− f0)

]
=

∑
u∈S∗

Cov(fu(xu), f(x)) =
∑
u∈S∗

Cov

(
fu(xu),

∑
v∈S∗

fv(xv)

)
=

∑
u∈S∗

[
Var(fu(xu)) + Cov

(
fu(xu),

∑
v∈S∗
u 6=v

fv(xv)

)]
. (16)

This summarises briefly the theoretical development on the breakdown of a function into a finite number of4

summands, from a very specific decomposition in 1948 [10] to its more recent generalised presentation even in5

dependent case. Several of the methods tested in this paper partly rely on the equation introduced beforehand.6

1.3 Independent variables7

This last section is briefly reminding concepts of global sensitivity analysis used in the independent case. It is not8

meant to be neither a reference nor an exhaustive list, as many articles and books are compiling and discussing these9

aspects [20–24], but some of these quantities are mentioned later-on in § 2.10

In the general independent case, two common sensitivity indices can be defined, ∀i ∈ J1, nXK, as11

SS
i =

Var(E(Y |Xi))

Var(Y )
and STi

= 1− Var(E(Y |X∼i))
Var(Y )

, (17)

where ∼ i represents all the input variables but the ith one. These indices are respectively called the first-order12

sensitivity index SS
i
† and the total-order sensitivity index STi

(but it is not unusual to see names like first-order Sobol13

index and total-order Sobol index). The former one has been introduced by Sobol [3], as it ensues from equation (12),14

once both sides are divided by Var(f(x)), transforming it into15

1 =
∑
u∈S∗

SS
u =

∑
u∈S∗

Var(fu(xu))

Var(Y )
, (18)

†the superscript S stands for Sobol and is used here to prevent from any misleading in order not to state that one index should be written as Si that
might be understood as a premium index.

Volume x, Issue x, 2022



8 J-B. Blanchard

where the fu are expressed as fu = E(Y |Xu) −
∑

v⊂u fv. The first-order index only describes the impact of the1

input Xi on the output, it does not take into account the possible interaction between inputs. This name implies that2

there might be higher-order indices coping for the crossed impact of Xi with any other set of inputs. Once all these3

higher-order indices are considered, meaning the full set of 2nX − 1 values to be computed (the cardinal of S∗), it4

provides a perfect breakdown of the output variance. A general form for these indices can be written as5

SS
u =

1
Var(Y )

∑
v⊆u

(−1)|u|−|v|Vv, ∀u ∈ S∗. (19)

where |u| and |v| represent respectively the cardinal of u and the cardinal of any of its subset v. Even though it is6

possible to find another general form for the Sobol indices, sometimes referred to as “closed Sobol indices” [25],7

defined by Scl
u = Vu/Var(Y ) which assess the total impact of the inputs (Xi)i∈u, this paper will focus on the one8

written in equation (19). In order to prevent from having to estimate all these indices, Homma and Saltelli introduce9

the total-order index [4], shown as the right-hand part of equation (17), which is equivalent to sum all the indices that10

would include the input i in consideration, so in the general form:11

STi
=

∑
u⊆({i}∩S\{i})

SS
u . (20)

1.3.1 Special case of the linear model12

Whatever the problem may be, it is possible to measure the linear correlation coefficient of the ith input with the13

given output, also named Pearson, or Bravais-Pearson coefficient [26], defined, ∀i ∈ J1, nXK, as14

ρi = ρ(Xi, Y ) =
Cov(Xi, Y )√

Var(Xi) Var(Y )
. (21)

Another estimator currently used is the standard regression coefficient (SRC), also called the standardised coef-15

ficient [27], which is computed using the β coefficients (the regression coefficients that multiply the input variables16

in the linear regression form introduced in equation (6)). It can indeed be written, ∀i = J1, nXK as17

SRCi = SRC(Xi, Y ) = βi

√
Var(Xi)

Var(Y )
. (22)

International Journal for Uncertainty Quantification



Sensitivity analysis with correlated inputs: comparison of indices for the linear case 9

In the simple linear and independent case, it is possible to link all these coefficients by the following relation1

ρ2
i = SRC2

i = SS
i = STi

, ∀i ∈ J1, nXK. (23)

Since the same quantity can be estimated in various ways, following Occam’s razor principle implies that the simplest2

method is the best solution. If the independence hypothesis has to be dropped, meaning in the context of this paper3

that ΓXX 6= 1nX
but is nonetheless invertible, the ANOVA decomposition as introduced in equation (18) can not4

hold. New sensitivity indices should be found in this general case.5

2. THEORETICAL DESCRIPTION OF THE CONSIDERED METHODS6

This section is providing a description of the methods proposed in order to get a quantitative estimation of the impact7

of an input variable on the output of the system, in a linear-dependent case. To prevent from drawing any conclusion8

on their usefulness, they are discussed in order of first appearance in the scientific literature.9

2.1 Shapley value10

2.1.1 Historical formulation11

The concept of Shapley value has been introduced in the game theory context, when considering the case of a coali-12

tional game, i.e. a couple (nX , c) where13

• nX is the number of players;14

• c is the characteristic function, c : S → R with c(∅) = 0 and ∀A ⊂ B, c(A) ≤ c(B).15

The characteristic function c has the following meaning: if u is a coalition of players, then c(u), called the16

worth of coalition u, describes the total expected sum of payoffs the members of u can obtain through cooperation.17

Shapley [28] proposed a way to distribute the total gains to the players, assuming that they all collaborate. It is a “fair”18

distribution in the sense that it is the only distribution with certain desirable properties listed below. According to the19

Shapley value, the amount received by player i, in a coalitional game (nX , c), is20

ϕi :=
1
nX

∑
u⊂S9i

(
nX − 1
|u|

)91

(c(u ∪ {i})− c(u)). (24)

The main properties of the Shapley values are the following ones:21

Volume x, Issue x, 2022



10 J-B. Blanchard

• efficiency:
∑nX

i=1ϕi = c(S)1

• symmetry: if i and j are two equivalent players, meaning c(u ∪ {i}) = c(u ∪ {j}),∀u ⊂ S \ {i, j}, then2

ϕi = ϕj3

• additivity: combining two coalitional games (nX , c) and (nX , d), results in a new coalitional game (nX , c+d)4

where (c + d)(u) = c(u) + d(u), ∀u ⊂ S and ϕi(c + d) = ϕi(c) +ϕi(d), ∀i ∈ J1, nXK.5

• nullity: ϕi = 0 for a null player. A player i is null if c(u ∪ {i}) = c(u), ∀u ⊂ S9i6

7

The concept of Shapley value has been used in economy for sometimes [29–31] but has only recently been8

brought up in the uncertainty community.9

2.1.2 Formulation for sensitivity analysis10

Given the convention above and bearing in mind the general formula for Sobol indices given in equation (19),11

Owen [32] has defined the Shapley value, in the sensitivity analysis framework, for a given input i ∈ J1, nXK,12

as:13

ηi :=
1

nXVar(Y )

∑
u⊂S9i

(
nX − 1
|u|

)91

(Vu∪{i} − Vu). (25)

Based on this definition, Shapley values have been exhibited as proper sensitivity indices in [25] when the inputs are14

dependent. There is indeed only one value for each input variable, this value always lies in [0, 1] and their sum equals15

to one, once all input variables are considered (even with correlation).16

2.1.3 Linear Gaussian case17

In the case where X ∼ N (µ,ΓXX), assuming µ = 0, for the sake of simplicity without genericity loss, one can18

rewrite the sensitivity indices, as they can be calculated explicitly. Sobol’ indices, for instance, can be expressed with19

expectations of conditional variances [33], as done below:20

SS
u :=

(−1)|u|

Var(Y )

∑
v⊂u

(−1)|v|+1Ev, ∀u 6= 0, (26)

International Journal for Uncertainty Quantification



Sensitivity analysis with correlated inputs: comparison of indices for the linear case 11

which leads to a new expression for the ith Shapley value [34]:1

ηi :=
1

nXVar(Y )

∑
u⊂9i

(
nX − 1
|u|

)91

(Eu − Eu∪{i}). (27)

Using the Gaussian framework, one can express the conditional variance as shown here [35]:

Vu = Var(X9uβ9u|Xu)

= βT
9u(Γ9u,9u − Γ9u,uΓ91

u,uΓu,9u)β9u. (28)

This expression is constant for a given subset u, so it is equal to its expectation which provide a way to compute2

all Shapley values. A step-by-step procedure, called LG-Shapley, is proposed by Broto et al. in [33].3

2.2 LMG or General Dominance indices4

Another way to quantify the impact of correlated inputs seemed to have arisen in a book by Lindeman, Merenda5

and Gold (LMG) [36] (but as stated in [35], this reference is very difficult to obtain). The rest of this paper uses6

the formalism provided by Budescu et al. [37,38] that defines the General Dominance (GD) indices as the average7

increment in the coefficient of determination associated with the predictor Xi in all possible sub-models. Bearing in8

mind that this method is also discussed as the LMG one (c.f. [36]), the resulting indices will hereafter be called the9

LMG-GDI.10

11

The idea is to call Dk
i the average increase in the coefficient of determination due to adding Xi to the

(
nX−1

k

)
12

different sub-models, each with k variables, k = 0, ..., (nX − 1); thus13

Dk
i =

∑
u⊆S9i,|u|=k

(
nX − 1

k

)91

(R2
u∪i −R2

u). (29)

Then, another coefficient Di is obtained by averaging the Dk
i across all S sub-model sizes. This can be written as14

Di =
1
nX

nX−1∑
k=0

Dk
i

=
1
nX

∑
u⊂9i

(
nX − 1
|u|

)91

(R2
u∪i −R2

u). (30)

Volume x, Issue x, 2022



12 J-B. Blanchard

Finally the coefficient of determination can be computed through the multiple correlation equation, which is1

shown below when considering, for illustration purpose, the full model (under linear Gaussian hypothesis):2

R2 = ΓY XΓ91
XXΓXY . (31)

One can also express the R2
u formula (c.f. equation (5)) using the second form of the correlation matrix by block3

introduced in equation (7), which represents the quality of the regression if it were to be done only using input4

variables in the subset u,∀u ⊂ S.5

R2
u = ΓY uΓ91

uuΓuY . (32)

The complexity in terms of number of configurations is exactly the same as the one for the Shapley value.6

2.3 The relative weight method7

The idea here is very similar to the standard regression coefficients introduced in § 1.3, as one will use orthogonal8

transformation to represent our data, with dependent inputs. The method has been introduced by Johnson [39] and its9

principle can be split into three steps:10

• transform the dependent input variables X through a linear transformation into Z so that ZTZ = 1nX
;11

• compute sensitivity index of the output Y with respect to Z;12

• reconstruct the sensitivity index of the output Y with respect to the component of X .13

Practically, the method proposed in [39] relies on the singular value decomposition of X, written as X = UΣVT14

for which U contains the eigenvectors of XXT , V contains the eigenvectors of XTX and Σ is a diagonal matrix15

containing the singular values of X (the squared form of the singular values corresponds to the eigenvalues of XTX).16

From there, the best-fitting orthogonal approximation of X can be obtained (see Johnson [40] for the demonstration)17

as18

Z = UVT . (33)

International Journal for Uncertainty Quantification



Sensitivity analysis with correlated inputs: comparison of indices for the linear case 13

The second steps consists in regressing Y onto Z, which is obtained by

β∗ = (ZTZ)91ZTY = (VUTUVT )91VUTY

= VUTY. (34)

The squared elements ofβ∗ represent the proportion of predictable variance in Y accounted for by the (Zi)i=1,...,p,

but in the case where two or more original variables are highly correlated, the Z variables are not a close representa-

tion of the X ones. To take this into account, Johnson propose to regress X onto Z, leading to another set of weights

defined as:

Λ∗ = (ZTZ)91ZTX = (VUTUVT )91VUTUΣVT

= VΣVT . (35)

From there, the variance of Y explained by Xi can be denoted as ∆2
i and estimated from the following formula1

∆2
i =

nX∑
j=1

λ∗2ijβ
∗2
j , (36)

where λ∗ij = (Λ∗)ij , ∀i, j ∈ J1, nXK and bearing in mind that2

Var(Y ) =

nX∑
i=1

∆2
i =

nX∑
i=1

β∗2i . (37)

The resulting sensitivity indices are written3

∆∗i =
∆2

i

Var(Y )
, 1 ≤ i ≤ nX , (38)

and are commonly referred to as relative weights, or Johnson’s relative weights.4

2.4 The variance-covariance approach5

As stated in § 1.2, the decomposition into a finite set of summands can be generalised, (as long as f ∈ Ł2) and leads6

to the decomposition of the system output variance as shown in equation (16), where the breakdown is done as the7

sum of the covariance of all summands with respect to every summands of the original function. As for the Sobol8
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indices, this decomposition can be written as a sum equals to 1 by dividing both sides as done below:1

1 =
∑
u∈S∗

[
Var(fu(xu))

Var(f(x))
+

Cov

(
fu(xu),

∑
v∈S∗
u 6=v

fv(xv)

)
Var(f(x))

]
(39)

=
∑
u∈S∗

[SCu
u + SCc

u ] =
∑
u∈S∗

SC
u . (40)

Even though the decomposition of the variance remains very general as written in equation (39), a choice has2

been made mixing the original notation from [17] and the one from [41] mainly to prevent any kind of confusion3

while discussing the indices. The resulting indices are written SC
u where the superscript C stands for covariance,4

implying covariance-based measurements, this notation has been added on top of the notation from the structural and5

correlative sensitivity analysis method (SCSA) [13,17,18] to prevent from introducing confusions with the general6

form of Sobol indices.7

This sensitivity index is further split into two contribution: SCu
u and SCc

u . The former term ensues from the8

structural independent contribution, meaning related to fu(xu) and the marginal probability density function pu(xu)9

only. On the other hand, the latter arises from the correlative contribution, meaning the relation between fu(xu) and10

the other functions along with the joint probability density function p(x). The superscripts have been modified to Cu11

and Cc standing respectively for covariance-uncorrelated and covariance-correlated parts (this notation are inspired12

from [41] since this convention is far more transparent than the a and b ones from [13]).13

The first interesting thing to notice about these new definitions is the fact that as soon as independent case is14

considered, the correlative contribution SCc
u = 0 leading back to SC

u = SCu
u = SS

u , which makes Sobol indices a15

special case of the decomposition introduced in equation (39). If the system is dependent, as discussed by Chastaing et16

al. [42], the value of SC
i is the sum of two contributions which can compensate one-another leading to five possible17

configurations:18

• when Xi has importance mainly through its dependence with other variables, it can lead to a positive or negative19

SC
i value. In the former case, the other variables are reinforcing the influence of the input under consideration20

while in the latter case, it is relevant to wonder about it significance.21

• when Xi has a significant importance on its own, it can be either reinforced or weakened by the contribution22

induced by the dependence;23

• when SC
i is null, either coming from negligible direct and indirect contribution, or by a complete compensation24
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Sensitivity analysis with correlated inputs: comparison of indices for the linear case 15

of them. The former case is simple as the input can be ruled out, but on the other hand, the interpretation of the1

latter remains an open problem.2

As this paper focuses on the linear dependent case, the simple estimation proposed in [43] is used to provide a3

accurate values for all contributions (SC
i , SCu

i , SCv
i ) which are then used as reference guides when comparing the4

results of other methods. There are other techniques available to estimate these coefficients in the general approach:5

Li et al. [17] propose to approximate these summands expanded on a suitable basis, bypassing some technical prob-6

lem of degenerate design matrix by using a continuous descent technique through the D-MORPH algorithm. More7

recently, Chastaing et al. [42] propose an alternative to directly construct a hierarchical orthogonal basis, by recur-8

sively constructing for each summand a multidimensional basis that satisfies the hierarchical orthogonal conditions,9

leading to a procedure named hierarchically orthogonal Gram–Schmidt (HOGS).10

2.5 The weighted first last method11

This method has been proposed by Wallard in his PhD manuscript [44], which also provides a far more extensive12

review on linear dependent sensitivity analysis than this paper (however it is written in french). It is called weifila,13

whose name stands for weighted first last, and it combines two measurements:14

• the first sensitivity index, is the squared Bravais-Pearson coefficient, called ρ2
i in this paper (c.f. equation (21));15

• the last sensitivity index, called I lasti and defined as I lasti = R2
X −R2

X9i
which quantities the impact of Xi on16

the coefficient of determination when added last in the model.17

Summing each of these indices over the number of input variables leads to the definition of the first and last18

effects, shown below19

F =
∑
i

ρ2
i and L =

∑
i

I lasti , (41)

The weifila index ensues from these effects, so when considering a specific input variable:definition of the weifila20

index as21

Wi = I lasti

(
|F −R2|
|F − L|

)
+ ρ2

i

(
|R2 − L|
|F − L|

)
. (42)

This very simple index should yield
∑

i Wi = R2 and should provide, according to [44], results very close to the22

Shapley values. It might be useful to state that for an independent linear model (meaning when R2 = 1), both first23

and last index are equivalent, so are their sum, respectively F and L, both equal to 1. This shed an interesting light24

on the weifila index for this peculiar case.25
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3. DEFINING THE PROTOCOL AND LOOKING AT DISTRIBUTIONS1

This section introduces the framework used to test the sensitivity indices, by means of random correlation matrix2

generation. The procedure is discussed in § 3.1 testing different configurations in order to robustify the results and a3

glimpse on obtained data is shown in § 3.2 for few given configurations in order to compare the indices values.4

3.1 Randomly-drawn correlation matrices5

The protocol used in this paper to test all the sensitivity indices consists in generating a large number of random6

correlation matrices, designed not be singular‡, in order to cover as much realistic configurations as possible. The7

idea behind this is to be estimate all sensitivity indices introduced previously and compared them, the covariance-8

based ones being used as references (since in the linear dependent case, their estimation is simple and is a perfect9

breakdown of the system output variance, c.f. § 2.4).10

3.1.1 The Gram approach11

The first implemented way to do this is by using a given number of centred-reduced Gaussian input variables, which12

can be written as fixing X ∼ N (0,ΓXX) and Y =
∑

i Xi. The correlation matrix of the input variables is defined13

by generating a random matrix A(p, p) where every coefficient is drawn from a centred-reduced Gaussian law. A14

G(p, p) matrix is then generated as G = p91AAT and from there, once the following diagonal matrix S is defined15

as S(p, p) = diag(1./
√

Gii), the random correlation matrix is obtained as:16

ΓXX = SGS. (43)

This procedure, sometimes referred to as the Gram one, ensures that the resulting correlation matrix is non-singular17

while creating dependence between the input variables, as stated by Marsaglia et al. [45]. Apart from the diagonal18

elements (always set to 1), the marginal distributions of all the correlation coefficient are the same, following a beta19

distribution of the form20

ρij ∼ β(
nX − 1

2
,
nX − 1

2
,−1, 1), ∀i, j ∈ J1, nXK, i 6= j, (44)

‡no input variable i, ∀iJ1, nXK should be fully defined as a function of the other inputs, so no function g should exist so that Xi =
g(X1, . . . , Xi−1, Xi+1, . . . , XnX

).
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whose mean value is 0 and whose standard deviation is known to be σρ = nX
−2. This introduces an issue in the rep-1

resentativity of the possible correlation coefficients since, with increasing dimension nX , the correlation coefficient2

distribution is shrinking and leaves large fraction of the possible space empty. This is illustrated in Figure 1, for four3

values of input space (nX = 4, 8, 12, 16), with the marginal distribution on top and the bi-variate representation of4

(ρ0,1, ρ0,2).

(a) nX = 4 (b) nX = 8 (c) nX = 12 (d) nX = 16

FIG. 1: Marginal distribution of the correlation coefficient (top) and bi-variate representation of (ρ0,1, ρ0,2) (bottom), when drawn
with the Gram procedure with nX is set to 4 (a), 8 (b), 12 (c) and 16 (d).

5

3.1.2 The Archakov-Hansen approach6

In order to circumvent this issue, another procedure is used, referred to as the Archakov-Hansen one [46], based on the7

fact that there is a one-to-one correspondence between the set of nX ×nX non-singular correlation matrices, denoted8

CnX ,nX
and Rd for d = nX(nX − 1)/2. In other words, any vector γ ∈ Rd corresponds to a unique correlation9

matrix C(γ) ≡ g91(γ), where this g function has been introduced in [46] as γ = g(C) := vecl(logC) given that the10

operator vecl(·) vectorises the lower off-diagonal elements and logC is the matrix logarithm of C. The proposal is to11

draw the vector of Rd as a multivariate normal distribution whose dimension is wisely chosen to get a d-size sample.12

This can be written as γ ∼ N (γ0, Iω0) where γ0 is a vector of constant mean value andω0 is a weight that is used to13

multiply the identity matrix I . For illustration purpose, one value of the input space has been chosen (nX = 12) while14
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four values have been used both for γ0 (γ0 = −0.6,−0.3, 0, 0.15) and for ω0 (ω0 = 1, 1/2, 1/5, 1/25) in order to1

produce a matrix of bi-variate representation of (ρ0,1, ρ0,2) gathered in Figure 2. All these distributions should be2

balanced with those from the Gram method, shown in Figure 1(c).3

By varying both the γ0 and ω0 parameters, it is possible to change the marginal distribution of the correlation4

coefficient by impacting respectively its central value and its spread. From Figure 2 and comparing these distributions5

to the one of interest in Figure 1(c), it is fair to conclude that, even though results drawn from the Gram method should6

not be discarded, they should be at least completed and reinforced by the use of the Archakov-Hansen approach. It7

could indeed, on the one hand, ensure a better coverage of the correlation phase space and also, on the other hand,8

allows to focus on different part of this correlation phase space. The proposed protocol here is to use the Archakov-9

Hansen approach with the central configuration shown in Figure 2(b)(A) and check that all conclusions hold with the10

non-symmetric cases displayed in Figures 2(a)(A) and 2(c)(A).11

3.1.3 Generalising the interpretation: groundwork and vocabulary12

The goal of this paper is to compare the various sensitivity methods introduced in § 2, starting from a simple intro-13

duction in § 3.2, to more refined investigations (looking at the impact of various parameters that can influence either14

the sensitivity indices behaviour, the resource consumption. . . ). From now on, configuration will refer to as a given15

set of these parameters value, knowing that these can be split into two kinds:16

• the size of the input space nX , the size of the sample nS , the nature of the input variable laws (choice of pdfs17

for instance). . .18

• the approach chosen to generate the correlation matrix.19

While the latter kind is sorely specific to our chosen methodology, the former is the problem definition: every sensi-20

tivity analysis is defined by these parameters along with the chosen SA method.21

For a given configuration, two metrics are considered in order to compare the results of the sensitivity methods:22

• the value of the indices themselves. The comparison from one sensitivity method to another (for a given input23

variable) is rather straightforward.24

• the rank of the indices. By ordering the index values, for a given method, in increasing order, the rank is a25

number that goes from 1 to nX which organise into a hierarchy the input variables, the smallest rank value26

corresponding to the input variable with the lowest impact on our quantity of interest.27
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(A)ω0 = 1

(B)ω0 = 1/2

(C)ω0 = 1/5

(D)ω0 = 1/25

(a) γ0 = -0.6 (b) γ0 = 0 (c) γ0 = 0.15

FIG. 2: Bivariate representation of (ρ0,1, ρ0,2) when drawn with the Archakov-Hansen procedure with nX = 12,ω0 set to 1 (line
A), 1/2 (line B), 1/5 (line C) and 1/25 (line D) while γ0 is set to -0.6 (a), 0 (b) and 0.15 (c).
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For every configuration, there is a set of index and a set of rank for each and every sensitivity method. Since both1

the correlation matrix, whatever the chosen approach may be, and the sample, on which the indices estimation is2

performed, are randomly drawn, this procedure, latter referred to as an estimation, is repeated to overcome statistical3

fluctuations: few thousands of times in § 3.2 and from about 50 to about 150 times in § 4.4

3.2 Applying all methods: first observations5

In order to investigate the behaviour of all the indices, a given basis configuration is chosen to serve as a reference:6

• the dimensions of the problem are set to (nX , nS) = (12, 1000);7

• all the inputs variables are set to have the same variance;8

• the input variables are drawn as a multivariate normal distribution, X ∼ N (0,ΓXX) where ΓXX is taken9

either as the unitary matrix or drawn from the Gram or the Archakov-Hansen approach;10

The last aforementioned item is let opened as starting with an already complicated correlated situation might compli-11

cate the interpretation due to a possible entanglement of various effects.12

3.2.1 Independent case with same variances13

In this section, large number of estimations have been done§ in order to throw a first glance at the behaviour of the five14

indices introduced in § 2, along with the usual first-order coefficient¶. To check that our estimations are consistent15

with the expectations from the theory introduced in both Section 1 and 2, but also to look for any interesting trends,16

a first attempt is done setting ΓXX = 1nX
.17

Figure 3 shows all sensitivity indices distribution, for this peculiar configuration and few points can be raised18

from it:19

• all the distributions, but weifila, are centred around 8.33 % which is expected as this correspond to a twelfth of20

the system output variance (since all variables are independent and have the same variance);21

• the weifila index seems to provide very off-estimations. This instability (pointed out in the introduction of the22

method in § 2.5) is not particularly related to the size of the sample provided: it has been tested with nS = 1000023

and in both cases, about 30 % of the events are in tails.24

§unless otherwise specified, it exactly 8330 estimations, so that the total number of indices is roughly matching 100 000 entries.
¶The first-order coefficient results here used for illustration purposes will be computed throughout this paper using the pick-and-freeze method [21,

22]. This is out of the scope of this paper as the linear assumption has to be done (the sensitivity indices can not be estimated only with a provided
sample) but the information drawn is interesting nonetheless.
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FIG. 3: Distribution of the sensitivity indices for several thousand estimations of the basis configuration in the independent case.
From left to right and top to bottom, the indices are: covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the
first-order coefficient.

• the standard deviation from these distribution is directly linked to the size of the statistical sample (nS). When1

a sample of size 10000 locations is used instead of nS = 1000, all these values shrink. This is further illustrated2

in § 4.3

• most of the distributions are very similar, at least from their statistical momentum point of view as they all4

derived from the same events and should lead (in this very simple case) to the same values (c.f. § 2).5

In order to investigate further the fourth observation, the difference of all indices value is computed for all6

selected pairs of methods, some of which are represented in Figure 4 for example. The two left-handed plots show7

that whatever the configuration considered, the covariance-based, relative weight and Shapley values are fairly close8

but not exactly the same. The comparison of the classical first-order coefficients with all other measurements is also9

consistent, as shown by the third plot of Figure 4 once compared to covariance-based values, but limited by the size10

of the sample (as discussed later in § 4). Finally, the latest plot (the right one) focus on the fact that Shapley values11

and LMG-GDI ones seem to be exactly equivalent. This is confirmed throughout all cases in this paper and is proven12

analytically in § 5.1.13
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FIG. 4: Distribution of the difference of sensitivity indices measured for several thousand estimations of the basis configuration
in the independent case. These differences are taken from the covariance-based with other methods such as relative weight (left),
Shapley values (middle-left) and LMG-GDI ones (middle-right). The right plot shows the difference of sensitivity indices measured
from the Shapley values and the LMG-GDI ones.

To further investigate this, it is possible to look at the rank distributions. By construction, in this case where nX is1

set to 12, the rank distribution is the exact same one from one method to another: it is a Dirac comb with integer value2

going from 1 to 12, each of the corresponding bins having exactly the same number of entries. All the observations3

above are confirmed by looking at the other metric, the indices rank: when the indices value computations are mainly4

tainted with statistical fluctuations, the difference in indices rank should reflect this with a wide standard deviation and5

a regular distribution of difference as shown in the middle-right part of Figure 5. This is mainly because all variables6

should account for a twelfth of the output system variance. Apart from the absolute equality between Shapley values7

and LMG-GDIones, confirmed by the right part of Figure 5, the observations done between the other pairs of indices,8

setting aside weifila for the moment, are confirmed respectively by the left and middle-left part of Figure 5: the9

methods, in this particular configuration, provide almost the same results.10

FIG. 5: Distribution of the difference in ranking of sensitivity indices measured for several thousand estimations of the basis
configuration in the independent case. These differences are taken from the covariance-based with other methods such as relative
weight (left), Shapley values (middle-left) and LMG-GDI ones (middle-right). The right plot shows the difference of sensitivity
indices measured from the Shapley values and the LMG-GDI ones.
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3.2.2 Independent case with different variances1

Another important hypothesis, from the basis configuration defined at the beginning of § 3.2, is the fact that all input2

variables have the same variance which leads to the equal contribution of each of them to the system output (a twelfth3

when nX = 12). In this part, the variance distribution is split into two groups: in the first one, half the input variables4

still have a variance of 1, while in the second group it is set to σ = 5. Looking at Figure 6, that shows that all5

sensitivity indices distribution are very similar:6

• all the distributions have an average value around 8.33 % (still the twelfth of the system output variance) but7

this time split into two regions, as expected;8

• the weifila index seems to provide more stable results, in agreement with the rest of the methods;9

• the standard deviation from these distribution is now driven by the fact that the indices are split into two regions.10

The spread of both peaks, on the other side, are still directly linked to the size of the statistical sample (nS).11

FIG. 6: Distribution of the sensitivity indices for several thousand estimations of the basis configuration in the independent case
with two variance values for the input variables. From left to right and top to bottom, the indices are: covariance-based, Shapley
value, LMG-GDI, relative weight, weifila and the first-order coefficient.

As for the independent case where all input variables bring the same contributions, the first observation mentioned12
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previously can be tested by looking at the difference of of all indices with both metrics: their values in Figure 7 or their1

ranks in Figure 8. The conclusions drawn from § 3.2.1 remain: there is a very good agreement between all indices2

with very low variations between covariance-based, LMG-GDI, relative weight and Shapley values, as shown by the3

left and middle-left parts of both Figures 7 and 8. The first-order coefficient results are still very limited by the sample4

size while the weifila results, even though stable now for every configurations, show tails with respect to every other5

indices, as shown respectively by the middle-right and right parts of both Figures 7 and 8.6

FIG. 7: Distribution of the difference of sensitivity indices measured for several thousand estimations of the basis configuration in
the independent case with two variance values for the input variables. These differences are taken from the covariance-based with
other methods such as relative weight (left), Shapley values (middle-left), LMG-GDI ones (middle-right) and weifila (right).

FIG. 8: Distribution of the difference of sensitivity indices measured for several thousand estimations of the basis configuration
in the independent case with two variance values for the input variables . These differences are taken from the covariance-based
with other methods such as relative weight (left), Shapley values (middle-left), LMG-GDI ones (middle-right) and weifila (right).

3.2.3 Gram and Archakov-Hansen random matrix cases7

In this section, another large number of estimations have been done and the distributions of all the methods intro-8

duced in § 2, along with the usual first-order coefficient, using now random correlation matrices, either drawn from9
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the Gram or the Archakov-Hansen approach, are shown respectively in Figures 9 and 10. As a remainder, the corre-1

sponding distribution of correlation coefficients can be seen respectively in Figure 1(c) and in Figure 2(b)(A), as in2

the Archakov-Hansen approach, the chosen setup is (γ0,ω0) = (0, 1). Few observations can be drawn from these3

two sets of distribution:4

• the weifila results using the Gram approach is still suffering from instabilities which would suggest that one5

might be tempted to discard them;6

• once again, all the distributions, but the aforementioned one, have an average value around 8.33 % (the7

twelfth of the system output variance) but this time the methods can be split into two kinds: the positive-only8

ones (Shapley valuev, LMG-GDI, relative weight and weifila) and the others with possibly negative results9

(covariance-based, first-order coefficient);10

• bearing in mind the split in methods introduced in previous item, the variances of the distribution, going from11

the Gram to the Archakov-Hansen approach, are fairly stable for the positive-only methods while they are12

increasing significantly for the others.13

The first and third observations above are completing the analysis done when looking at the distributions of14

the correlation coefficient taken out of either the Gram or the Archakov-Hansen approach: the former is providing15

correlation coefficients closer and closer to 0 as the input dimension is increasing (c.f. Figure 1 and the expected PDF16

of these coefficients introduced in equation (44)) while the latter is more representative of the full possible variability.17

The second observation is of utmost importance: as already discussed in § 2.4 when introducing the covariance-18

based method, some total indices might be negative or null. The former case implies that the correlative contribution19

is weakening so much its structural counterpart that it flips the global index sign but the amplitude helps pointing out20

that the variable under study should not be dropped. Interpreting the latter case might be a bit more tricky as a close21

to 0 value might arise either when both the structural and correlative contributions are negligible, meaning that the22

impact of the variable is indeed negligible, but also when both contributions have equivalent amplitude but cancel out23

one another.24

Combining these two aspects explains why going from the Gram to the Archakov-Hansen approach means having25

a significant increase in the standard deviation of the indices distributions for the non-positive-only methods: the26

covariance are allowed to be larger in the latter case (given our chosen parameter values γ0 andω0) so there might be27

more widely spread resulting indices. Since the covariance can significantly impact the influence of a given variable,28
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FIG. 9: Distribution of the sensitivity indices for several thousand estimations of the basis configuration using the Gram approach.
From left to right and top to bottom, the indices are: covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the
first-order coefficient.

FIG. 10: Distribution of the sensitivity indices for several thousand estimations of the basis configuration using the Archakov-
Hansen approach with (γ0,ω0) = (0, 1). From left to right and top to bottom, the indices are: covariance-based, Shapley value,
LMG-GDI, relative weight, weifila and the first-order coefficient.
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in order to be as exhaustive as possible, the Gram approach is discarded in the rest of this paper and the Archakov-1

Hansen one is kept as a baseline, with (γ0,ω0) = (0, 1), changing this couple of parameter from time to time to2

check the consistency of the following conclusions.3

Finally, in order to be able to compare indices numerically, all indices have been normalised in a similar fashion,4

in order to circumvent the difference in behaviour between positive-only and non-positive-only methods, following5

this principle:6

|κi| =
|κi|∑nX

j=1 |κj |
. (45)

Figure 11 shows the distributions of the indices in their normalised form which can be compared to their original7

form already shown in Figure 10.8

FIG. 11: Distribution of the sensitivity indices for several thousand estimations of the basis configuration using the Archakov-
Hansen approach with (γ0,ω0) = (0, 1). From left to right and top to bottom, the indices are shown in their normalised version
as defined in equation (45): covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the first-order coefficient.

This step allows to get all sets of indices evolving in a common range, helping sorting out the non-positive-only9

in a very common way to the rest of the positive-only methods. Indeed, for a given estimation, a negative value of a10

covariance-based index for instance, reflect that the correlative part is larger than its structural counterpart for the input11

under consideration. By considering only its value, its ranking will be smaller than every other input variables with12
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a positive index, even those whose index is lower than the absolute value of the one under consideration, hence this1

normalisation proposition. This provides, when computing the difference between all the methods and the covariance-2

based values, fairly coherent results from one method to another as shown by the distributions in value in Figure 123

and in rank in Figure 13. With our basis configuration, using the (γ0,ω0) = (0, 1) configuration which results in4

widely distributed correlation coefficients, all the differences are unbiased (from a statistical point of view), with a5

reasonable standard deviation. The conclusions seen above are completed with new ones:6

• as expected, the impact of the normalisation on the positive-only results is nonexistent: all the nX results where7

already positive for each and every estimations and their sum is set to 1 by construction;8

• the covariance-based results and first-order coefficients are very likely before and after normalisation. This can9

be seen both from the values and the rankings distributions.10

• all the positive-only measurements are in a nice agreement with the normalised covariance-based results, which11

can be seen from both the values and rankings distributions12

• even though there are more tails in the comparison of covariance-based results and weifila ones (probably due13

to the stability of the weifila method), the rankings are more coherent for covariance-based and weifila than14

for covariance-based and the rest of originally positive-only methods (LMG-GDI, Shapley values and relative15

weight).16

The agreement seen and discussed here is getting better once choosing a stronger correlation in between the17

variable: the exact same procedure has been redone with random correlation matrices drawn with the Archakov-18

Hansen procedure, setting now the parameters to the following values (γ0,ω0) = (0.15, 1), as already introduced19

in Figure 2(c)(A). Using this peculiar configuration leads to higher correlation coefficient values and an even better20

agreement between all the methods, as can be seen in Figures A.20 and A.2121

Now that all these methods have been shown to have their differences but to converge to common conclusion,22

the dependence to all the parameters used to define the basis configuration will be studied in more details in § 4.23

4. TESTING DEPENDENCIES24

In this part, the conclusions drawn from § 3.2 are set aside in order to focus on the way the considered methods25

might be depending on some of the basis configuration parameters considered fixed (those detailed in the preamble26

of § 3.2). The idea is to investigate a possible impact on several interesting features such as the average difference27

International Journal for Uncertainty Quantification



Sensitivity analysis with correlated inputs: comparison of indices for the linear case 29

FIG. 12: Differences of the normalised sensitivity indices with the normalised covariance-based results, for several thousand
estimations using the Archakov-Hansen with (γ0,ω0) = (0, 1). The methods used are the Shapley values (top-left), the LMG-
GDI (top-middle), the relative weight (top-right), the weifila (bottom-left) and the first-order coefficient (bottom-right).

FIG. 13: Differences of the ranking of normalised sensitivity indices with the one of the normalised covariance-based results, for
several thousand estimations using the Archakov-Hansen (γ0,ω0) = (0, 1). The methods used are the Shapley values (top-left),
the LMG-GDI (top-middle), the relative weights (top-right), the weifila (bottom-left) and the first-order coefficients (bottom-right).
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between normalised method results, the spread of the difference between normalised method results and the running1

time for every methods, when varying2

• the sample size nS ;3

• the input space size nX ;4

• the nature of the input law;5

• the variability of the input laws;6

As for the preliminary analysis done in § 3.2, estimations have been generated to test several steps in the all the7

aforementioned parameters, the number of estimation going from 50 to 166, so that the estimators used to the average8

and standard deviation estimation might be accurate enough while the total number of estimated indices is as close to9

a thousand as possible. Every following sections will deal with on the item defined above.10

In each case, disregarding the parameter under investigation, tests are done in order, on the one hand, to check11

the consistency of the sensitivity indices measurements from one method to the other, but also, on the other hand, to12

investigate the self consistency of every methods (average and spread evolution) when the parameter is changing.13

For the rest of this section, the time measurement is done with the chrono C++-package for every estimation of14

each method separately, using a regular i9-9880H processor with 8 cores (16 threads) on a laptop. In order not to15

affect too much the measured time, the number of parallelised processes have been limited to 6 at the same time.16

4.1 Impact of the sample size17

In this section, the sample size is tested, going from a hundred locations to four thousand ones. The most interesting18

results are gathered in Figure 14.19

Figure 14(a) shows both the average and spread of the differences in the values of all sensitivity indices with the20

covariance-based results. The first observation is that no bias is seen through all the nS steps tested, as the average bias21

is well below 10−10. However, the spread is evolving as displayed in Figure 14(b), which shows that all the methods22

but the first-order coefficients have a very stable spread with respect to the number of locations. For the latter, on23

the other hand the spread is decreasing fast with the number of locations which is expected from the pick-and-freeze24

method used with the provided sample.25

As for the resource, the time consumption is displayed in Figure 14(c) in logarithmic scale with respect to the26

sample size, and shows that all the methods but the first-order coefficients are fairly stable. For the latter, the evolution27

is the one expected from the pick-and-freeze method.28
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(a) Average (µ)± spread (σ) of the differences of normalised index (b) Spread (σ) of the differences of normalised index

(c) Computation average time and spread of all normalised methods

FIG. 14: Evolution, as a function of the sample size, of the average differences and spreads in normalised value (14(a)), of the
spread of these differences (14(b)), and the average time consumption for every methods (14(c)).

From all these observations, the sample size does not seem to be of utmost importance with respect to the chosen1

protocol in this paper.2

4.2 Impact of the input space size3

In this section, the input space size is tested, going from 4 to 20 input variables. The most interesting results are4

gathered in Figure 15.5

Figure 15(a) shows both the average and spread of the differences in the value of all sensitivity indices with6
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(a) Average (µ)± spread (σ) of the differences of normalised index (b) Spread (σ) of the differences of normalised index

(c) Computation average time and spread of all normalised methods

FIG. 15: Evolution, as a function of the input space size, of the average differences and spreads in normalised value (15(a)), of the
spread of these differences (15(b)), and the average time consumption for every methods (15(c)).

the covariance-based results. The first observation is that no bias is seen through all the nX steps tested, as the1

average bias is again well below 10−10. However, the spread is evolving significantly for all methods as displayed in2

Figure 15(b), but two groups can be seen: the first-order coefficients on one side and the rest of the indices on the3

other. For the former it has already been stated than the first-order coefficients and the covariance-based results are in4

a very good agreement while for the latter all the other methods share the same pattern with a quick reduction of the5

spread with the input space size.6

As for the resource, the time consumption is displayed in Figure 15(c) in logarithmic scale with respect to the7
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input space size, and shows that all the methods are sensitive to the input space size but with very different impact:1

relative weights, covariance-based and first-order coefficients time consumption is increasing slightly, with less than2

an order of magnitude when going from 4 to 20 inputs even though their respective starting point is different. The3

computation time evolution for the weifila method is not so far from the three previously discussed ones, it changes4

by a bit less than two orders of magnitude. The two remaining methods suffers from severe time dependencies has,5

the evolution of their average computation time seems linear in logarithmic scale with respect to the input space size,6

increasing by more than 5 orders of magnitudes in our current testing conditions.7

From all these observations, the input space size does not seem to be of utmost importance when only considering8

the precision and consistency of one method with respect to the others. On the other hand, it remains crucial in the9

limitation of resources and might become a stopping points once this parameters is set to be too high to be properly10

handled with the current proposed implementation for at least the Shapley value and LMG-GDI approaches.11

4.3 Impact of the input law12

Even though no effect is expected from the input law hypothesis stated in the basis configuration definition in § 3.2,13

it might be fair to test this by changing the input law, keeping the rest of the covariance structure. Figure 16 shows14

that changing the input law from the Gaussian hypothesis to seven other probability density functions with well15

chosen parameters so that their statistical momentum are equivalent, does not affect the three important metric under16

investigation. The averages and the spreads of the differences in value of all sensitivity indices with respect to the17

covariance-based results are indeed completely consistent from one law to the other, as shown in Figure 16(a), as the18

computation time requested by each and every algorithm to get a single estimation (c.f. Figure 16(b)).19

4.4 Impact of the variance of the input variables20

As discussed, at least in the independent case in § 3.2.2, one of the basis configuration hypothesis is the fact that all21

input variables have the same variance which leads to the equal contribution of each of them to the system output22

variance. In the correlated case, this sentence can be rephrased as “this leads to the equal structural contribution”23

meaning that the differences in importance between all input variables come as the by-product of the correlation24

structure injected.25

In this part it is interesting to vary the input variables variance, exactly as done in § 3.2.2. The variance division is26

indeed split into two groups: in the first one, half the input variables still have a variance of 1, while in the second group27

the standard deviation of the rest of the inputs is set to one of the seven pre-selected values {0.01, 0.1, 1, 2, 3, 4, 5}. The28
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(a) Average (µ)± spread (σ) of the differences of normalised index (b) Computation average time and spread of all normalised methods

FIG. 16: Evolution, as a function of the input law, of the average differences and spreads in normalised value (16(a)) and the
average time consumption for every methods (16(b)).

meaningful impact of these modifications is shown in Figure 17 and further explained, for instance, by distributions1

like those displayed in Figure 18.2

The overall impact of the variation of the standard deviation of half the input variables, meaning when consid-3

ering all these variables at once, seem negligible on the average bias, c.f. Figure 17(a), which only shows wide (and4

significant) variations of the spread (increasing as soon as σhalf var 6= 1). This can be explained once one focuses on5

the two groups of input variables, the same plot being done only for the variable with unchanged standard deviation,6

c.f. Figure 17(b). In this case, a significant bias seems to arise as soon as σhalf var 6= 1, for three methods at least:7

Shapley values, relative weightand LMG-GDI. This is further illustrated by Figures 17(c) and 17(d) which display8

only the average bias of input variables respectively for unchanged and varied standard deviation.9

Bearing in mind that the bias under consideration is with respect to the covariance-based method, all these plots10

show that there are, if considered with a coarse approximation, two kind of methods:11

1. methods that share evenly the full contribution between correlated variables, later referred to as “Type-I”;12

2. methods that disentangle the structural and correlated parts, later referred to as “Type-II”.13

With this, it appears that the non-positive-only methods are “Type-II” methods, while most of the positive-only14

methods are “Type-I” ones. This interpretation is in agreement with the definition itself of some of these methods: the15

Shapley values are constructed to be a “fair” distribution of the “gain” when all players are collaborating (c.f. § 2.1.1);16

On the other hand, the covariance-based results are constructed from the dichotomic separation of the structural17
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(a) Average (µ)± spread (σ) of the differences of normalised index (b) Average (µ)± spread (σ) of the differences of normalised index,
σ = 1

(c) Average (µ) of the differences of normalised index, varying σ (d) Average (µ) of the differences of normalised index, σ = 1

FIG. 17: Evolution, as a function of the standard deviation of half the input variables, of the average differences and spreads in
normalised value for all variables (17(a)), for those whose variance has not changed (17(b)). A focus is done specifically on the
averages, for variables with changing σ (17(c)) and for variables with σ = 1 (17(d)).

and correlated contributions. The LMG-GDI results being equivalent to the Shapley values (see § 5.1), the only1

other “Type-I” behaviour methods, the relative weight, was also expected from its definition. The second step indeed2

regresses X onto Z in order, in the case where the original variables are highly correlated, to take into account the3

fact that the Z variables are not a close representation of the X , hence producing a set of weights that redistribute4

the variance in between correlated variable. This is why the relative weight, from the author point of view [39], and5

confirmed by all the results discussed so far, are a very good approximation of the Shapley values.6
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FIG. 18: Distribution of the difference of normalised sensitivity indices measured in the Archakov-Hansen (γ0,ω0) = (0, 1)
configuration when half the input variables have σ = 5. These differences are taken from the covariance-based with other methods
such as Shapley values (top-left), LMG-GDI ones (top-middle), relative weights (top-right), weifila results (bottom-left) and first-
order coefficients (bottom-middle).

The only positive-only method which is not really a “Type-I” kind is the weifila one. For this one, even though1

the average bias is changing with respect to σhalf var, it remains consistent with a null bias when considering the2

spread (c.f. Figure 17(b)), which has been confirmed with a very large statistic sample, as those used in § 3.2, with3

σhalf var was set to 5: no significant bias was seen with respect to the spread. A last attempt was done with σhalf var4

case, choosing the (γ0,ω0) = (0.15, 0.04) configuration, shown in Figure 2(c)(D) which generates high values of5

correlation coefficient with a narrow standard deviation: all these conclusions hold, the weifila average bias being6

consistent with 0, even though on the very edge, once considering one standard deviation of the bias distribution.7

5. DISCUSSION AND CONCLUSIONS8

This final section provides a mathematical demonstration of the equality of the LG-Shapley method and the LMG-9

GDI one in the linear-Gaussian case before further summarise all the conclusions drawn at every steps of this paper.10
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5.1 Comparing LG-Shapley and LMG-GDI1

In the linear model assumption, the β coefficients can be estimated from the minimisation of ||Y − Xβ||2 which

leads to the usual β̂ = (XTX)91XTY (when n > nX and if (XTX) is invertible). With the hypothesis that our

input variables X have been centred and reduced, it is possible to express the estimation of the β coefficients using

correlation matrix, as done below:

β̂ = (XTX)91XTY

= (nΓ̂XX)91(nσY Γ̂XY)

= σY Γ̂
91
XXΓ̂XY. (46)

The variance of the linear model can be written, using this notation, as:

Var(Y) =
1
n

YTY =
1
n
β̂TXTXβ̂ = β̂T Γ̂XXβ̂

= (σYΓ̂YXΓ̂
91
XX)Γ̂XX(σY Γ̂

91
XXΓ̂XY)

= σ2
Y Γ̂YXΓ̂

91
XXΓ̂XY = σ2

Y R
2. (47)

This simple exercise emphasise the already known relationship between the coefficient of determination and the2

variance of the considered variable: the linear regression being a projection on the subspace spanned by the regressors,3

the variance of the projected variable is decomposed into a part explained by the linear model and its complementary4

part. If the variable under study follows a pure linear relation, then its variance is fully explained by the regressors5

and the coefficient of determination is therefore equal to 1.6

Comparing both equations (27) and (30) shows interesting similarities, and one could try to express the coefficient

of determination when dealing only with a subset u of input variables, as a function of the input variables properties

and the β coefficients. Given the linear hypothesis, not focusing on a specific sample anymore, one can indeed write:

Γuy = E(XT
u Y ) = E(XT

u Xβ) =

(
Γuu Γu9u

)βu

β9u


= Γuuβu + Γu9uβ9u. (48)
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Injecting this into equation (32) leads to:

R2
u = (βT

uΓuu + βT
9uΓ9uu)Γ91

uu(Γuuβu + Γu9uβ9u)

= (βT
u + βT

9uΓ9uuΓ91
uu)(Γuuβu + Γu9uβ9u)

= βT
uΓuuβu + βT

9uΓ9uuβu + βT
uΓu9uβ9u + βT

9uΓ9uuΓ91
uuΓu9uβ9u

= βTΓXXβ− βT
9uΓ9u9uβ9u + βT

9uΓ9uuΓ91
uuΓu9uβ9u

= βTΓXXβ− βT
9u(Γ9u9u − Γ9uuΓ91

uuΓu9u)β9u. (49)

By looking at equations (27) and (30), the two interesting quantities that should be linked are: the difference

between the coefficient of determination and the difference between the conditional variance, both when using the

subset v (defined as v = u ∪ i) and the subset u of input variables. Writing the difference between the coefficient of

determination using equation (49) is done below:

R2
v −R2

u = βT
9u(Γ9u9u − Γ9uuΓ91

uuΓu9u)β9u − βT
9v(Γ9v9v − Γ9vvΓ

91
vvΓv9v)β9v (50)

=
1

Var(Y )
(Vu − Vv). (51)

The equality in equation (51) is straightforward once the equation (50) is compared to the difference between the1

conditional variance, expressed thanks to the equation (28), established in the Gaussian framework. It shows indeed2

that both methods, disregarding the fact that they have been developed at different moments, from different paradigms3

and applied in different fields of research, lead rigorously to the same estimation. The main difference arise from the4

genericity of the LMG-GDI one: the only strong hypothesis is the linear assumption, and even if the global coefficient5

of determination were to be different from 1 but close (let’s say 0.95), this would mean that the GD indices provide6

the hierarchy of the input variables for 95% of the variance. On the other hand, the equation (27) has been derived7

using the Gaussian conditioning theorem meaning that the paradigm was to only consider problem were the linear8

assumption is correct and X ∼ N (µ,ΓXX).9

5.2 Conclusions10

This paper is a review that aims in comparing some ways to perform global sensitivity analysis for highly correlated11

model (meaning when the input variable are not independent) and when no information are known on either the join12

or the conditional probability density functions. To limit the scope and the complexity of this issue, only an output13
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system of the form of a linear combination of inputs is considered which remains useful as stated in the § 1 where1

various field of research and engineering facing this problem are introduced. There have been many developments to2

circumvent this, arising from various fields of research. This is the starting point of this paper: using methods that3

allow estimation of sensitivity indices from a provided sample (disregarding whether it might arise from simulation or4

experimental data) without any specific information on the inputs correlation assuming only that our system response5

is well described by a linear combination of all the inputs.6

An introduction is setting the historical approach, from the decomposition of a function in § 1.2 with independent7

input variables to a more generalised description without any hypothesis on the probability density functions and the8

covariance structure. The textbook techniques, in the independent case, have been recalled in § 1.3 before introducing9

all the methods of interest used throughout this paper in § 2: the covariance-based measurement, the Shapley values,10

the first-order coefficients, the LMG-GDI, the relative weights and the weifila method. As this paper focuses on the11

linear dependent case, the simple covariance-based estimation proposed in [43] is used as reference when comparisons12

are done.13

A protocol to compare all methods is defined in § 3.1 by generating a very large number of non-singular cor-14

relation matrix with a non-trivial intrinsic correlation structure. Two approaches have been tested, the classical one,15

referred to as the Gram method, and a new one, referred to as the Archakov-Hansen one in this paper, which allows16

to handle with a great precision the way the correlation coefficients are distributed. The latter has been shown to be17

more compelling as it can represent a large variety of possible correlation configuration which cannot be achieved18

by the former, the historical Gram one, which only provides very small correlation coefficients as soon as the input19

space dimension grows. Using this historical approach is not representative of the full available spectrum and the20

conclusions that might be drawn out of this procedure might be biased.21

From there, a first set of tests have been performed using dedicated high-statistics samples, once a basis con-22

figuration has been defined in § 3.2. The first conclusion drawn from this configuration is the complete equivalence23

between the Shapley values and the LMG-GDI results in the linear case, which is mathematically established in § 5.1.24

The second one is the stability problem that arises from the weifila definition itself, as stated as soon as the equations25

are provided in § 2.5, which is problematic as soon as the correlation structure is not too strong and which diminish26

considerably the trust in a singled-out measurement.27

Finally all these methods are tested, still in a statistical approach, to test the dependencies and the consistency of28

their results (with themselves or the rest of the methods) once the size of the sample, the size of the input space or the29

nature of the input laws are varied. The main conclusions are that, once all methods are normalised, their results are30

Volume x, Issue x, 2022



40 J-B. Blanchard

fairly consistent but some might suffer from instability (the weifila method as already stated), severe time limitation1

when the input space size increase (Shapley values and the LMG-GDI method) leading to the interesting trade-off of2

the relative weight approach, when focusing on the “Type-I” methods. Finally the study of the impact of changing3

the variance of some input variables shows that more investigations should be done to develop methods which can4

provide a dichotomy between the structural and correlative nature of the importance: this might be of a greater help5

in the purpose of ranking the variables.6

APPENDIX A. APPENDIX7

APPENDIX A.1 Normalised distributions and differences with higher correlation coefficients8

In this section the distributions of the sensitivity indices and their differences in value and ranking are shown in9

Figure A.19, in Figure A.20 and in Figure A.21 respectively. As a remainder, the correlation coefficient original10

distribution is shown in Figure 2(c)(A) and these plots introduced below should be compared to the reference config-11

uration value exposed in § 3.2, knowing respectively Figure 11, Figure 12 and Figure 13.12

FIG. A.19: Distribution of the sensitivity indices for several thousand estimations of the basis configuration using the Archakov-
Hansen approach with (γ0,ω0) = (0.15, 1). From left to right and top to bottom, the indices are shown in their normalised version
as defined in equation (45): covariance-based, Shapley value, LMG-GDI, relative weight, weifila and the first-order coefficient.
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As for the distributions in Figure 11, those in Figure A.19 have an average value of 8.33 % so about a twelfth of1

the system output variance, but their standard deviations are consistently smaller, which is expected as the spread of2

the correlation is more constrained in this configuration of the Archakov-Hansen approach.3

REFERENCES4

1. Walley, P., Statistical reasoning with imprecise probabilities, Vol. 42, Springer, 1991.5

2. Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. In Classic works of the Dempster-Shafer6

theory of belief functions, pp. 57–72. Springer, 2008.7

3. Sobol’, I., Sensitivity indices for nonlinear mathematical models, Mathematical Modelling and Computational Experiment 1,8

pp. 407–414, 1993.9

4. Homma, T. and Saltelli, A., Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering10

and System Safety, 52:1–17, 1996.11

5. Jacques, J., Lavergne, C., and Devictor, N., Sensitivity analysis in presence of model uncertainty and correlated inputs, Relia-12

bility Engineering & System Safety, 91(10):1126–1134, 2006, the Fourth International Conference on Sensitivity Analysis of13

Model Output (SAMO 2004).14

6. Keitel, H. and Dimmig-Osburg, A., Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input15

parameters, Engineering Structures - ENG STRUCT, 32:3758–3767, 11 2010.16

7. Ferson, S. and Burgman, M.A., Correlations, dependency bounds and extinction risks, Biological Conservation, 73(2):101–17

105, 1995, applications of Population Viability Analysis to Biodiversity Conservation.18

8. Brell, G., Li, G., and Rabitz, H., An efficient algorithm to accelerate the discovery of complex material formulations, The19

Journal of chemical physics, 132(17):174103, 2010.20

9. Da Veiga, S., Gamboa, F., Iooss, B., and Prieur, C., Basics and trends in sensitivity analysis: theory and practice in R, SIAM,21

2021.22

10. Hoeffding, W. A class of statistics with asymptotically normal distribution. In Breakthroughs in Statistics, pp. 308–334.23

Springer, 1992.24

11. Li, G., Rosenthal, C., and Rabitz, H., High dimensional model representations, The Journal of Physical Chemistry A,25

105(33):7765–7777, 2001.26

12. Fisher, R.A. Statistical methods for research workers. In Breakthroughs in statistics, pp. 66–70. Springer, 1992.27

13. Li, G. and Rabitz, H., General formulation of hdmr component functions with independent and correlated variables, Journal28

of Mathematical Chemistry, 50(1):99–130, 2012.29

Volume x, Issue x, 2022



42 J-B. Blanchard

FIG. A.20: Differences of the normalised sensitivity indices with the normalised covariance-based results, for several thousand
estimations using the Archakov-Hansen with (γ0,ω0) = (0.15, 1). The methods used are the Shapley values (top-left), the LMG-
GDI (top-middle), the relative weight (top-right), the weifila (bottom-left) and the first-order coefficient (bottom-right).

FIG. A.21: Differences of the rank of normalised sensitivity indices with respect to the normalised covariance-based ones, for
several thousand estimations using the Archakov-Hansen (γ0,ω0) = (0.15, 1). The methods used are the Shapley values (top-
left), the LMG-GDI (top-middle), the relative weights (top-right), the weifila (bottom-left) and the first-order coefficients (bottom-
right).

International Journal for Uncertainty Quantification



Sensitivity analysis with correlated inputs: comparison of indices for the linear case 43

14. Stone, C.J., The use of polynomial splines and their tensor products in multivariate function estimation, The Annals of Statis-1

tics, 22(1):118–171, 1994.2

15. Hooker, G., Generalized functional anova diagnostics for high-dimensional functions of dependent variables, Journal of Com-3

putational and Graphical Statistics, 16(3):709–732, 2007.4

16. Chastaing, G., Gamboa, F., and Prieur, C., Generalized hoeffding-sobol decomposition for dependent variables-application to5

sensitivity analysis, Electronic Journal of Statistics, 6:2420–2448, 2012.6

17. Li, G., Rabitz, H., Yelvington, P.E., Oluwole, O.O., Bacon, F., Kolb, C.E., and Schoendorf, J., Global sensitivity analysis for7

systems with independent and/or correlated inputs, The journal of physical chemistry A, 114(19):6022–6032, 2010.8

18. Li, G. and Rabitz, H., Analytical hdmr formulas for functions expressed as quadratic polynomials with a multivariate normal9

distribution, Journal of Mathematical Chemistry, 52(8):2052–2073, 2014.10

19. Rahman, S., A generalized anova dimensional decomposition for dependent probability measures, SIAM/ASA Journal on11

Uncertainty Quantification, 2(1):670–697, 2014.12

20. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., Andres, T., Cariboni, J., Gatelli, D., and Saisana, M., Global Sensitivity13

Analysis: The Primer, Wiley, New York, 2008.14

21. Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M., Sensitivity Analysis in Practice: A Guide to Assessing Scientific15

Models, Wiley, New York, 2004.16

22. Saltelli, A., Chan, K., and Scott, E., Sensitivity Analysis, Wiley, New York, 2008.17

23. Monod, H., Naud, C., and Makowski, D., Uncertainty and sensitivity analysis for crop models, In D. Wallach, D. Makowski,18

and J. W. Jones, editors, 2006.19

24. Iooss, B. and Lemaı̂tre, P., A review on global sensitivity analysis methods, In: Meloni, C. and Dellino, G. (Eds.), Uncertainty20

management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pp. 101–122. Springer, 2015.21

25. Iooss, B. and Prieur, C., Shapley effects for sensitivity analysis with correlated inputs: comparisons with sobol’indices, nu-22

merical estimation and applications, International Journal for Uncertainty Quantification, 9(5), 2019.23

26. Heumann, C. and Shalabh, M.S., Introduction to statistics and data analysis, Springer, 2016.24

27. Greenland, S., Maclure, M., Schlesselman, J.J., Poole, C., and Morgenstern, H., Standardized regression coefficients: a further25

critique and review of some alternatives, Epidemiology, pp. 387–392, 1991.26

28. Shapley, L.S., A value for n-person games, Contributions to the Theory of Games, 2(28):307–317, 1953.27

29. Owen, G. Values of games with a priori unions. In Mathematical economics and game theory, pp. 76–88. Springer, 1977.28

30. Hart, S. and Kurz, M., Endogenous formation of coalitions, Econometrica: Journal of the econometric society, pp. 1047–1064,29

1983.30

Volume x, Issue x, 2022



44 J-B. Blanchard

31. Winter, E., The shapley value, Handbook of game theory with economic applications, 3:2025–2054, 2002.1

32. Owen, A.B., Sobol’indices and shapley value, SIAM/ASA Journal on Uncertainty Quantification, 2(1):245–251, 2014.2

33. Broto, B., Bachoc, F., Depecker, M., and Martinez, J.M., Sensitivity indices for independent groups of variables, Mathematics3

and Computers in Simulation, 163:19–31, 2019.4

34. Song, E., Nelson, B.L., and Staum, J., Shapley effects for global sensitivity analysis: Theory and computation, SIAM/ASA5

Journal on Uncertainty Quantification, 4(1):1060–1083, 2016.6

35. Owen, A.B. and Prieur, C., On shapley value for measuring importance of dependent inputs, SIAM/ASA Journal on Uncer-7

tainty Quantification, 5(1):986–1002, 2017.8

36. Lindeman, R.H., Merenda, P.F., and Ruth, Z., Introduction to bivariate and multivariate analysis, Longman Higher Education,9

1980.10

37. Budescu, D.V., Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regres-11

sion., Psychological bulletin, 114(3):542, 1993.12

38. Azen, R. and Budescu, D.V., Comparing predictors in multivariate regression models: An extension of dominance analysis,13

Journal of Educational and Behavioral Statistics, 31(2):157–180, 2006.14

39. Johnson, J.W., A heuristic method for estimating the relative weight of predictor variables in multiple regression, Multivariate15

behavioral research, 35(1):1–19, 2000.16

40. Johnson, R.M., The minimal transformation to orthonormality, Psychometrika, 31(1):61–66, 1966.17

41. Chastaing, G., Indices de sobol généralisés pour variables dépendantes, PhD thesis, École doctorale mathématiques, sciences18
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45. Marsaglia, G. and Olkin, I., Generating correlation matrices, SIAM Journal on Scientific and Statistical Computing, 5(2):470–26

475, 1984.27

46. Archakov, I. and Hansen, P.R., A new parametrization of correlation matrices, Econometrica, 89(4):1699–1715, 2021.28

International Journal for Uncertainty Quantification


	Introduction
	Mathematical conventions
	Decomposition of the system function
	Independent variables
	Special case of the linear model


	Theoretical description of the considered methods
	Shapley value
	Historical formulation
	Formulation for sensitivity analysis
	Linear Gaussian case

	LMG or General Dominance indices
	The relative weight method
	The variance-covariance approach
	The weighted first last method

	Defining the protocol and looking at distributions
	Randomly-drawn correlation matrices
	The Gram approach
	The Archakov-Hansen approach
	Generalising the interpretation: groundwork and vocabulary

	Applying all methods: first observations
	Independent case with same variances
	Independent case with different variances
	Gram and Archakov-Hansen random matrix cases


	Testing dependencies
	Impact of the sample size
	Impact of the input space size
	Impact of the input law
	Impact of the variance of the input variables

	Discussion and conclusions
	Comparing LG-Shapley and LMG-GDI
	Conclusions

	Appendix
	Normalised distributions and differences with higher correlation coefficients


