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Abstract: We claim an analytical solution for the thermal boundary value problem that arises in 
DBD-based plasma jet systems as a preliminary and consistent approach to a simplified geometry. 
This approach involves the outline of a coaxial plasma jet reactor and the consideration of the heat 
transfer to the reactor solids, namely, the dielectric barrier and the grounded electrode. The 
non-homogeneous initial and boundary value thermal problem is solved analytically, while a simple 
cut-off technique is applied to deal with the appearance of infinite series relationships, being the 
outcome of merging dual expressions. The results are also implemented numerically, supporting the 
analytical solution, while a Finite Integration Technique (FIT) is used for the validation. Both the 
analytical and numerical data reveal the temperature pattern at the cross-section of the solids in 
perfect agreement. This analytical approach could be of importance for the optimization of plasma jet 
systems employed in tailored applications where temperature-sensitive materials are involved, like in 
plasma biomedicine. 

Keywords: dielectric barrier discharge; cold plasma jet systems; thermal non-homogeneous 
boundary value problem; analytical methodology; finite integration technique 
 

1. Introduction 

Cold atmospheric pressure plasmas (CAPPs) refer to the ionized gaseous phase, being out of 
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thermodynamic equilibrium and thus rich in reactive species, which is sustained close to the ambient 
pressure. On the other hand, dielectric barrier discharges (DBDs) prevent transition to arcs and thus 
to electrical discharge regimes associated with raised temperatures. Hence, unique physicochemical 
features may be combined by means of DBD-based CAPPs, and this concept has led to cutting-edge 
technologies in the fields of material processing, aeronautics [1], environmental remediation [2], etc. 
Of special importance is the plasma biomedicine field, where DBD-based CAPPs are explored as 
tools for wound healing, sterilization [3], cancer treatment [4], tooth bleaching, etc. 

Towards such biomedical applications, DBD-based CAPPs are usually engineered in the form 
of the so-called “plasma jets” [5], where a gas is channeled into the atmospheric air through a 
dielectric capillary tube, while it is simultaneously subjected to a time-varying electric field. The 
latter is developed by driving a pair of electrodes of appropriate geometry (e.g., coaxial) with high 
voltages of various waveforms (e.g., ac-continuous or ns-pulsed in the kHz range). Thus, a 
complicated interplay between charged species, excited neutrals, chemical radicals, photons, electric 
fields [6], fluid fields [7−10], etc. and the bio-specimen itself, takes place. However, the benefits of 
the interaction between this plasma reactive phase and the specimen may be compensated by the rise 
of the gas temperature with respect to the specimen’s thermal tolerance. In other words, dominant 
design and operation parameters that are considered during the optimization of the plasma jet setups 
must be correlated with the thermal fields of various heating mechanisms [11]. 

Several works have been devoted to the thermal properties of CAPPs, whereas they mostly refer 
to experimental and numerical techniques [12−20]. Herein, the interest in investigating the thermal 
properties of plasma jets, as a special case of CAPPs, is combined with the challenge of producing an 
initial, boundary value problem of heat conduction within such setups. The ultimate motivation for 
this research is to obtain analytical formulae for the temperature field in the system that can be 
employed in plasma simulations, instead of time-consuming numerical solutions. These solutions 
will provide an easy means of estimating the spatial distribution of the temperature for different 
geometric and operation characteristics, which are important factors for the properties of the plasma. 
Furthermore, novel physical results can be derived from analytical techniques and they can be 
utilized for the verification of numerical results. Under these aspects, the present article has 
endeavored to show that an analytical approach to problems involving CAPP jet setups is 
conceivable. 

Namely, the theoretical analysis considers a two-region problem, which corresponds to the 
dielectric barrier tube of the DBD and the external grounded electrode, wherein our goal is to calculate 
the temperature distribution in the axisymmetric configuration of the setup. In order to construct the 
related initial and boundary value problem and proceed to the solution, our analytical methodology is 
primarily based on the selection of a suitably located cylindrical coordinate system [21] for modeling 
purposes with respect to the current investigation. Therein, the domain of field activity is divided 
into the two subsectors of the dielectric and the electrode-metal, in which classical heat diffusion 
partial differential equations [22] are considered. These are supplemented by the appropriate 
conditions, i.e., the Dirichlet and Neumann continuity conditions on the interface of the two solids, 
an imposed given heat conduction rate assumed on the boundary of the dielectric with the working 
gas, and the Robin-type heat convection condition on the boundary of the electrode with the outer 
environment. Otherwise, an initial room temperature condition is imposed for both the areas of 
thermal activity, completing the well-pose of the problem. Henceforth, the well-known method of 
separation of variables is applied to both the heat equations, while a standard technique, based on the 
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method of asymptotic kernels [23], is necessary for handling the non-homogeneous boundary 
conditions. Following these steps, the time-dependent temperature fields in each region are expanded 
in terms of cylindrical eigenfunctions [23] and decaying time exponents, in which rotational 
symmetry is implied, featured by the conditions. Then, the aforementioned problem is solved 
straightforwardly, resulting in either analytical or semi-analytical expressions for the incorporated 
unknown constant coefficients, while a pair of dual relations of Fourier-Bessel series [24] for a single 
unknown also appear due to the different boundaries. The latter are merged to one and only 
relationship, which is handled appropriately so as to be reduced to an infinite algebraic linear system 
of equations for the implicated set of constants, by taking its projection to Bessel and Neumann 
functions. Therein, the obtained handy system is manipulated via well-known cut-off techniques, 
while the temperature fields are provided in a compact fashion via closed-type convergent series 
expansions and they are implemented so as to show their response graphically. The results reveal the 
thermal behavior both in the bulk and on the surfaces of the solid materials, which is of interest for 
future elaboration either using alternative approaches, e.g., by solving in the Laplace domain and 
transforming back to the time domain [25,26] or proceeding to possible experimental processing. In 
order to demonstrate the efficiency of the present method, the analytical solution is juxtaposed with 
numerical results, being obtained using the advanced Finite Integration Technique (FIT) [27−29], 
wherein an excellent agreement is obtained. 

2. Heat Transfer Configuration and Analytical Solution 

Let us consider two very long coaxial cylinders, the dielectric tube (alumina) of thermal 

diffusivity da  with inner radius dR  and the electrode (brass) of thermal diffusivity ea  with inner 

radius eR . Furthermore, dk  and ek  are the respective thermal conductivities (see Figure 1). The 

system is initially set at the same temperature with the free-environment, whose convective heat 

transfer coefficient is h , contains air at room temperature T∞ , while plasma kinetics produces a 

known conduction heat q . Hence, in terms of a properly adjusted cylindrical coordinate system 

( , , )zρ ϕ , in which the z -variable is eliminated as a fair approximation of the big length of the 

plasma jet setup, we consider two different temperature distributions, the first one within the 

dielectric ( , , )dT tρ ϕ  and the second one within the electrode ( , , )eT tρ ϕ . Then the boundary and 

initial value problem that we have to solve admits two separate heat partial differential equations in 
cylindrical geometry, which assume 

 
2 2

2 2 2

( , , )1 1 ( , , ) d
d d

T tT t
t

ρ ϕα ρ ϕ
ρ ρ ρ ρ ϕ

  ∂∂ ∂ ∂+ + = ∂ ∂ ∂ ∂ 
 at ( , )d eR Rρ ∈         (1) 

and 
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2 2 2

( , , )1 1 ( , , ) e
e e

T tT t
t

ρ ϕα ρ ϕ
ρ ρ ρ ρ ϕ

  ∂∂ ∂ ∂+ + = ∂ ∂ ∂ ∂ 
 at ( , )e sR Rρ ∈ ,        (2) 
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both defined for every [0,2 )ϕ π∈  and 0t > , accompanied by the appropriate boundary conditions 

 ( , , )d d
d

T R tk qϕ
ρ

∂− =
∂

 for [0,2 )ϕ π∈  and 0t ≥ ,           (3) 

 ( , , ) ( , , )d e e eT R t T R tϕ ϕ=  for [0,2 )ϕ π∈  and 0t ≥ ,           (4) 

 ( , , ) ( , , )d e e e
d e

T R t T R tk kϕ ϕ
ρ ρ

∂ ∂− = −
∂ ∂

 for [0,2 )ϕ π∈  and 0t ≥ ,        (5) 

 ( , , ) [ ( , , ) ]e s
e e s

T R tk h T R t Tϕ ϕ
ρ ∞

∂− = −
∂

 for [0,2 )ϕ π∈  and 0t ≥         (6) 

and the initial condition of common temperature for the dielectric tube and the electrode 

 ( ,0)ρ ∞=dT T  for [ , ]ρ ∈ d eR R  and ( ,0)ρ ∞=eT T  for [ , ]ρ ∈ e sR R , (7) 

completing thus the set of a well-posed boundary value problem that describes the heat transfer 
within our system. 

 

Figure 1. Simplified plasma reactor geometry and the areas of thermal activity, i.e., the 

dielectric tube with inner and outer radius dR  and eR , respectively and the grounded 

electrode with inner and outer radius eR  and sR , respectively. 

Our first task in order to solve (1)−(7), is to transform (3) and (6) into homogeneous conditions. 
To this end, we use the method of asymptotic kernels, according to which the solution under 
consideration is rewritten as the summation of a general solution and a particular time-independent 
solution (resembling the asymptotic behavior as t → +∞ ) via 

 ( , , ) ( , , ) ( , )d d dT t T t Kρ ϕ ρ ϕ ρ ϕ= +  for every ( , )d eR Rρ ∈ , [0,2 )ϕ π∈  and 0t > ,    (8) 

and 

 ( , , ) ( , , ) ( , )e e eT t T t Kρ ϕ ρ ϕ ρ ϕ= +  for every ( , )e sR Rρ ∈ , [0,2 )ϕ π∈  and 0t > .    (9) 

According to our argumentation, functions ( , )dK ρ ϕ  and ( , )eK ρ ϕ  are chosen, such as to solve the 

problems 

 
2 2

2 2 2
1 1 ( , ) 0dK ρ ϕ

ρ ρ ρ ρ ϕ
 ∂ ∂ ∂+ + = ∂ ∂ ∂ 

 for ( , )d eR Rρ ∈  and [0,2 )ϕ π∈       (10) 
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with boundary condition 

 ( , )d d
d

K Rk qϕ
ρ

∂− =
∂

 for [0,2 )ϕ π∈ ,              (11) 

while 

 
2 2

2 2 2
1 1 ( , ) 0eK ρ ϕ

ρ ρ ρ ρ ϕ
 ∂ ∂ ∂+ + = ∂ ∂ ∂ 

 for ( , )e sR Rρ ∈  and [0,2 )ϕ π∈       (12) 

with boundary condition 

 ( , ) [ ( , ) ]e s
e e s

K Rk h K R Tϕ ϕ
ρ ∞

∂− = −
∂

 for [0,2 )ϕ π∈ .          (13) 

On the other hand, the main fields ( , , )dT tρ ϕ  and ( , , )eT tρ ϕ , implying (10) and (12) into 

relations (1)−(7) and according to decompositions (8) and (9), satisfy the boundary value problems 

for every [0,2 )ϕ π∈  and 0t >  

 
2 2

2 2 2

( , , )1 1 ( , , ) d
d d

T tT t
t

ρ ϕα ρ ϕ
ρ ρ ρ ρ ϕ

  ∂∂ ∂ ∂+ + = ∂ ∂ ∂ ∂ 

  at ( , )d eR Rρ ∈         (14) 

and 

 
2 2

2 2 2

( , , )1 1 ( , , ) e
e e

T tT t
t

ρ ϕα ρ ϕ
ρ ρ ρ ρ ϕ

  ∂∂ ∂ ∂+ + = ∂ ∂ ∂ ∂ 

  at ( , )e sR Rρ ∈         (15) 

with boundary conditions 

 ( , , ) 0d dT R tϕ
ρ

∂ =
∂


 for [0,2 )ϕ π∈  and 0t ≥ ,            (16) 

 ( , , ) ( , ) ( , , ) ( , )d e d e e e e eT R t K R T R t K Rϕ ϕ ϕ ϕ+ = +   for [0,2 )ϕ π∈  and 0t ≥ ,      (17) 

 [ ( , , ) ( , )] [ ( , , ) ( , )]d e d e e e e e
d e

T R t K R T R t K Rk kϕ ϕ ϕ ϕ
ρ ρ

∂ + ∂ +− = −
∂ ∂

 
, [0,2 )ϕ π∈ , 0t ≥ ,    (18) 

 ( , , ) ( , , ) 0e s
e e s

T R tk hT R tϕ ϕ
ρ

∂ + =
∂

  , [0,2 )ϕ π∈ , 0t ≥            (19) 

and initial condition of the system 

 ( , ,0) ( , )ρ ϕ ρ ϕ ∞+ =
d dT K T  for [ , ]ρ ∈ d eR R  and ( , ,0) ( , )ρ ϕ ρ ϕ ∞+ =

e eT K T  for [ , ]ρ ∈ e sR R , (20) 

whereas the common temperature is set by the final solution. 

In the sequel, we work as follows. Due to conditions (11) and (13), functions ( , )dK ρ ϕ  and 

( , )eK ρ ϕ  depend only on the ρ -variable, i.e., ( , ) ( )d dK Kρ ϕ ρ≡  and ( , ) ( )e eK Kρ ϕ ρ≡ , respectively, 

henceforth (10) and (12) become eventually ordinary differential equations, since ( ) / 0dK ρ ϕ∂ ∂ =  
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and ( ) / 0eK ρ ϕ∂ ∂ = , whereas applying (11) and (13) independently of ϕ -variable, it is readily 

obtained 

 ( ) lnd
d d

d

RK q c
k

ρ ρ= − +  for [ , )d eR Rρ ∈  (21) 

and 

 ( ) ln e
e e

s s

kK T c
R hR
ρρ ∞

 
= + − 

 
 for ( , ]e sR Rρ ∈ ,           (22) 

where ,d ec c ∈  are arbitrary constants, appropriately chosen within the forthcoming steps. On the 

other hand, in order to manipulate the fields ( , , )dT tρ ϕ  and ( , , )eT tρ ϕ  into the partial differential 

equations (14) and (15), respectively, we apply the well-known method of separation of variables, 
according to which we suppose a solution of the general form 

 ( , , ) ( ) ( ) ( )jT t P T tρ ϕ ρ ϕ= Φ  with j d=  if ( , )d eR Rρ ∈  and j e=  if ( , )e sR Rρ ∈    (23) 

for [0,2 )ϕ π∈  and 0t > , wherein, since (14) and (15) retain the same structure, it is doable to perform 

the procedure once. Hence incorporating two separation constants κ  and λ , we substitute (23) into 
either (14) or (15) to get 

 2

1( ) ( )( ) 1 ( )
( ) ( ) ( )j

P PT t r
T t P

ρ ρ ϕ κ
α ρ ρ ϕ

′′ ′+′ ′′Φ= + =
Φ

 with ,j d e= ,         (24) 

accordingly to the domain of interest and 

 
2 ( ) ( ) ( )

( ) ( )
P P

P
ρ ρ ρ ρ ϕ λ

ρ ϕ
′′ ′ ′′+ Φ= − =

Φ
,              (25) 

whereas either ( , )d eR Rρ ∈  ( j d= ) or ( , )e sR Rρ ∈  ( j e= ). Solving the second equality of (25) and 

demanding the proper periodic azimuthal behavior, we are led to 

 cos( )
( ) ( )

sin( )n

n
n

ϕ
ϕ ϕ

ϕ


Φ ≡ Φ = 


, where 2
n nλ λ≡ =  for 0n ≥  and [0,2 )ϕ π∈ ,      (26) 

whilst by combination of (26) with (24) for 2
jκ μ= −  with ,j d e= , we obtain the Bessel-type ordinary 

differential equation 

 
2

2
2

1( ) ( ) ( ) 0j
nP P Pρ ρ μ ρ

ρ ρ
 ′′ ′+ + − = 
 

,             (27) 

whereas, again, either ( , )d eR Rρ ∈  ( j d= ) or ( , )e sR Rρ ∈  ( j e= ), whose solutions are the Bessel 

functions nJ  and the Neumann functions nN , that is 
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( )

( ) ( )
( )

n j
n

n j

J
P P

N
μ ρ

ρ ρ
μ ρ

≡ = 


 with j d=  if ( , )d eR Rρ ∈  and j e=  if ( , )e sR Rρ ∈ .   (28) 

Finally, the time-dependence for 2
jκ μ= −  with ,j d e=  within (24) yields 

 
22( ) ( ) 0 ( ) ( ) j j

j

t
j jT t T t T t T t e α μ

μα μ −′ + =  ≡ =  with ,j d e= . (29) 

Gathering all the formulae obtained above through (26), (28) and (29), the general solutions are 
provided via 

 [ ] 2

0

( , , ) ( ) ( ) cos( ) sin( )j j j j

j

t
j n n j n n j n n

n

T t a J b N c n d n eμ μ α μ

μ

ρ ϕ μ ρ μ ρ ϕ ϕ
∞

−

=

 = + +   ,     (30) 

for every [0,2 )ϕ π∈  and 0t > , where j d=  if ( , )d eR Rρ ∈  and j e=  if ( , )e sR Rρ ∈ . The symbolic 

feature “
jμ
 ” corresponds either to series definition in the case where jμ  take discrete values or 

to integral notation if jμ  are continuous parameters for ,j d e= . Due to the nature of conditions (17) 

and (18), the azimuthal dependence must be omitted by imposing 0n nc d= =  for 1n ≥  and keeping 

the terms for 0n = . Consequently, by the new definition of 0 0 0
j jA a cμ μ≡  and 0 0 0

j jB b cμ μ≡ , the general 

solution (30), which corresponds to the solution of (14) and (15), reduces to 

 2

0 0 0 0( , ) ( ) ( )d d d d

d

t
d d dT t A J B N eμ μ α μ

μ

ρ μ ρ μ ρ − = +   for ( , )d eR Rρ ∈  and 0t >      (31) 

and 

 2

0 0 0 0( , ) ( ) ( )e e e e

e

t
e e eT t A J B N eμ μ α μ

μ

ρ μ ρ μ ρ − = +   for ( , )e sR Rρ ∈  and 0t > ,     (32) 

whereas the set of 0
dAμ , 0

dB μ  with parameter dμ  and 0
eAμ , 0

eB μ  with parameter eμ  must be 

evaluated by (16)−(20) with respect to (21) and (22). 

Bearing in mind that / / ( )j jρ μ μ ρ∂ ∂ = ∂ ∂  and the derivative property 0 1( ) ( )j jJ Jμ ρ μ ρ′ = −  and 

0 1( ) ( )j jN Nμ ρ μ ρ′ = −  over the argument for ,j d e= , putting (16) into (31), we reach 

 1
0 0

1

( )
( )

d d d d

d d

J RB A
N R

μ μ μ
μ

= − ,                    (33) 

while applying (19) into (32), we get 

 [ ]
[ ]

0 1
0 0

0 1

( ) ( )
( ) ( )

e e e s e e e s

e s e e e s

hJ R k J R
B A

hN R k N R
μ μ μ μ μ

μ μ μ
−

= −
−

             (34) 



18352 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18345−18367. 

for every value of the parameters dμ  and eμ , respectively. Substituting (33) into (31) and (34) into 

(32), we obtain the homogeneous part of the solutions via 

 20 0
0

1 1

( ) ( )( , )
( ) ( )

d d d

d

td d
d

d d d d

J NT t C e
J R N R

μ α μ

μ

μ ρ μ ρρ
μ μ

− 
= − 

 
            (35) 

for ( , )d eR Rρ ∈  and 0t > , while 

 
[ ] [ ]

20 0
0

0 1 0 1

( ) ( )( , )
( ) ( ) ( ) ( )

e e e

e

te e
e

e s e e e s e s e e e s

J NT t C e
hJ R k J R hN R k N R

μ α μ

μ

μ ρ μ ρρ
μ μ μ μ μ μ

− 
= − − −  
     (36) 

for ( , )e sR Rρ ∈  and 0t > , wherein 0 0 1 ( )d d
d dC A J Rμ μ μ≡  and [ ]0 0 0 1( ) ( )e e

e s e e e sC A hJ R k J Rμ μ μ μ μ≡ −  are 

the newly defined constants, respectively. We precede with the interface conditions (17) and (18), 
which, by virtue of (35) and (36), as well as (21) and (22), yield 

 
20 0

0
1 1

( ) ( ) ln ln
( ) ( )

d d d

d

td e d e d e e
e d e

d d d d d s s

J R N R R R kC e q R c T c
J R N R k R hR

μ α μ

μ

μ μ
μ μ

−
∞

    
− − − + + −   

     
  

  [ ] [ ]
20 0

0
0 1 0 1

( ) ( )
( ) ( ) ( ) ( )

e e e

e

te e e e

e s e e e s e s e e e s

J R N RC e
hJ R k J R hN R k N R

μ α μ

μ

μ μ
μ μ μ μ μ μ

− 
= − − −  
       (37) 

and 

 20 0
0

1 1

( ) ( )
( ) ( )

d d d

d

td e d e d e
d d e

d d d d e e

J R N R R kk C e q c
J R N R R R

μ α μ

μ

μ μμ
μ μ

−′ ′   
− − +   

   
  

  [ ] [ ]
20 0

0
0 1 0 1

( ) ( )
( ) ( ) ( ) ( )

e e e

e

te e e e
e e

e s e e e s e s e e e s

J R N Rk C e
hJ R k J R hN R k N R

μ α μ

μ

μ μμ
μ μ μ μ μ μ

− ′ ′
= − − −  

      (38) 

with 0t ≥ , respectively. The utility of relationships (37) and (38) is twofold, since the proper 
matching for any 0t ≥  acquires two things. Firstly, we are forced to consider that 

 ln ln 0d e e
e d e

d s s

R R kq R c T c
k R hR∞

 
− + + − = 

 
 and 0d e

e
e e

R kq c
R R

+ = ,        (39) 

which immediately offer us 

 d
e

e

Rc q
k

= −  and ln lnd d e d
d e

d e s s

qR k R kc T R
k k R hR∞

 
= + − + 

 
,         (40) 

providing the two arbitrary constants in the fields (21) and (22). Once done, implying (39) into (37) 
and (38), we proceed to the second step, i.e., in order to retain the same exponents in the time 
variable, we imply 

 
2

2 2
2
d e

d d e e
e d

μ αα μ α μ
μ α

=  =  or e
d e

d

αμ μ
α

=             (41) 

and therein, for notational convenience, we define as eμ μ≡ , therefore /d e dμ μ α α= . Hence, 
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following the new parameter notation, we interchange 0 0
dF Cμμ ≡  and 0 0

eG C μμ ≡  for the same reason 

and we readily define convenient functions that enter into the fields (35) and (36), as well as into 
conditions (37) and (38), those being 

 ( ) ( )
( )

( )
( )

0 0

1 1

/ /
/

/ /
e d e d

e d
e d d e d d

J N
f

J R N R

μ α α ρ μ α α ρ
μ α α ρ

μ α α μ α α
= −          (42) 

and 

 [ ] [ ]
0 0

0 1 0 1

( ) ( )( )
( ) ( ) ( ) ( )s e s s e s

J Ng
hJ R k J R hN R k N R

μρ μρμρ
μ μ μ μ μ μ

= −
− −

. (43) 

Within the same aspect, we introduce the ratio 0Cμ  of the newly-defined defined constants 0
dC μ and 

0
eC μ  as 

 0 0
0

00

d

e

C FC
GC

μ μ
μ

μ μ≡ =  or 0 0 0F G Cμ μ μ= ,              (44) 

so from (37) and (38) we readily obtain 

 ( )0 / ( )e d e eC f R g Rμ μ α α μ=  and ( )0 / ( )e d
e d e e

d e

kC f R g R
k

μ αμ α α μ
α

′ ′= ,      (45) 

where the prime denotes differentiation with respect to the argument for each case. The latter are two 

transcendental conditions, being solved numerically for the evaluation of the ratio 0C μ  from (44) 

and the parameter μ . Once done, parameter dμ  is readily recovered via (41), while we remain with 

only one coefficient to calculate, either 0F μ  or 0G μ , since the ratio (44) is a known quantity. 

Incorporating the above relationships (37)−(45) to the fields (35) and (36), we may directly rewrite 
them as 
 ( ) 2

0 0( , ) / exp( )d e d eT t G C f tμ μ

μ

ρ μ α α ρ α μ= −  for ( , )d eR Rρ ∈  and 0t >      (46) 

and 
 2

0( , ) ( )exp( )e eT t G g tμ

μ

ρ μρ α μ= −  for ( , )e sR Rρ ∈  and 0t > .        (47) 

Substituting (46) and (47) into (8) and (9) (taking into account the azimuthal independence), while 
attaching (21) and (22) with (40), we get 

 ( ) 2
0 0( , ) ln ln / exp( )d d s d

d e d e
d e e e s

qR k R kT t T G C f t
k R k R hR

μ μ

μ

ρρ μ α α ρ α μ∞

 
= − − − + − 

 
    (48) 

for every [ , ]d eR Rρ ∈  and 0t > , while 
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 2
0( , ) ln ( )exp( )d e

e e
e s s

qR kT t T G g t
k R hR

μ

μ

ρρ μρ α μ∞

 
= − − + − 

 
         (49) 

for every [ , ]e sR Rρ ∈  and 0t > . 

Thus, the initial conditions (7) or equivalently (20), by virtue of (48) and (49), render the 
expressions 

 ( )0 0
1 1/ ln lnd s

e d d
d e e e s

qR RG C f qR
k R k R hR

μ μ

μ

ρμ α α ρ
 

= − + 
 

  for every [ , ]d eR Rρ ∈    (50) 

and 

 0 ( ) lnd d

e s s

qR qRG g
k R hR

μ

μ

ρμρ = −  for every [ , ]e sR Rρ ∈ ,         (51) 

which comprise two relations that, beyond the fact that they contain the ρ -variable for [ , ]d sR Rρ∈ , 

they also depend upon the physical and geometrical characteristics of the system under consideration. 

The last tricky step is to calculate the remaining coefficient 0Gμ  from the dual series conditions (50) 

and (51), where despite their simplicity, special treatment is required according to the following. 
Since we attain two relationships with the same unknown, our first task includes the merging of (50) 
and (51) into a single expression, which means that they can be written as 

 0 ( ) ( )G P pμ

μ

μρ ρ=  for every [ , ] [ , ]d e e sR R R Rρ ∈ ∪  or [ , ]d sR Rρ ∈ ,     (52) 

where 

 ( )0 / , [ , ]
( )

( ), [ , ]
e d d e

e s

C f R R
P

g R R

μ μ α α ρ ρ
μρ

μρ ρ

 ∈= 
∈

            (53) 

and 

 

1 1ln ln , [ , ]
( )

ln , [ , ]

d s
d d e

d e e e s

d d
e s

e s s

qR RqR R R
k R k R hR

p
qR qR R R
k R hR

ρ ρ
ρ

ρ ρ

  
− + ∈  

  = 
 − ∈

          (54) 

that conveniently reduces our problem to that of solving one condition (52) with the single unknown 

coefficient 0Gμ . Our second task is now to eliminate the ρ -variable from (52) and towards this 

direction we multiply relationship (52) by 0 ( )J dμ ρ ρ ρ′  and we integrate overall from dR  to sR  in 

an appropriate manner, based on integration either from dR  to eR  or from eR  to sR , according to 

(53) and (54). During this procedure, we observe that functions (42) and (43), which appear on the 

left-hand side of (52), due to definition (53), involve the zeroth-order Bessel functions 0J  and 
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Neumann functions 0N , which are defined both for the same and for different arguments. Hence, it 

is apparent that we need to analytically calculate the definite integrals 

 ( ), 0 0( ) /
e

d

R

e d

R

P J J dμ μ μ ρ μ α α ρ ρ ρ′ ′≡   

( ) ( )0 1 1 0

2 2

/ ( ) / ( ) /

( / )
e d e e d e e e d e

e
e d

J R J R J R J R
R

μ α α μ μ α α μ μ μ α α

α α μ μ

′ ′ ′−
=

′−
 

( ) ( )0 1 1 0

2 2

/ ( ) / ( ) /

( / )
e d d e d d d e d d

d
e d

J R J R J R J R
R

μ α α μ μ α α μ μ μ α α

α α μ μ

′ ′ ′−
−

′−
,       (55) 

 ( ), 0 0( ) /
e

d

R

e d

R

Q J N dμ μ μ ρ μ α α ρ ρ ρ′ ′≡   

 
( ) ( )0 1 1 0

2 2

/ ( ) / ( ) /

( / )
e d e e d e e e d e

e
e d

J R N R J R N R
R

μ α α μ μ α α μ μ μ α α

α α μ μ

′ ′ ′−
=

′−
 

( ) ( )0 1 1 0

2 2

/ ( ) / ( ) /

( / )
e d d e d d d e d d

d
e d

J R N R J R N R
R

μ α α μ μ α α μ μ μ α α

α α μ μ

′ ′ ′−
−

′−
       (56) 

for every value of μ , μ′  and 

 0 1 1 0
, 0 0 2 2

( ) ( ) ( ) ( )( ) ( )
s

e

R

s s s s
s

R

J R J R J R J RU J J d Rμ μ
μ μ μ μ μ μμ ρ μρ ρ ρ

μ μ′
′ ′ ′−′≡ =

′−  

 0 1 1 0
2 2

( ) ( ) ( ) ( )e e e e
e

J R J R J R J RR μ μ μ μ μ μ
μ μ

′ ′ ′−−
′−

,                (57) 

 0 1 1 0
, 0 0 2 2

( ) ( ) ( ) ( )( ) ( )
s

e

R

s s s s
s

R

J R N R J R N RV J N d Rμ μ
μ μ μ μ μ μμ ρ μρ ρ ρ

μ μ′
′ ′ ′−′≡ =

′−  

0 1 1 0
2 2

( ) ( ) ( ) ( )e e e e
e

J R N R J R N RR μ μ μ μ μ μ
μ μ

′ ′ ′−−
′−

                (58) 

for μ μ′≠ , while 

   
2 2

2 2 2 2 2
, 0 0 1 0 1( ) ( ) ( ) ( ) ( )

2 2

s

e

R

s e
s s e e

R

R RU J d J R J R J R J Rμ μ μρ ρ ρ μ μ μ μ   ≡ = + − +    ,         (59) 

 [ ]
2

, 0 0 0 0 1 1( ) ( ) ( ) ( ) ( ) ( )
2

s

e

R

s
s s s s

R

RV J N d J R N R J R N Rμ μ μρ μρ ρ ρ μ μ μ μ≡ = +  

 [ ]
2

0 0 1 1( ) ( ) ( ) ( )
2

e
e e e e

R J R N R J R N Rμ μ μ μ− +                   (60) 

when μ μ′= , being given in a convenient fashion. Otherwise, the right-hand side of (52) includes 
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simple logarithmic and constant functions, due to definition (54), consequently, we need to evaluate 
the trivial formulae 

 1
0 1 1

( ) 1 1ln ( ) ln ( )ln ( )
e e ee

dd d d

R R RR

e e e RR R R

JdX J d d J J d
R R d Rμ

ρ μ ρρ ρ ρμ ρ ρ ρ ρ ρ μ ρ μ ρ ρ
ρ μ μ μ′

 ′ ′ ′ ′≡ = = −  ′ ′ ′       

 1 1 12
1 1( ) ln ( ) ln ( ) ( )

e

d

R

e d
e e d d

e e R

R RR J R R J R J d
R R

μ

μ

μ μ μ ρ μ ρ
μ μ

′

′

 ′ ′ ′ ′= − − ′ ′    

[ ]0 0 12
1 ( ) ( ) ( ) ln e

e d d d
d

RJ R J R R J R
R

μ μ μ μ
μ

 ′ ′ ′ ′= − + ′  
                 (61) 

and, similarly, 

 [ ]0 0 0 12
1ln ( ) ( ) ( ) ( )ln

s

e

R

s
s e e e

s eR

RY J d J R J R R J R
R Rμ
ρ μ ρ ρ ρ μ μ μ μ

μ′
 ′ ′ ′ ′ ′≡ = − + ′   ,      (62) 

as well as 

 0 0 1 12 2
1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Z J d J d J Jμ

ρρ μ ρ ρ ρ μ ρ μ ρ μ ρ μ ρ μ ρ μ ρ
μ μ μ′ ′ ′ ′ ′ ′ ′ ′≡ = = =

′ ′ ′  ,    (63) 

where the latter is defined for [ , ]d sR Rρ ∈ . In the sequel, the outcomes (55)−(63), whose evaluation 

is mainly based on the use of standard recurrence relations of Bessel functions [23], are readily 

implemented into (52) ( after being multiplied by 0 ( )J dμ ρ ρ ρ′  and integrated with respect to the 

interval [ , ]d sR R ), taking into account (53) and (54) as well, hence, we obtain straightforwardly 

 ( ), ,
0 0 0 0 0u v G x yμ μ μ μ μ μ μ

μ

′ ′ ′ ′+ = +  for every μ′∈ ,          (64) 

wherein 

 ( ) ( )
, ,,

0 0
1 1/ /e d d e d d

P Q
u C

J R N R
μ μ μ μμ μ μ

μ α α μ α α
′ ′′

 
 ≡ −
 
 

,           (65) 

 0
1 1ln ( ) ( )d s

d e d
d e e s

qR Rx X qR Z R Z R
k k R hR

μ
μ μ μ

′
′ ′ ′

 
 ≡ − + −   

 
         (66) 

and 

 [ ] [ ]
, ,,

0
0 1 0 1( ) ( ) ( ) ( )s e s s e s

U V
v

hJ R k J R hN R k N R
μ μ μ μμ μ

μ μ μ μ μ μ
′ ′′ ≡ −

− −
,        (67) 

 0 ( ) ( )d d
s e

e s

qR qRy Y Z R Z R
k hR

μ
μ μ μ

′
′ ′ ′ ≡ − −               (68) 

with ,μ μ′∈ . Here, we observe that in order to manipulate condition (64), we are obliged to set the 
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parameter μ  so as to obtain discrete values, that is 0,mμ μ≡  for every 1m ≥  (similarly 0,mμ μ ′′ ≡  

with 1m′ ≥ ), whereas the zeroth order of the Bessel functions is readily implied to the notation. Then, 
the aforementioned series-integral symbolism becomes now a series, due to the eigenvalue property 

of parameter μ , thus 
1mμ

+∞

=

→    , and therein our analysis is restricted to a classical infinite 

series semi-analytical solution. 
Under this aim, we recapitulate for convenience our findings in the present analysis, hence the 

temperature distributions within the dielectric tube and the electrode that come from expressions (48) 
and (49), admit 

 ( ) 2
0 0 0, 0,

1

( , ) ln ln / exp( )m md d s d
d m e d e m

d e e e s m

qR k R kT t T G C f t
k R k R hR

ρρ μ α α ρ α μ
+∞

∞
=

 
= − − − + − 

 
    (69) 

for every [ , ]d eR Rρ ∈  and 0t ≥ , while 

 2
0 0, 0,

1

( , ) ln ( )exp( )md e
e m e m

e s s m

qR kT t T G g t
k R hR

ρρ μ ρ α μ
+∞

∞
=

 
= − − + − 

 
         (70) 

for every [ , ]e sR Rρ ∈  and 0t ≥ , where formulae (42) and (43) become 

 ( ) ( )
( )

( )
( )

0 0, 0 0,
0,

1 0, 1 0,

/ /
/

/ /
m e d m e d

m e d
m e d d m e d d

J N
f

J R N R

μ α α ρ μ α α ρ
μ α α ρ

μ α α μ α α
= −         (71) 

and 

 0 0, 0 0,
0,

0 0, 0, 1 0, 0 0, 0, 1 0,

( ) ( )
( )

( ) ( ) ( ) ( )
m m

m
m s e m m s m s e m m s

J N
g

hJ R k J R hN R k N R
μ ρ μ ρ

μ ρ
μ μ μ μ μ μ

= −
   − −   

     (72) 

for 1m ≥ , while 0
mC  and 0,mμ  are the solutions of the two transcendental relationships (45), which 

provide us with 

 ( )
0,

0
0,

( )

/
m em

m e d e

g R
C

f R

μ
μ α α

=  and 
( )
( )

0, 0,

0,0,

/ ( )
( )/

m e d e m ee d

d e m em e d e

f R g Rk
k g Rf R

μ α α μα
α μμ α α

′ ′
=  for 1m ≥ ,   (73) 

wherein 0
mC  for 1m ≥  is obtained analytically from the left-hand side of (73), while the evaluation 

of 0,mμ  for 1m ≥  is subject to further numerical handling (see in the sequel for a more detailed and 

accurate explanation on that matter), as it is revealed from the right-hand side of the set of 

relationships (73). Otherwise, 0
mG  for 1m ≥  can be evaluated as the outcome of the infinite system 

of linear algebraic equations 

 ( ), ,
0 0 0 0 0

1

m m m m m m m

m

u v G x y
+∞

′ ′ ′ ′

=

+ = +  for every 1m′ ≥ ,           (74) 



18358 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18345−18367. 

resulting from relation (64) with formulae (65)−(68) and (55)−(63), in which the involved 
mathematical quantities assume the following complicated, yet handy, expressions in terms of the 
geometrical and physical parameters of the system, i.e., 

 [ ]0
1 1ln ( ) ( )m d s

m d m e m d
d e e s

qR Rx X qR Z R Z R
k k R hR

′
′ ′ ′

 
= − + − 

 
 

 0 0, 0 0, 0, 1 0,2
0,

1 ( ) ( ) ( ) lnd e
m e m d m d m d

d m d

qR RJ R J R R J R
k R

μ μ μ μ
μ ′ ′ ′ ′

′

 
 = − +  
 

 

1 0, 1 0,
0,

1 1ln ( ) ( )d s
e m e d m d

m e e s

qR R R J R R J R
k R hR

μ μ
μ ′ ′

′

 
 − + −   

 
 for 1m′ ≥               (75) 

and 

 [ ]0 ( ) ( )m d d
m m s m e

e s

qR qRy Y Z R Z R
k hR

′
′ ′ ′= − −  

 0 0, 0 0, 0, 1 0,2
0,

1 ( ) ( ) ( ) lnd s
m s m e m e m e

e m e

qR RJ R J R R J R
k R

μ μ μ μ
μ ′ ′ ′ ′

′

 
 = − +  
 

 

   1 0, 1 0,
0,

( ) ( )d
s m s e m e

m s

qR R J R R J R
hR

μ μ
μ ′ ′

′

 − −   for 1m′ ≥ ,             (76) 

while 

( ) ( )
, ,,

0 0
1 0, 1 0,/ /

m m m mm m m

m e d d m e d d

P Q
u C

J R N Rμ α α μ α α
′ ′′

 
 = −
 
 

,           (77) 

, ,,
0

0 0, 0, 1 0, 0 0, 0, 1 0,( ) ( ) ( ) ( )
m m m mm m

m s e m m s m s e m m s

U V
v

hJ R k J R hN R k N Rμ μ μ μ μ μ
′ ′′ = −

   − −   
       (78) 

with 

 
( ) ( )0, 0 0, 1 0, 0, 1 0, 0 0,

, 2 2
0, 0,

/ ( ) / ( ) /

( / )
m e d m e m e d e m m e m e d e

m m e
e d m m

J R J R J R J R
P R

μ α α μ μ α α μ μ μ α α

α α μ μ
′ ′ ′

′
′

−
=

−
 

 
( ) ( )0, 0 0, 1 0, 0, 1 0, 0 0,

2 2
0, 0,

/ ( ) / ( ) /

( / )
m e d m d m e d d m m d m e d d

d
e d m m

J R J R J R J R
R

μ α α μ μ α α μ μ μ α α

α α μ μ
′ ′ ′

′

−
−

−
,      (79) 

 
( ) ( )0, 0 0, 1 0, 0, 1 0, 0 0,

, 2 2
0, 0,

/ ( ) / ( ) /

( / )
m e d m e m e d e m m e m e d e

m m e
e d m m

J R N R J R N R
Q R

μ α α μ μ α α μ μ μ α α

α α μ μ
′ ′ ′

′
′

−
=

−
 

   
( ) ( )0, 0 0, 1 0, 0, 1 0, 0 0,

2 2
0, 0,

/ ( ) / ( ) /

( / )
m e d m d m e d d m m d m e d d

d
e d m m

J R N R J R N R
R

μ α α μ μ α α μ μ μ α α

α α μ μ
′ ′ ′

′

−
−

−
        (80) 

and 
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0, 0 0, 1 0, 0, 1 0, 0 0,
, 2 2

0, 0,

( ) ( ) ( ) ( )m m s m s m m s m s
m m s

m m

J R J R J R J R
U R

μ μ μ μ μ μ
μ μ

′ ′ ′
′

′

−
=

−
 

 0, 0 0, 1 0, 0, 1 0, 0 0,
2 2
0, 0,

( ) ( ) ( ) ( )m m e m e m m e m e
e

m m

J R J R J R J R
R

μ μ μ μ μ μ
μ μ

′ ′ ′

′

−
−

−
,               (81) 

0, 0 0, 1 0, 0, 1 0, 0 0,
, 2 2

0, 0,

( ) ( ) ( ) ( )m m s m s m m s m s
m m s

m m

J R N R J R N R
V R

μ μ μ μ μ μ
μ μ

′ ′ ′
′

′

−
=

−
 

  0, 0 0, 1 0, 0, 1 0, 0 0,
2 2
0, 0,

( ) ( ) ( ) ( )m m e m e m m e m e
e

m m

J R N R J R N R
R

μ μ μ μ μ μ
μ μ

′ ′ ′

′

−
−

−
             (82) 

for m m′≠ , whilst 

   
2 2

2 2 2 2
, 0 0, 1 0, 0 0, 1 0,( ) ( ) ( ) ( )

2 2
s e

m m m s m s m e m e
R RU J R J R J R J Rμ μ μ μ   = + − +    ,          (83) 

2

, 0 0, 0 0, 1 0, 1 0,( ) ( ) ( ) ( )
2

s
m m m s m s m s m s

RV J R N R J R N Rμ μ μ μ = +   

   
2

0 0, 0 0, 1 0, 1 0,( ) ( ) ( ) ( )
2

e
m e m e m e m e

R J R N R J R N Rμ μ μ μ − +               (84) 

for m m′= , all above provided for every , 1m m′ ≥ . 
This sequence of systems of equations (74) with (75)−(84) appears often in problems of 

mathematical physics and our effort is then limited in developing a solution, derived from a partial 
differential equation problem with mixed boundaries. To this end, we introduce an idea, based on 
usual cut-off techniques in order to solve infinite linear systems. According to this methodology, we 
truncate the series (74) by the imposition of an indispensable upper limit M ∗∈ , so as the series 

become finite, due to the fact that we may write 
1 1

M

m m

+∞

= =

→   , and facilitate the procedure. 

Thereafter, (74) reduces to a finite algebraic linear system of equations if we force the number of the 

incorporated equations to be finite as well, that is 1,2,...,m M′ ′= , wherein M ∗′∈ . This system 

becomes quadrature only if M M L ∗′= ≡ ∈  and once done, it is rewritten in matrix form as 

 =x b , where , ,
0 0
m m m mu v′ ′

 
 = + 
  

  
 
  

 , 0
mG

 
 =  
  

x



 and 0 0

m mx y′ ′
 
 = + 
  

b



,     (85) 

in which , 1,2,...,m m L′ = , while   is the squared-type invertible matrix of the coefficients of the 
unknowns, x  is the vector of the unknown coefficients and the b  is vector of the known constants. 
Thus, each time we repetitively solve quadrature systems numerically for increasing L  and the 

standard cut-off is applied in order to decide the truncation amplitude maxL , for which the number of 

the evaluated constant coefficients are sufficient to obtain the expected accuracy in order for the 
series to converge. The solution of the system (85) yields the sought coefficients x , i.e., the 

unknown constant coefficients 0
mG  for every max1,2,...,m L= . 
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The final solution of the problem is eventually achieved via the temperature functions (69) and 
(70), followed by the conveniently chosen functions (71) and (72), in which the constant coefficients 

0
mC  and 0,mμ  for max1,2,...,m L=  are the solutions of relationships (73), while the set of constants 

0
mG  for max1,2,...,m L=  that satisfies the easily amenable infinite set of linear relationships (74) with 

(75)−(84), are given by (85), i.e., 1−=x b , when the incorporated inverse matrix 1−  is given. 

Under the aim of presenting a compact expression for the temperature field, we utilize the definition 

of the Heaviside step function ( ) 1H x =  for 0x ≥ , otherwise zero, and we incorporate fields (69) 

and (70) into 

 ( , ) ( ) ( , ) [ ( ) ( )] ( , )e d s e eT t H R T t H R H R T tρ ρ ρ ρ ρ ρ= − + − − −  for [ , ]d sR Rρ ∈  and 0t ≥ ,  (86) 

which provides the temperature in both the dielectric tube and the external electrode in a handy 
analytical fashion. Therefore, the value of the temperature on the outer cover of the electrode for 

sRρ = , being of our main concern, is provided theoretically according to (86) and (70) (or from (70) 

directly) as 

 2
0 0, 0,

1

( ) ( )exp( )md
s m s e m

s m

qRT t T G g R t
hR

μ α μ
+∞

∞
=

= + + − ,           (87) 

where ( ) ( , )s e sT t T R t≡  for any 0t ≥ , while in practice the upper infinite limit of the series (87) must 

be truncated to maxL  for engineering applications. 

In order to demonstrate the above analysis, we devote the rest of the analysis to the numerical 
implementation and validation of the obtained analytical expressions for the temperature distribution 
in the domains of interest, i.e., within the dielectric tube and the external electrode. Towards this 
direction, we provide specific indicative values of the involved physical parameters and properties, 
appearing during our analysis [22]. To this end, we consider a representative value for the heat 

conduction 21862 m4 Wq −=  in plasma jets and 2 113.2 Wm Kh − −=  for such systems, while we have 

1 130Wm Kdk − −=  and 1 1110 Wm Kek − −= , wherein we directl calculate ,
6 2 1/ 9.9 10 m sd d d p da k cρ − −×= =  

and ,
5 2 13.3/ 10 m se e e p ea k cρ − −×= = , since it is 33800 kgmdρ −= , 38600 kgmeρ −=  and 

1 1
, J kg K800p dc − −= , 1 1

, 388J kg Kp ec − −= , respectively for each case and the geometrical characteristics 

of the system yield 45.7 10 mdR −×= , 31.25 10 meR −= ×  and 35 10 msR −= × . Note that these values 

assume units in K  for the temperature, however our plots use the corresponding units in o C . Given 
these representative values, we initially have to numerically solve the right-hand-side of (73) so as to 

find the proper values of 0,mμ  for 1m ≥  that force the new-defined function 
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( )
( )

/ ( )( )
( )/

e d e d

d ee d

f x k g xh x
k g xf x

α α α
αα α

′ ′
= −  with 0,m ex Rμ=  for 1m ≥        (88) 

to become zero, i.e., ( ) 0h x = . To ensure that all the roots were computed, the sign of the equation 

was checked at every interval between two consecutive roots. It was found that the roots do not 
follow a specific pattern, so it was necessary to use very small steps in the control procedure. These 
roots are given in Figure 2, hence we have solved the equivalent relationship of the second equation 

in (73) for the evaluation of 0,mμ , 1m ≥ . 

 

Figure 2. Visualization of the transcendental function ( )h x  with 0,m ex Rμ=  for 1m ≥  

behavior for the lowest values of the wavenumber. The function roots are marked with 
blue circles. 

Having found the roots 0,mμ  for 1m ≥ , it is necessary to calculate the terms (75)−(84), which 

are necessary for computing the linear system of algebraic equations (85). For different values of  
m  and m′  the procedure was straightforward in (75)−(82), while for the diagonal elements, where 
m m′= , it is obvious that we have to refer to relations (83) and (84). The resulting coefficients for the 
system (85) are obtained via the application of the cut-off method. Thereafter, the temperature 
distribution T  in the dielectric tube and the external electrode follows from relationship (86), 
wherein its variation with respect to time t  at the middle thickness of the dielectric tube 

( ) / 2d eR R+  and the external electrode ( ) / 2e sR R+ , as well as with respect to the radius ρ  of the 

system at 3000s , which is approximately steady state, is implemented and depicted in Figure 3 and 
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Figure 4, respectively. Obviously, the derivation of the temperature refers to the transient heat 
transfer problem, as shown in Figure 3, even though the verification in Figure 4 was for steady 
temperature. The results of the finalized semi-analytical solution have been compared against 
numerical simulations carried out using the Finite Integration Technique (FIT). FIT is a grid-based 
method very similar to the Finite Difference in Time Domain (FDTD), originally introduced for the 
solution of the Maxwell equations, using a system of staggered orthogonal grids [27] and which has 
been extended to acoustics, elastodynamics (the extension is known as Elastodynamics Finite 
Integration Technique (EFIT)) [28], as well as to heat equation problems [29]. We indicate that for 
numerical convenience purposes the temperature T  has been re-gauged so as the initial temperature 

of the system is o0 C  instead of room temperature. 

 

Figure 3. Temperature transients T  as function of time t  at the middle thickness of 
the dielectric tube (left) and the external electrode (right), using the analytical solution 
(solid line) and the Finite Integration Technique (FIT) (dash line). 

The analytical solution computations are performed in two steps. The first (and most tedious one) 
concerns the calculation of the eigenvalues. For the (non-optimized) root finding algorithm used in 

the present implementation, this time was 17s . The second step comprises the inversion of the 

system matrix for the estimation of the development coefficients and the evaluation of the series. The 

computation time for this second part has been counted to 80ms . These computational times have to 

be compared with the respective ones required for the numerical solution of the problem. Since we 
are dealing with a diffusion problem in the time domain, the considered time window has to be 
sampled and the discrete linear system of equation obtained by the application of the method’s grid 
(either using FIT or FEM) must be inverted at each time instance (implicit formulation). For the 

specific example examined here, the total computational time reached is 4s . Clearly, there is a 

computational overhead when we need to evaluate the eigenvalues of the analytical solution. This 
calculation however has to be carried out only once, independently from the excitation signal. Every 
other evaluation is of the order of ms , whereas the numerical solution has to be re-run for each new 
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excitation. The gain in performance increases dramatically when moving at higher dimensions, the 
cost, however, that one has to pay is that the analytical solution becomes cumbersome. 

 

Figure 4. Temperature distribution T  as function of the radius ρ  at the steady state, 

using the analytical solution (solid line) and the Finite Integration Technique (FIT) (dash 
line). 

At this stage, we provide the necessary discussion about the relative errors during our 
methodology. There are three sources of error that enter in the computation of the analytical solution, 
i.e., the error of the eigenvalue calculation, the numerical evaluation of the special functions and the 
truncation of the development series. The first one is controlled by the numerical solution of the 
transcendental equation (88), which is determined by the method threshold and the round-off error. 
The evaluation error of the special (Bessel) functions is determined by the specific numerical 
implementation of the computational platform (in our case Matlab) to which one usually has little 
control, unless dedicated implementations are used. With higher orders, overflows occur; therefore, 
in our implementation, the Bessel functions are always evaluated in form of ratios. The function 
evaluation error can be assumed having negligible impact to the results. The third one (number of 
series term taken into account) is the one with the strongest impact to the solution precision. There is 
a trade-off between precision and efficiency and one has to resort to numerical experimentation in 
order to pick-up the optimal number. In addition, care must be taken with higher-order terms, since 
the root finding algorithm becomes less accurate due to overflows (despite the normalization of the 
Bessel functions). Taking all these factors into consideration and after numerical experimentation, we 
have concluded that a number of 36 terms gives the most satisfactory results in terms of the 
computational time and precision. Concerning the issue of error variation as function of the position 
raised, one can expect that it may be higher at the interfaces, where the continuity is imposed by 
matching the series terms. 

The analytical solution is compared with results provided by the FIT method for a given test 
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configuration, whose parameters have been carefully chosen in order to represent a realistic case. 
Since the two calculations (analytical and numerical one) are independent and given that the FIT 
computations have been carried out using a generic code, validated for a number of different test 
problems (in fact the FIT solver is part of the CIVA commercial simulation platform), we accept that 
the agreement of the two data sets validates the correctness of the presented solution. It can be seen 
that the calculated initial condition displays a great variation, probably due to the over defined nature 
of the algebraic system. According to the problem formulation and expression (87), the temperature 
on the surface of the electrode as t → +∞  (or large time scaling for applications) converges to the 

temperature o160.84 C , which is the plateau in Figure 3. On the other hand, for 0t =  (initial 

condition), the room temperature is readily recovered from (87), as it is shown in Figure 3. 
The analytical technique presented herein, deals with the 1D three-layer problem of the plasma 

cell, described in Figure 1. It can be easily extended to address finite multilayer configurations with a 
consequent increase, however, of the solution complexity. A basic limitation of the method is that it 
remains applicable to piecewise homogeneous geometries, i.e., material gradients cannot be tackled 
without drastic modifications, such as the introduction of hybrid development bases mixing the 
herein applied Fourier basis with a spatial mesh. 

3. Conclusions and discussion 

The present work was devoted to the presentation of an analytical technique for the 
determination of the temperature in a representative plasma jet reactor. We studied the heat transfer 
process from the plasma area to the outer environment through the solid components of the reactor, 
i.e., the dielectric tube and the grounded electrode. 

The physical problem itself was mathematically formulated with respect to the cylindrical 
geometry, which is employed, since it fits the plasma jet reactor. We separated the area of thermal 
activity into two distinct domains, matching the one on the dielectric tube and the other of the 
external electrode, considering them as coaxial cylinders. Under this aim, we constructed 
appropriately the corresponding initial and boundary value problems in each domain with either 
Dirichlet or Neumann conditions and the solution technique was based on the method of separation 
of variables in the cylindrical coordinate system and the imposition of a particular method of 
asymptotic kernels for the manipulation of the non-homogeneous boundary conditions. The 
time-dependent temperature fields within the tube and the electrode were constructed in terms of 
cylindrical harmonic eigenfunctions and the analytical solution was obtained in view of the 
restriction of rotational symmetry, due to the nature of the boundary conditions. During the analysis, 
all the implicated unknown constant coefficients were evaluated straightforwardly, except one. For 
this last unknown, we were obliged to solve a pair of dual Fourier-Bessel series relations, which were 
handled simultaneously as a single relationship and led to infinite linear systems for the unknowns 
via integration techniques, involving mostly Bessel and Neumann eigenfunctions among other 
simple functions. These systems were solved with the aim of a repetitive cut-off method until the 
expected accuracy was achieved. 

The efficiency of the analysis was demonstrated by implementing numerically the expressions 
of the final formula, which satisfy the initial and boundary value problem under consideration, while 
a Finite Integration Technique (FIT) was applied for the validation of the methodology. It was shown 
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that the distribution of the temperature behaves as expected, as far as the spatial dependence is 
concerned, while as the time evolves, it converges. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 
article. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. V. Papadimas, C. Doudesis, P. Svarnas, P. K. Papadopoulos, G. P. Vafakos, P. Vafeas, SDBD 
flexible plasma actuator with Ag-Ink electrodes: experimental assessment, Appl. Sci., 11 (2021), 
11930. https://doi.org/10.3390/app112411930 

2. P. Svarnas, E. Giannakopoulos, I. Kalavrouziotis, C. Krontiras, S. Georga, R. S. Pasolari, et al., 
Sanitary effect of FE-DBD cold plasma in ambient air on sewage biosolids, Sci. Total Environ., 
705 (2020), 135940. https://doi.org/10.1016/j.scitotenv.2019.135940 

3. P. Svarnas, A. Spiliopoulou, P. G. Koutsoukos, K. Gazeli, E. D. Anastassiou, Acinetobacter 
baumannii deactivation by means of DBD-Based helium plasma jet, Plasma, 2 (2019), 77−90. 
https://doi.org/10.3390/plasma2020008 

4. K. Pefani-Antimisiari, D. K. Athanasopoulos, A. Marazioti, K. Sklias, M. Rodi, A. L. de Lastic, 
et al., Synergistic effect of cold atmospheric pressure plasma and free or liposomal doxorubicin 
on melanoma cells, Sci. Rep., 11 (2021), 14788. https://doi.org/10.1038/s41598-021-94130-7 

5. K. Gazeli, P. Svarnas, P. Vafeas, P. K. Papadopoulos, A. Gkelios, F. Clément, Investigation on 
streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical 
emission analysis, J. Appl. Phys., 114 (2013), 103304. https://doi.org/10.1063/1.4820570 

6. P. Vafeas, P. K. Papadopoulos, G. P. Vafakos, P. Svarnas, M. Doschoris, Modelling the electric 
field in reactors yielding cold atmospheric-pressure plasma jets, Sci. Rep., 10 (2020), 5694. 
https://doi.org/10.1038/s41598-020-61939-7 

7. P. K. Papadopoulos, P. Vafeas, P. Svarnas, K. Gazeli, P. M. Hatzikonstantinou, A. Gkelios, et 
al., Interpretation of the gas flow field modification induced by guided streamer (‘plasma bullet’) 
propagation, J. Phys. D: Appl. Phys., 47 (2014), 425203. https://doi.org/10.1088/0022-3727/47/ 
42/425203 

8. P. Svarnas, P. K. Papadopoulos, P. Vafeas, A. Gkelios, F. Clément, A. Mavon, Influence of 
atmospheric pressure guided streamers (plasma bullets) on the working gas pattern in air, IEEE 
Trans. Plasma Sci., 42 (2014), 2430−2431. https://doi.org/10.1109/TPS.2014.2322098 

9. D. K. Logothetis, P. K. Papadopoulos, P. Svarnas, P. Vafeas, Numerical simulation of the 
interaction between helium jet flow and an atmospheric-pressure “plasma jet”, Comput. Fluids, 
140 (2016), 11−18. https://doi.org/10.1016/j.compfluid.2016.09.006 



18366 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18345−18367. 

10. P. K. Papadopoulos, D. K. Athanasopoulos, K. Sklias, P. Svarnas, N. Mourousias, K. Vratsinis, 
et al., Generic residual charge based model for the interpretation of the electro-hydrodynamic 
effects in cold atmospheric pressure plasmas, Plasma Sources Sci. Technol., 28 (2019), 065005. 
https://doi.org/10.1088/1361-6595/ab0a3c 

11. P. Svarnas, P. K. Papadopoulos, D. Athanasopoulos, K. Sklias, K. Gazeli, P. Vafeas, Parametric 
study of thermal effects in a capillary dielectric-barrier discharge related to plasma jet 
production: Experiments and numerical modelling, J. Appl. Phys., 124 (2018), 064902. 
https://doi.org/ 10.1063/1.5037141 

12. T. Nozaki, Y. Miyazaki, Y. Unno, K. Okazaki, Energy distribution and heat transfer 
mechanisms in atmospheric pressure non-equilibrium plasmas, J. Phys. D: Appl. Phys., 34 
(2001), 3383−3390. https://doi.org/10.1088/0022-3727/34/23/310 

13. S. Y. Moon, W. A. Choe, Comparative study of rotational temperatures using diatomic OH, O2 
and N2+ molecular spectra emitted from atmospheric plasmas, Spectrochim. Acta, Part B, 58 
(2003), 249−257. https://doi.org/10.1016/S0584-8547(02)00259-8 

14. J. H. Kim, Y. H. Kim, Y. H. Choi, W. Choe, J. J. Choi, Y. S. Hwang, Optical measurements of 
gas temperatures in atmospheric pressure RF cold plasmas, Surf. Coat. Technol., 171 (2003), 
211−215. https://doi.org/10.1016/S0257-8972(03)00273-1 

15. C. Yubero, M. S. Dimitrijević, M. C. García, M. D. Calzada, Using the van der Waals 
broadening of the spectral atomic lines to measure the gas temperature of an argon microwave 
plasma at atmospheric pressure, Spectrochim. Acta, Part B, 62 (2007), 169−176. 
https://doi.org/10.1016/ j.sab.2007.02.008 

16. A. Ionascut-Nedelcescu, C. Carlone, U. Kogelschatz, D. V. Gravelle, M. I. Boulos, Calculation 
of the gas temperature in a throughflow atmospheric pressure dielectric barrier discharge torch 
by spectral line shape analysis, J. Appl. Phys., 103 (2008), 063305. https://doi.org/10.1063/ 
1.2891419 

17. S. Hofmann, A. F. H. van Gessel, T. Verreycken, P. Bruggeman, Power dissipation, gas 
temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma 
jets, Plasma Sources Sci. Technol., 20 (2011), 065010. https://doi.org/10.1088/0963-0252/20/ 
6/065010 

18. Z. S. Chang, G. J. Zhang, X. J. Shao, Z. H. Zhang, Diagnosis of gas temperature, electron 
temperature, and electron density in helium atmospheric pressure plasma jet, Phys. Plasmas, 19 
(2012), 073513. https://doi.org/10.1063/1.4739060 

19. S. J. Doyle, K. G. Xu, Usof thermocouples and argon line broadening for gas temperature 
measurement in a radio frequency atmospheric microplasma jet, Rev. Sci. Instrum., 88 (2017), 
023114. https://doi.org/10.1063/1.4976683 

20. C. Yubero, A. Rodero, M. S. Dimitrijevic, A. Gamero, M. C. García, Gas temperature 
determination in an argon non-thermal plasma at atmospheric pressure from broadenings of 
atomic emission lines, Spectrochim. Acta, Part B, 129 (2017), 14−20. https://doi.org/10.1016/ 
j.sab.2017.01.002 

21. P. Moon, E. Spencer, Field Theory Handbook, Springer-Verlag, Berlin, Heidelberg, 1988. 
https://doi.org/10.1007/978-3-642-83243-7 

22. G. Nellis, S. Klein, Heat Transfer, Cambridge University Press, Cambridge, 2012. 
https://doi.org/10.1017/CBO9780511841606 



18367 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18345−18367. 

23. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing 
Company, New York, 1965. 

24. I. N. Sneddon, R. P. Srivastav, Dual series relations I – Dual relations involving Fourier-Bessel 
series, in Proceedings of the Royal Society of Edinburg, 66 (1963), 150−160. https://doi.org/ 
10.1017/S0080454100007809 

25. T. Theodoulidis, A. Skarlatos, Efficient calculation of transient eddy current response from 
multilayer cylindrical conductive media, Phil. Trans. R. Soc. A, 378 (2020), 20190588. 
https://doi.org/10.1098/rsta.2019.0588 

26. A. Ratsakou, A. Skarlatos, C. Reboud, D. Lesselier, Shape reconstruction of delamination 
defects using thermographic infrared signals based on an enhanced Canny approach, Infrared 
Phys. Technol., 111 (2020), 103527. https://doi.org/10.1016/j.infrared.2020.103527 

27. T. Weiland, Time domain electromagnetic field computation with the finite difference methods, 
Int. J. Numer. Modell. Electron. Networks Devices Fields, 9 (1996), 295−319. https://doi.org/ 
10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 

28. R. Marklein, The finite integration technique as a general tool to compute acoustic, 
electromagnetic, elastodynamic, and coupled wave fields, in Review of Radio Science, (1999), 
201−244. Available from: https://www.researchgate.net/publication/228540772. 

29. A. Ratsakou, C. Reboud, A. Skarlatos, D. Lesselier, Fast models dedicated to simulation of eddy 
current thermography, in Electromagnetic Nondestructive Evaluation (XXI), 43 (2018), 
175−182. https://doi.org/10.3233/978-1-61499-836-5-175 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


