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Fuzzing is a popular software testing method that discovers bugs by massively feeding target applications
with automatically generated inputs. Many state-of-art fuzzers use branch coverage as a feedback metric to
guide the fuzzing process. The fuzzer retains inputs for further mutation only if branch coverage is increased.
However, branch coverage only provides a shallow sampling of program behaviours and hence may discard
interesting inputs to mutate. This work aims at taking advantage of the large body of research over defining
finer-grained code coverage metrics (such as control-flow, data-flow or mutation coverage) and at evaluating
how fuzzing performance is impacted when using these metrics to select interesting inputs for mutation. We
propose to make branch coverage-based fuzzers support most fine-grained coverage metrics out of the box
(i.e., without changing fuzzer internals). We achieve this by making the test objectives defined by these metrics
(such as conditions to activate or mutants to kill) explicit as new branches in the target program. Fuzzing
such a modified target is then equivalent to fuzzing the original target, but the fuzzer will also retain inputs
covering the additional metrics objectives for mutation. In addition, all the fuzzer mechanisms to penetrate
hard-to-cover branches will help covering the additional metrics objectives. We use this approach to evaluate
the impact of supporting two fine-grained coverage metrics (multiple condition coverage and weak mutation)
over the performance of two state-of-the-art fuzzers (AFL++ and QSYM) with the standard LAVA-M and
MAGMA benchmarks. This evaluation suggests that our mechanism for runtime fuzzer guidance, where the
fuzzed code is instrumented with additional branches, is effective and could be leveraged to encode guidance
from human users or static analysers. Our results also show that the impact of fine-grained metrics over
fuzzing performance is hard to predict before fuzzing, and most of the time either neutral or negative. As a
consequence, we do not recommend using them to guide fuzzers, except maybe in some possibly favorable
circumstances yet to investigate, like for limited parts of the code or to complement classical fuzzing campaigns.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Security and
privacy→ Software security engineering.

Additional Key Words and Phrases: fuzzing, code coverage criteria, mutation testing

1 INTRODUCTION

Context. Fuzzing [1] refers to a process of repeatedly running a Program Under Test (PUT) with
automatically generated inputs to trigger faults [2]. The usual motive is to detect bugs as early
as possible, before they cause failures or get exploited as vulnerabilities in production [3]. So
called grey-box fuzzing has gained much attention in recent years. Grey-box fuzzers typically
use a mutation- and coverage-based approach to generate new inputs from the ones generated
before (Section 3). As inputs are being generated, those that cover yet uncovered branches of the
PUT are saved as seeds and randomly mutated (i.e. slightly modified) to generate novel inputs,
possibly exploring even more the newly discovered branches of the PUT. American Fuzzy Lop
(AFL) and its community-maintained successor AFL++ [4, 5] are some of the most used and forked

Authors’ addresses: Wei-Cheng Wu, wwu@isi.edu, Université Paris-Saclay, CEA, List, France and University of Southern
California, USA; Bernard Nongpoh, bernard.nongpoh@gmail.com, Université Paris-Saclay, CEA, List, France; Marwan
Nour, marwan.s.nour@gmail.com, Université Paris-Saclay, CEA, List, France; Michaël Marcozzi, michael.marcozzi@cea.fr,
Université Paris-Saclay, CEA, List, France; Sébastien Bardin, sebastien.bardin@cea.fr, Université Paris-Saclay, CEA, List,
France; Christophe Hauser, hauser@isi.edu, University of Southern California, USA.



1:2 Wei-Cheng Wu, Bernard Nongpoh, Marwan Nour, Michaël Marcozzi, Sébastien Bardin, and Christophe Hauser

tools relying on such an approach. They are reported to have discovered many new CVEs within
a wide range of applications in the recent years. Researchers and practitioners have proposed
various methods to improve the raw input generation process of grey-box fuzzers. Notably, a strong
limitation of raw grey-box fuzzing is that it struggles to cover the branches of the code that are
guarded by difficult conditions, which are only activated by few specific "magic" input values. Two
main solutions have been proposed to overcome this limitation. The first solution involves a form
of taint tracking. For example, in input-to-state correspondence [6], constant values that appear
in branching comparisons are collected and approximately tracked back to the PUT’s inputs, in
order to guide seeds mutations. Input-to-state correspondence has been recently implemented into
AFL++. The second solution is hydrid fuzzing, which combines grey-box fuzzing with a program
analysis called symbolic execution [7]. Symbolic execution has constraint solving capabilities able
to systematically discover the magic input values to enter the difficult branches. These values are
then used as mutation seeds by the grey-box fuzzer to explore the resolved branches. QSYM [8] is
one of the most popular hydrid fuzzing tools proposed so far.

Problem. Branch coverage is a shallow metric to evaluate how well the possible behaviours of
a program are exercised. As a consequence, software testing researchers have defined standard
coverage metrics that are finer-grained than simply counting branches [9] (Section 3), such as
multiple condition coverage or mutation coverage. By making fuzzers more sensitive in retaining
inputs that trigger new behaviours of the program, one may hope that using such fine-grained
metrics for seed selection would make PUT exploration more effective. Yet, these fine-grained
metrics are not used in state-of-the-art fuzzers, which rely solely either on some forms of branch
coverage (also known as edge coverage or decision coverage), or on ad hoc mechanisms [10–12]
for guidance. The fuzzing community has just started to investigate ways to support some specific
finer-grained coverage metrics within specific fuzzers (Section 7) and the general ability of such
metrics to actually improve fuzzing in practice remains unknown.

Goals and challenge. In this work, we intend to challenge the position of branch coverage as the
de facto guidance metric for fuzzing. To do so, we aim at (1) providing an effective and generic
means to support fine-grained coverage metrics in state-of-the-art fuzzers and (2) evaluating the
impact of using such metrics (in addition to branch coverage) over the ability of fuzzers to exercise
the PUT and find bugs in it. A significant challenge to overcome is harnessing the wild variety
of fuzzer implementations and of fine-grained metrics to support. In particular, we do not want
to require digging into the internals of every fuzzer implementation and finding a way to extend
them with ad hoc support for every additional criterion.

Proposal.We propose to make state-of-the-art fuzzers support most fine-grained coverage metrics
out of the box (i.e. without changing their internals), by relying on a dedicated transformation of
the code of the PUT (Sections 2 and 4). We take advantage of the fact that the coverage objectives
defined by most fine-grained coverage metrics (like conditions to activate or mutants to kill) can be
made explicit in the code of the PUT in a generic way [13]. This makes it possible, given a PUT and
a fine-grained coverage metric, to carefully instrument the code of the PUT with new branches
corresponding to the objectives from the metric, without modifying the PUT’s semantics. Covering
one of these branches is then equivalent to covering the corresponding objective from the metric.
Fuzzing such a transformed PUT with any coverage-based fuzzer (relying on branch coverage) is
then equivalent to fuzzing the original PUT, but with the fuzzer also saving for mutation the inputs
that cover additional objectives from the metric. In addition, all the mechanisms implemented by
the fuzzer to penetrate difficult branches (like taint tracking and hybrid fuzzing) will serve for free
to help cover difficult fine-grained objectives. Finally, comparing the performance of the fuzzer on
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the original and transformed PUT makes it possible to measure the impact of using the metric over
the ability of the fuzzer to exercise the PUT and find bugs in it.

Experiments.We chose to realise our proposal using the multiple condition coverage and weak
mutation coverage metrics. These representative fine-grained metrics are known to be stronger
than branch coverage [14–16]. Multiple Condition Coverage can help fuzzing performance by
systematically retaining inputs that trigger subtle variations within the program’s control-flow
logic, not captured by branch coverage. Weak Mutation Coverage can help fuzzing performance by
systematically retaining inputs that would make common programming mistakes in the program
corrupt the program state. We develop a tool that follows our proposal to automatically instrument
C code with the objectives from these two fine-grained coverage metrics (Section 5). We use this tool
to instrument twelve various programs from LAVA-M [17] and MAGMA [18], two standard fuzzing
benchmarks, totalling more than seven hundreds of thousands of lines of code. We repeatedly run
the state-of-the-art AFL++ grey-box fuzzer (with input-to-state correspondence) and QSYM hybrid
fuzzer over the twelve original programs and their transformed versions (Section 6), for a total of
two and a half years of CPU time. We measure and compare the fuzzing performance between the
averaged runs, in terms of fuzzing throughput, covered branches and detected bugs. We also try
and capture how this performance is affected, when carefully selecting which of the fine-grained
objectives are instrumented into the programs, e.g. by using static analysis to prune out beforehand
any infeasible objectives.

Findings. The profitability of a fine-grained coverage metric over a PUT is roughly the difference
between the gain (or penalty) that it provides to fuzzer guidance and the fuzzer slowdown that it
causes by adding more objectives to monitor. Our experiments show that the measured profitability
of the evaluated metrics is hard to predict in advance for a given PUT and most of the time either
neutral or negative in practice. Notably, we have observed a better profitability when the PUT
was loaded with a high density of bugs, while the metric had produced a not too high density of
fine-grained objectives. Indeed, fine-grained coverage objectives enable a denser sampling of the
subtle local differences of behaviour in the code, probably at the expense of a broader coverage of
the complete codebase. As a consequence, they seem good at helping fuzzers clean bug nests (high
bug density), but bad at helping them find a needle in a haystack (low bug density). Moreover, a too
high density of fine-grained objectives added to the PUT appears to reduce the fuzzer’s throughput
enough to worsen the fuzzing results (by making the PUT slower to run and by increasing the
amount of coverage data to process). Yet, concretely, it seems difficult to predict the profitability
of a fine-grained metric over a given PUT before actually fuzzing its instrumented version. As a
consequence, and considering that positive profitability looks infrequent in practice, we do not
recommend fine-grained coverage metrics as a general means to guide fuzzers. We feel that this
recommendation is strengthened by the fact that the faced issues appear similar to those reported
in simultaneous works [19–21] (Section 7), where a state-of-the-art fuzzer is modified to support a
single fine-grained coverage metric. Still, it remains an open question whether such metrics could
be useful in some favorable use cases, like instrumenting only sensitive or fragile parts of the
codebase, or running additional fuzzing campaigns, to complement traditional ones based on branch
coverage. Finally, the performed experiments also suggest that the proposed mechanism to support
additional fuzzing objectives, without modifying the fuzzer but by adding new dedicated branches
in the PUT, is effective. In addition to encode objectives from fine-grained coverage metrics, this
mechanism could be used in other contexts where additional guidance is to be provided to fuzzers
at runtime, like with human directives or bug preconditions computed by static analysers.

Contributions. To sum up, the two main contributions of this paper are:
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(1) An effective mechanism to guide at runtime the behaviour of existing fuzzers based on
branch coverage. This mechanism involves instrumenting the fuzzed code with additional
branches, making the fuzzer keep as seeds the inputs that unlock the conditions crafted
to guard the entrance of these branches. Implementing this approach notably requires a
careful design (which we detail in the paper) of the guarding conditions and branch bodies,
to avoid them either breaking the semantics of the instrumented program, or making the
fuzzer report spurious crashes, or being tampered by the compilation and harnessing of the
program. The proposed instrumentation mechanism can be used to encode objectives from
fine-grained coverage metrics where needed in the fuzzed code, but it has also the potential
to serve as a lingua franca for any additional guidance to be provided to fuzzers at runtime,
like human directives or bug preconditions from static analysers. For any program state
deemed interesting by the guidance but hard to reach by the fuzzer, our approach enables
taking advantage for free from all the means already embedded in fuzzers to enter difficult
branches;

(2) An experimental evaluation of the impact of supporting two representative fine-grained
coverage metrics (multiple condition coverage and weak mutation) over the performance
of a state-of-the-art grey-box and hybrid fuzzer (AFL++ and QSYM), while fuzzing more
than seven hundreds of thousands of lines of code from the standard LAVA-M and MAGMA
benchmarks, for more than two years and a half of CPU time. This evaluation reveals that
the impact of such metrics is hard to predict before fuzzing and most of the time either
neutral or negative. These results suggest thus that fine-grained metrics should not be
used as a general means to guide fuzzers. Yet, they also asks the question of whether such
metrics could be useful in some specific favorable circumstances, like for limited parts of
the codebase or as a complement to classical fuzzing campaigns.

Overall, as the interest in fine-grained coverage metrics is rising in the fuzzing community, we
provide in this work a significant step towards better understanding how these metrics could or
could not be useful in the context of fuzzers.
Artifact. Our open-source tool and experimental infrastructure are available as an artifact1.

void check(int current_temp ,char *data[] ){
if(current_temp >=50) // Bug: should be current_temp >50

{
// Deal with appliance running above the allowed temperature limit
...

// The bug triggers a detectable crash only when current_temp ==50
// and when rare specific values are present in data

}
}

Listing 1. A buggy program checking if an appliance is running above its allowed temperature limit and
taking corrective actions if so.

2 MOTIVATING EXAMPLE
We illustrate now with a simple example how our approach can make state-of-the-art fuzzers
support fine-grained coverage metrics out-of-the-box, by transforming the code of the program
under test. We also exemplify how this approach could end up making coverage-based fuzzers

1https://git.frama-c.com/bnongpoh/cannotate (tool) and https://doi.org/10.5281/zenodo.7133734 (infrastructure)

https://git.frama-c.com/bnongpoh/cannotate
https://doi.org/10.5281/zenodo.7133734


Fine-Grained Coverage-Based Fuzzing 1:5

void check(int current_temp ,char *data[] ){
...
if (current_temp >=50 != current_temp ==50) { } // Exact condition to kill mutant #1
if (current_temp >=50 != current_temp >50) { // Exact condition to kill mutant #2
/* Keeping and mutating inputs entering here helps the fuzzer triggering the crash */ }
if(current_temp >=50) // Bug: should be current_temp >50

{
// Deal with appliance running above the allowed temperature limit
...

// The bug triggers a detectable crash only when current_temp ==50
// and when rare specific values are present in data

}
}

Listing 2. Same program as Listing 1, but with instrumentation for fine-grained fuzzing with the Weak
Mutation criterion (ROR operator).

more efficient at finding bugs, by making them more sensitive in retaining and mutating inputs
that trigger different PUT behaviours.

Our example PUT is the C program presented in Listing 1. It is basically a C function checking
if an appliance is running above its allowed temperature limit and taking corrective actions if so.
We suppose that there is a bug in the conditional checking that the temperature limit is exceeded
(it should be current_temp>50 instead of current_temp>=50), but that this bug only triggers a
program crash (enabling a fuzzer to detect it) when some rare values are provided in the data
argument (requiring the fuzzer to generate many inputs making current_temp equal to 50 to
actually trigger it).
The Weak Mutation Coverage criterion is a fine-grained code coverage metric requiring the

inputs to trigger run-time behaviours that differentiate the PUT from a set of mutant versions of it.
Such mutants are slight syntactic variants of the PUT, built by planting some common patterns of
programming mistakes in it. When an input makes the program execution diverge between the
PUT and one of its mutant, this input is said to cover, or "kill", the mutant. Our approach can make
the exact condition to kill each mutant explicit in the code of the PUT. We illustrate this in Listing
2 by adding two conditional statements, corresponding respectively to killing two of the mutants
produced using a state-of-the-art mutant creation algorithm (Relational Operator Replacement,
a.k.a. ROR, which seeds faults by switching comparison operators). The transformed program can
then be fuzzed using an off-the-shelf coverage-based fuzzer relying on branch coverage. When
this coverage-based fuzzer will produce an input entering the then branch of one of these new
conditionals (and thus killing the corresponding mutant), it will save it for mutation2.

It should be remarked that the second added conditional explicitly forces the fuzzer to maintain
and mutate an input where current_temp is equal to 50 as soon as it generates one. This will
increase the chance for the fuzzer to trigger a crash revealing the bug, making bug detection faster
in average.

3 BACKGROUND
3.1 Coverage-based fuzzing
Grey-box fuzzers typically use a coverage-based feedback mechanism to improve the efficiency
and effectiveness of the input generation process. Figure 1 shows the general working principle

2Note that we use the word "mutation" to refer both to the Mutation code coverage criteria and to the seed mutations
performed by fuzzers. We have kept this ambiguity in the paper to be consistent with the common practice in both the
mutation testing and fuzzing communities.
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of such a grey-box fuzzer. It starts with an initial set of user-provided input seeds; if unavailable,
the fuzzer will construct one [22][23] by itself. Then, the fuzzer mutates these initial seeds and
executes the program under test with the resulting inputs. If the execution exercises new control-
flow edges (a.k.a. code branches), the input is considered as interesting and kept as a seed for
further mutation; otherwise, it is discarded. Usually, the coverage information is monitored using

Fig. 1. General coverage-based grey-box fuzzing process

lightweight program instrumentation and hence does not hinder the program’s execution speed.
This simple technique has proved to be very effective in finding bugs in real-world applications. A
highly popular implementation of a grey-box fuzzer is AFL [4] / AFL++ [5].
Hyrbid fuzzers augment the grey-box fuzzing process with an additional source of seeds. Such

fuzzers indeed use a symbolic execution engine [7] to systematically construct seeds able to
penetrate the branches that the fuzzer has little chance to satisfy, using its random trial-and-error
exploration of the input space (e.g. penetrating if (input == 0xdeadbeef) would require in
average 231 trials). Popular implementations of a hybrid fuzzer are Driller [24] and QSYM [8].

3.2 Code coverage criteria
Code coverage metrics, commonly referred to as code coverage criteria, are a cornerstone of
software testing research. They have been studied for decades in the literature [25] [26] [27], and
are notably used to evaluate the effectiveness of test suites to exercise a piece of software. This
can involve properly testing for functional correctness, security, reliability, or performance. We list
hereafter a few standard classes of coverage criteria and their most common criteria.
Control-flow and call graph criteria.

• Statement Coverage (SC): requires a test suite to reach each statement of the PUT;
• Decision Coverage (DC), similar to branch coverage or edge coverage: requires a test suite to

activate both the true and false path of each decision point in the program under test. This
is similar to covering all the edges in the control-flow graph of the program. Estimating in
some way the number of covered control-flow edges is at the heart of the input generation
heuristics used by coverage-based fuzzers;

• Function Coverage (FC): requires a test suite to reach all function entry-points.
Logic expressions criteria.

• Condition Coverage (CC): requires a test suite to activate both true and false values for
each of the atomic conditions in any program decision point. Here, atomic conditions refer
to the building blocks of logical expressions, which are logical expressions on their own,
but which can also be combined with each others using logical operators (like conjunction,
disjunction or negation), in order to build compound logical expressions;
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• Decision Condition Coverage (DCC): requires a test suite to satisfy both DC and CC;
• Multiple Condition Coverage (MCC): requires a test suite to activate all the combinations of
truth values of all atomic conditions at each decision point in the program.

At this moment, it should be noted that most research works over code coverage criteria implicitly
define coverage w.r.t. the source code of the PUT, written in a high-level programming language. On
the contrary, many fuzzers, like AFL and AFL++, compute (decision) coverage at assembly level, which,
considering common compilation approaches, is close, but not perfectly equivalent, to doing it at source
level. Notably, in the C/C++ programs usually considered in fuzzing research, logical expressions
at decision points often rely on lazy logical operators (&& or ||). Such expressions are usually
compiled into assembly code doing a short-circuiting evaluation of their atomic conditions, which
adds (nested) decisions in the assembly for each of these atomic conditions. When the assembly
includes such additional nested decisions, one can check that AFL’s DC at assembly level is a
stronger criterion than both DC and CC at source level (i.e. a test suite satisfying AFL’s DC at
assembly level will satisfy both DC and CC at source level, while a test suite satisfying either DC
or CC at source level may require additional tests to satisfy AFL’s DC at assembly level). Yet, MCC
at source level remains a stronger criterion than AFL’s DC at assembly level (because a test suite
satisfying AFL’s DC at assembly level may not cover all the possible combinations of atomic truth
values). As a consequence, using (source-level) CC to pilot a fuzzer like AFL should provide only a
limited additional guidance compared to vanilla AFL, while using MCC should be a better guide3.
Mutation criteria. Mutation criteria are derived from the research efforts in mutation testing
[28]. Test objectives consist here of mutants, i.e. slight variants of the program under test, seeded
with common faults. The goal of mutation testing is to help improve the quality of test suites by
checking whether or not they are able to elicit the common programming mistakes that could
be present in the code, i.e. differentiate the PUT from its mutants. We say that an input from a
test suite kills a mutant if it triggers an observable difference between the PUT and the mutant.
If this difference is observable in the internal states of the PUT and mutant around the mutation
points, we say we say that the input weakly kills the mutant. If this this difference is also observable
from outside of the code, as the PUT and the mutant generate different outputs, we say that the
input strongly kills the mutant. From these definitions, one can see that killing a mutant weakly is
necessary to kill it strongly, but that an input killing a mutant weakly may not kill it strongly, if
the divergence between the internal states does not propagate to the outputs. From this, we can
define the strong and weak mutation coverage criteria:

• Weak Mutation coverage (WM): requires a test suite to kill weakly all the created mutants of
the program;

• Strong Mutation coverage (SM): requires a test suite to kill strongly all the created mutants
of the program.

Empirical results indicate that "weak mutation can be applied in a manner that is almost as effective
as [strong] mutation testing, and with significant computational savings" [29].

In order to create a significant set of mutants, seeded with classical faults, for a given PUT, one
should use standard mutant creation operators, like Absolute Value Insertion (ABS), Arithmetic
Operator Replacement (AOR), Conditional Operator Replacement (COR) and Relational Operator
Replacement (ROR) for programs written in simple imperative style.
Data-flow criteria. Data-flow criteria require a test suite to cover a chosen subset of the variable
definition-use pairs in the PUT. For a given variable v in the PUT, a definition-use pair for v couples
a statement setting or modifying the value of v (definition) with a subsequent statement using of

3This is what motivates the fact that MCC will be one of the fine-grained metrics used to guide fuzzers in this work.
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the value of v (use). The definition and the use are linked by a definition-clear path if there exists
at least one control-flow path from the definition to the use such that v is not modified in-between.
An input covers a definition-use pair for v if running the PUT with this input traverses at least once
a definition-clear path linking the pair together. From this, we can define the common dataflow
coverage criteria:

• All definitions coverage (all-def): requires a test suite to cover at least one definition-use pair
for every variable definition in the PUT;

• All uses coverage (all-use): requires a test suite to cover at least one definition-use pair for
every variable use in the PUT;

• All definition-use pairs coverage (all-def-use): requires a test suite to cover all the definition-
use pairs for every variable in the PUT.

About criteria diversity. In addition to the criteria presented hereabove, the scientific literature
describes an even wider range of diverse code coverage criteria, enabling to focus over different
aspects of program behaviour. This variety of criteria also offers a variety of different balances
between test thoroughness and speed. Lightweight criteria (like statement or decision coverage)
favor small but shallow test suites, while heavyweight criteria (like multiple condition or mutation
coverage) favor thorough but large (and thus slower) test suites.
Infeasible coverage objectives. As one might have already noticed, code coverage criteria are
defined in a purely syntactic way and thus totally blind to the semantics of the program under
test. As a consequence, some of the test objectives that they define in the PUT (i.e. truth values
to activate, mutants to kill, definition-use pair to cover) may turn out to be infeasible in practice,
i.e. no input can actually satisfy them. A well-known example of such infeasible test objectives is
equivalent (a.k.a. immortal) mutants, i.e. mutants that are semantically equivalent to the PUT, so
that they cannot be killed by any possible input. Figure 2 illustrates how a mutant built using the
standard (and purely syntactic) AOR operator can turn out to be infeasible in practice.

statement_1;

x=input *1;

statement_3;

statement_1;

x=input /1;

statement_3;

Program Under
Test (PUT)

AOR Mutant

Fig. 2. Equivalent (i.e. immortal/infeasible) mutant created with the AOR operator.

The main issue with infeasible test objectives is that test suite builders often do not knowwhether
they fail to cover some objectives because their test suite is weak, or because these objectives are
infeasible. As a consequence, they may possibly waste a significant amount of their test budget
trying to find additional test inputs to cover objectives that cannot. Several works have tried detect
and prune out as many of such infeasible objectives as possible automatically (the problem is
generally not decidable), mainly by using a static analysis, either from a dedicated analyser [30] or
by diverting those of a standard compiler [31], pruning out up to more than 7% of the objectives as
infeasible.

3.3 Making test objectives explicit with labels
Bardin et al. [13] [32] [33] have proposed a generic mechanism for specifying the test objectives
from many coverage criteria explicitly within the (source) code of the PUT. This mechanism relies
on labels, i.e., predicates attached to program locations. A label is covered by an input if executing
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the program with this input enables reaching the location and satisfying the predicate. Figures 3
and 4 illustrate how the test objectives from the multiple condition and weak mutation coverage
criteria can be made explicit by a corresponding label. Covering the label is then equivalent to
covering its corresponding test objective. While a significant set of coverage criteria can be handled
in this way, the expressive power of labels alone is not sufficient to make the test objectives from
all criteria (e.g. dataflow or strong mutation) explicit. Marcozzi et al. [34] discuss this issue and
extend the expressiveness of labels into hyperlabels, to handle a wider set of coverage criteria.
Alternatively, support for some non-encodable criteria can also be provided with labels, by adding
helper code and variables to the PUT, to be used in the label conditions. This last approach is
illustrated in Figure 5, where the test objectives of the all definition-use pairs data-flow criterion
are made explicit with raw labels, thanks to helper code to monitor definition-clear paths.

statement_1;

if(x==y && a<b)

{...};

statement_3;

→

statement_1;

//l-1: x==y && a<b

//l-2: x!=y && a<b

//l-3: x==y && a>=b

//l-4: x!=y && a>=b

if(x==y && a<b)

{...};

statement_3;

Multiple Condition
Coverage (MCC)

Fig. 3. Encoding MCC test objectives with labels [13].

statement_1;

x=a+b;

statement_3;

statement_1;

x=a*b;

statement_3;

→
statement_1;

//l-1: (a+b)!=(a*b)

x=a+b;

statement_3;

Program Under
Test (PUT)

AOR Mutant Weak Mutation
Coverage (WM)

Fig. 4. Encoding WM test objectives with labels (considering a single mutant created with the AOR operator).

int flag = 0;

if (do_action ()) {

flag = 1;

}

report_error_if_non_zero(flag);

→

int flag = 0;

/* Helper line */ int def_flag_1 = 1;

if (do_action ()) {

//l-1: def_flag_1

flag = 1;

/* Helper line */ def_flag_1 = 0;

}

//l-2: def_flag_1

report_error_if_non_zero(flag);

/* Helper line */ def_flag_1 = 0;

Program Under
Test (PUT)

All Definition-Use
Pairs Coverage
(all-def-use)

Fig. 5. Encoding data-flow test objectives with labels (with helper code to monitor definition-clear paths).
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4 FINE-GRAINED COVERAGE-BASED FUZZING
4.1 General principle
Given the (source) code of a program 𝑃 and a label-encodable code coverage criterion4 𝐶 , our
approach transforms the original program 𝑃 into a semantically equivalent program 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 , so that
fuzzing 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 with a coverage-based fuzzer is the same as fuzzing 𝑃 and keeping the inputs that
increase coverage w.r.t. 𝐶 as additional seeds for subsequent mutations.

In practice, transforming 𝑃 into 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 works as follows. For each label 𝑙 corresponding to one of
the test objectives required by the coverage criterion 𝐶 for 𝑃 (e.g. truth values to activate, mutants
to kill), we add an empty conditional statement 𝐼 at the same location in 𝑃 as 𝑙 and whose entry
condition is 𝑙 ’s predicate. This transformation process is illustrated on a simple code snippet at
Figure 6. When fuzzing 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 , the fuzzer will save as a seed for mutation any input that covers a
previously uncovered code branch. If this branch is the one satisfying the entry condition of 𝐼 , the
fuzzer will basically save as a seed an input covering 𝑙 and its corresponding objective from 𝐶 .

statement_1;

//l-1: x==y && a<b

//l-2: x!=y && a<b

//l-3: x==y && a>=b

//l-4: x!=y && a>=b

if(x==y && a<b)

{...};

statement_3;

→

statement_1;

if (x==y && a<b) {}

if (x!=y && a<b) {}

if (x==y && a>=b) {}

if (x!=y && a>=b) {}

if(x==y && a<b)

{...};

statement_3;

𝑃 with labels for MCC 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 for MCC

Fig. 6. Transforming a program for fine-grained coverage-based fuzzing with MCC criterion [13].

4.2 Handling of expressions with side-effects
Applying our code transformation approach to programs involving expressions with side-effects
may alter the semantics of these programs, in case such expressions end up being part of the
considered label predicates. This is illustrated in Figure 7, where the transformed program would
typically print "abaabaab" instead of just "ab", like in the original program.

statement_1;

//l-1: print("a") && print("b")

//l-2: !print("a") && print("b")

//l-3: print("a") && !print("b")

//l-4: !print("a") && !print("b")

if(print("a") && print("b"))

{...};

statement_3;

→

statement_1;

if (print("a") && print("b")) {}

if (!print("a") && print("b")) {}

if (print("a") && !print("b")) {}

if (!print("a") && !print("b")) {}

if(print("a") && print("b"))

{...};

statement_3;

𝑃 with labels for MCC 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 for MCC

Fig. 7. Naive transformation of a C program containing expressions with side-effects.

To preserve the semantics of 𝑃 under transformation into 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 , we first transform 𝑃 into
a normalised program 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 . 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 is obtained from 𝑃 by extracting the side-effects
4While our approach, as described in the current section, is independent of the chosen code coverage criterion (as long as
it is encodable with labels), our current implementation of this approach, as described and evaluated in the subsequent
sections, provides support only for the MCC and WM criteria.
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from all the expressions affecting the label predicates, without modifying the semantics of 𝑃 . This
normalization process is illustrated in Figure 8 for side-effects appearing in the atomic conditions
of decision points in the program (such conditions are affecting label predicates for many coverage
criteria). Case (a) details the simple situation where the atomic condition with side-effects can be
extracted into a new temporary variable defined just before the decision point. Such an unconditional
extraction is not possible in case the evaluation of the atomic condition can be short-circuited
because of a lazy boolean operator. Case (b) and (c) detail the conditional extraction performed in
this situation, respectively for a lazy && and || operator5.

if (print("a")) {/* then block */}

else {/* else block */}
→

int temp = print("a");

if (temp) {/* then block */}

else {/* else block */}

(a) Side-effect in an atomic condition at a decision point

if (print("a") && print("b")) {/* then block */}

else {/* else block */}
→

int temp_a = print("a");

if (temp_a) {

int temp_b = print("b");

if (temp_b) {/* then block */}

else goto label_1;

} else { label_1: /* else block */}

(b) Side-effect in the operands of a lazy boolean operator (AND case)

if (print("a") || print("b")) {/* then block */}

else {/* else block */}
→

int temp_a = print("a");

if (temp_a) {

goto label_1;

} else {

int temp_b = print("b");

if (temp_b) {label_1: /* then block */}

else {/* else block */}

}

(c) Side-effect in the operands of a lazy boolean operator (OR case)

Fig. 8. Extracting side-effects from atomic conditions at program decision points.

4.3 Preventing label instrumentation from introducing spurious runtime errors
Transforming 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 into 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 adds thus empty conditional statements for all the test ob-
jectives required by the criterion 𝐶 , to a semantically equivalent but normalised version of 𝑃 ,
where expressions with side-effects have been pre-processed. Yet, despite this pre-processing,
instrumenting 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 with the empty conditionals can still alter the semantics of the code, in
case executing these conditionals would trigger crashes on some inputs, while 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 would
run normally on these inputs. This can actually happen quite easily if one instruments the code
naively, and it will cause the fuzzer to report many spurious crashes in the instrumented program.
For example, it is a common programming practice that "dangerous" expressions appearing in
a program, like pointer accesses or number divisions, are guarded by defensive code aimed at
avoiding their evaluation with concrete values leading to a crash (like a null pointer or a zero
divisor). Figure 9 illustrates how naively instrumenting code from 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 containing such
guarded expressions can lead to the dangerous expression being evaluated unguarded within the
instrumentation code, possibly triggering spurious crashes at runtime.
The easiest way to solve this issue is to catch and hide all the runtime errors produced by the

conditional statements added by our instrumentation. This is possible in programming languages
5In this example, we consider the semantics of C where the operands of a lazy boolean operator are evaluated from left
to right. More precisely, if the value of the first operand is sufficient to determine the result of the operation, the second
operand is not evaluated.
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statement_1;

//l-1: pointer ==NULL && !* pointer

//l-2: pointer ==NULL && *pointer

//l-3: pointer !=NULL && !* pointer

//l-4: pointer !=NULL && *pointer

if(pointer !=NULL && *pointer)

{...};

statement_3;

→

statement_1;

if (pointer ==NULL && !* pointer) {/* SegFault */}

if (pointer ==NULL && *pointer) {/* SegFault */}

if (pointer !=NULL && !* pointer) {}

if (pointer !=NULL && *pointer) {}

if(pointer !=NULL && *pointer)

{...};

statement_3;

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 with labels for MCC 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 for MCC

statement_1;

//l-1: (666/ divisor) != (666+ divisor)

//l-2: (666/ divisor) != (666- divisor)

//l-3: (666/ divisor) != (666* divisor)

if(divisor >0 && (number > 666/ divisor ))

{...};

statement_3;

→

statement_1;

if ((666/ divisor) != (666+ divisor )) {/* ZeroDiv */}

if ((666/ divisor) != (666- divisor )) {/* ZeroDiv */}

if ((666/ divisor) != (666* divisor )) {/* ZeroDiv */}

if(divisor >0 && (number > 666/ divisor ))

{...};

statement_3;

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 with labels for WM (AOR operator) 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 for WM AOR

Fig. 9. Naive transformation of programs leading to spurious runtime errors being introduced.

that provide built-in exception management and can be implemented by surrounding the condi-
tionals by try-catch constructs. For languages that do not provide built-in exception management,
like C, the predicates of the conditionals must be analysed statically, to derive a guarding condition
that would prevent any crash during their evaluation. The conditionals are then guarded by this
additional condition. It should be noted that writing a complete algorithm to compute this condition
might be difficult in practice, if the semantics of the considered programming language is complex
and not-fully documented, so that crash-triggering situations can be easily missed6. These two
approaches to instrumenting the code of 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 in a robust way against spurious runtime errors
is illustrated at Figure 10.

// ...

//l-x: (666/ divisor) !=

// (666* divisor)

// ...

if(divisor >0 &&

(number > 666/ divisor ))

{...};

...

try {

if ((666/ divisor) !=

(666* divisor )) {}

} catch (ZeroDiv) {}

...

if(divisor >0 &&

(number > 666/ divisor ))

{...};

...

if (divisor != 0 &&

((666/ divisor)

!= (666* divisor ))) {}

...

if(divisor >0 &&

(number > 666/ divisor ))

{...};

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑

with labels
Robust instrumentation
(with exception handling)

Robust instrumentation
(without exception handling)

Fig. 10. Robust label instrumentation against spurious runtime errors.

4.4 Pruning out infeasible and trivial labels
Running the fuzzer on 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 in the unavoidable presence of empty conditionals encoding infeasible
test objectives should have two negative effects:
6In our implementation of our approach, which targets C programs, we have considered all the common crash-triggering
situations for C that we were aware of. While we cannot exclude to have missed some cases, this has not resulted in
unexplained crashes during the fuzzing campaigns that we have conducted.
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Fig. 11. Fine-grained coverage-based fuzzing workflow

(1) Increase the execution time of the program (and thus reduce the fuzzer’s throughput)
without providing any additional guidance to the fuzzer, as no input will ever enter these
conditionals. (note that a similar issue will also happen with trivial test objectives, which
yield conditionals with an always true condition).

(2) For hybrid fuzzers, the symbolic execution engine will be polluted by these conditionals,
as they add paths with an unsatisfiable path constraint to the PUT, reducing the ability of
symbolic execution to support grey-box fuzzing.

Yet, the static analysis that should be performed to try and prune out these objectives before
fuzzing would eat a part of the fuzzing budget, while the actual impact of their removal on fuzzing
performance is uncertain. As a consequence, we consider an optional step to our approach, where
static analysis is used to remove infeasible (and trivial) labels from 𝑃𝑙𝑎𝑛𝑛𝑜𝑡 before fuzzing (yielding
𝑃𝑝𝑟𝑢𝑛𝑒𝑑 to be fuzzed), and aim at measuring the impact of this step on the overall bug detection
performance, as a part of our experimental evaluation.

4.5 Complete workflow
Figure 11 summarises the complete workflow of our fine-grained coverage-based fuzzing approach.
Note that while we have described the approach in the context of a single coverage criterion 𝐶 ,
test objectives from several criteria 𝐶1, ...,𝐶𝑛 can also be mixed together in practice, in the hope of
combining their guidance powers. After extracting side-effects from expressions able to impact the
label predicates, we add conditionals corresponding to the labels making the criteria explicit. We
use a robust instrumentation hiding the runtime errors that would occur while executing these
conditionals. The transformed PUT is then fuzzed using a classical (decision coverage-based) fuzzer.
The transformation guarantees that this is equivalent to fuzzing the original PUT, but with the
fuzzer also saving for mutation the inputs that cover the additional objectives from the criteria.
As an additional step, static analysis can be used to prune out the conditionals corresponding to
infeasible and trivial objectives from the transformed PUT, before fuzzing it.

5 IMPLEMENTATION
We have implemented our program transformation approach for C programs as passes in the Clang
open-source compiler infrastructure [35]. Our implementation involves recursively traversing the
Abstract Syntax Tree (AST) of our target program using recursive visitors provided by the Clang
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API. Our program normalisation pass transforms the expressions that will subsequently be involved
in the labels from the MCC or WM criteria, in case they contain side-effects (The Clang’s AST
provides the HasSideEffects() primitive to detect them). Our program annotation pass inserts
robust conditional statements for the MCC and WM (ABS, AOR, COR and ROR operators) criteria,
using the Rewriter class provided by the Clang API. The conditionals are made robust by analysing
their predicate and prefixing unsafe operations (like pointer accesses and number divisions) with a
guarding atomic condition (like checking that the pointer is not null and the divisor different from
zero).

We have carefully inspected by hand the assembly code produced after (1) transforming a sample
program with our passes, (2) instrumenting the transformed code with the fuzzer coverage measure-
ment harness and (3) compiling the result with gcc, in order to make sure that our transformation
was compatible with (and thus not tampered) by the harnessing or compilation processes. This
inspection revealed that preventing such tampering requires deactivating aggressive compiler
optimisations and adding the asm volatile (""::: "memory"); statement in the body of the
inserted conditional statements.
Our optional step, where infeasible/trivial conditionals are detected (and pruned out), is imple-

mented by diverting the static analyses of a standard compiler (namely, gcc), in a similar way to
Papadakis et al. [31]. More precisely, for each conditional, we compile the PUT with and without
this conditional added into it. Before running the compiler, we insert a print statement in the
body of the added conditional, so that this conditional cannot be optimised away, except if its
branching condition is always false. The two binaries produced by the compiler are then compared.
If they are identical, it means that the conditional was optimised away and is thus infeasible. Trivial
conditionals can be detected using the same process, but with a negated branching condition.

6 EXPERIMENTAL EVALUATION
6.1 Objectives
We aim at collecting data to answer the following research questions:
RQ1 What is the impact of making the coverage objectives from fine-grained criteria explicit in

the PUT, over the guidance of state-of-the-art grey-box and hybrid fuzzers? More precisely,
how are the fuzzers’ (1) throughput, (2) size of seeds pool, (3) achieved edge coverage and
(4) number of detected bugs in the PUT, affected?

RQ2 Can the measured impact of fine-grained coverage objectives over fuzzer guidance be im-
proved by carefully selecting which of these objectives are made explicit in the PUT, e.g. by
pruning infeasible/trivial coverage objectives out?

6.2 Experimental setup
To collect data to answer our research questions, we use our code transformation tool to add
conditional statements for MCC and WM objectives to the programs of two standard benchmarks
used in fuzzing research, namely LAVA-M [17] and MAGMA [18]. LAVA-M involves small and
single-file C programs, automatically seeded with 2,368 artificial bugs at a very high density (one bug
every six lines of code in average). MAGMA involves large and multi-file C programs (sometimes
to be compiled to a set of several independatant executables)7, manually injected with 116 real
bugs at a low density (one bug every 6k lines of code in average, i.e. three orders of magnitude less

7MAGMA also includes one C++ program, poppler, which we do not consider here, as our instrumentation tool can only
process pure C programs. We have also skipped some of the executables in the openssl (asn1, asn1parse and bignum) and
php (unserialize, parser and json) programs, as the first ones were generating huge amounts of data (>100GB), making our
servers crash, while no bug could be triggered with the second ones, both in our experiments and on the MAGMA website.
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density than in LAVA-M). Both benchmarks provide built-in logging mechanisms, which report
when the bugs are triggered during a fuzzing campaign (with a unique ID per bug to avoid double
counting). Details about all the programs can be found in Table 1.

Table 1. Programs from standard fuzzing benchmarks used to evaluate our approach

Benchmark Principle Program Executables Lines of code Bugs Bug density

LAVA-M

Injecting
artificial bugs

in GNU
coreutils

base64 base64 324 48 1 per 7 loc
uniq uniq 700 29 1 per 24 loc

md5sum md5sum 1,021 57 1 per 18 loc
who who 12,311 2,234 1 per 6 loc

TOTAL 14,356 2,368 1 per 6 loc

MAGMA

Front-porting
fixed bugs to
latest version
of open-source

libraries

lua lua 16,633 4 1 per 4,158 loc
php exif 22,733 16 1 per 1,421 loc

libsndfile sndfile 51,748 18 1 per 2,875 loc
libpng libpng_read 52,200 7 1 per 7,457 loc

libtiff tiff_read_rgba 70,561 14 1 per 5,040, loctiffcp

libxml2 read_memory 151,758 17 1 per 8,927 locxmlint
sqlite3 sqlite3 171,130 20 1 per 8,556 loc

openssl
server

188,442 20 1 per 9,422 locclient
x509

TOTAL 722,205 116 1 per 6,226 loc

We consider six different settings for each executable. The first one is the original executable
(baseline) and the five others are this executable with some of the label-derived conditional statements
added (our approach). More precisely, the second one contains only the conditionals from the MCC
criterion, the third only those fromWM, the fourth both those from MCC and WM, the fifth a select
subset of the MCC conditionals (how this subset is created will be explained in Section 6.5) and the
sixth both those from MCC and WM, but without those deemed infeasible by static analysis.

We fuzz each executable in all settings using the most recent state-of-the-art afl++3.14c grey-box
fuzzer8 and QSYM hybrid fuzzer. Each of the resulting possible configurations, involving a particular
fuzzer over a particular executable in a particular setting, is fuzzed during a 24-hours campaign. To
mitigate the impact of randomness, we run five campaigns for each configuration. This leads to
five 24h runs for 192 configurations, i.e. about two and a half years (23,040 hours) of CPU time,
which were performed (one core per run) on two cloud servers, loaded each with two Intel Xeon
Silver 4214 CPUs, with 377GB of RAM and 12 logical cores per CPU, running at up to 3.2GHz.

6.3 Program instrumentation, build and sanity checks
Instrumenting the LAVA-M andMAGMA benchmark programs to make the MCC andWM coverage
objectives explicit lead to 337,311 conditionals being inserted in the code. Considering that each
conditional represents one additional line of code, the instrumentation increased the size of programs
by 46% on average, varying between one conditional every line of code (in the libxml2 program) and

8All the experiments are performed using AFL++ with the “-m none -c -d” flags on (no memory limit, logging of comparison
operands for clever mutations and skipping deterministic mutation operators). These flags enable AFL++ to deal with
branches guarded by magic bytes comparisons through input-to-state correspondence [6] and thus find bugs in LAVA-M,
which the original AFL fuzzer, extended by AFL++, can barely do.
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one conditional every five lines of code (in the who program). Note that the instrumented program
is aimed at being used during fuzzing campaigns only and not in production. A detailed breakdown
of the conditionals insertion numbers can be found in Table 2. Manual inspection revealed that
the different coding styles of the instrumented programs lead to different densities of coverage
objectives of all types. For example, the huge number of MCC objectives for libxml2 is due to the
common use of "one by one character comparisons in single condition guards" within the libxml2
codebase, e.g.
i f ( ( cur == ' < ' ) && ( nex t == ' ! ' ) && ( c t x t −> input −>cur [ 2 ] == 'D ' ) && ( c t x t −> input −>cur [ 3 ] == 'O ' ) &&

( c t x t −> input −>cur [ 4 ] == 'C ' ) && ( c t x t −> input −>cur [ 5 ] == 'T ' ) && ( c t x t −> input −>cur [ 6 ] == 'Y ' ) &&
( c t x t −> input −>cur [ 7 ] == ' P ' ) && ( c t x t −> input −>cur [ 8 ] == 'E ' ) ) { . . . }

Table 2. Quantity of conditional statements added to the benchmark programs by our tool, to make the
coverage objectives from the MCC and WM (ABS, AOR, COR and ROR operators) criteria explicit.

Program Lines of code Number of added conditionals Program size growth
(1 l.o.c./conditional)

MCC WM Both MCC WM Both
base64 324 16 101 117 +5% +31% +36%
uniq 700 178 122 300 +25% +17% +43%

md5sum 1,021 82 226 308 +8% +22% +30%
who 12,311 134 2,037 2,171 +1% +17% +18%

TOTAL 14,356 410 2,486 2,896 +3% +17% +20%
lua 16,633 968 5,278 6,246 +7% +39% +46%
php 22,733 2,761 4,756 7,517 +12% +21% +33%

libsndfile 51,748 3,454 24,420 27,874 +7% +47% +54%
libpng 52,200 5,412 11,451 16,863 +10% +22% +32%
libtiff 70,561 6,446 28,525 34,971 +10% +40% +50%
libxml2 151,758 89,767 63,478 153,245 +59% +42% +101%
sqlite3 171,130 11,247 28,199 39,446 +7% +16% +23%
openssl 188,442 15,156 33,097 48,253 +8% +18% +26%
TOTAL 722,205 135,211 199,204 334,415 +18% +28% +46%

Code instrumentation slows down the program builds, as instrumentation itself takes time to
complete and the instrumented program is larger to compile. A detailed breakdown of the build
slowdown numbers can be found in Table 3 for the MAGMA programs (all build times for the
LAVA-M programs are less than one second, so that overhead data are not really meaningful). In
total, the instrumentation overhead makes building the MAGMA programs more than seven times
slower. It should be noted that most of the slowdown comes from the preprocessing phase, where we
leverage the clang-tidy tool to format the original code (e.g. adding braces around single-instruction
code blocks in which empty conditionals should be inserted), so that our instrumentation will
not break the C syntax. While not a priority in our proof-of-concept, there remain a lot of room
to optimise our code instrumentation process, in order to make our tool more usable in the wild.
Without code tidying, the build process is "only" more than twice slower.

We sanity check our instrumentation in different ways. We start by we reviewing manually some
hand-picked fragments of the programs to verify that there is no visible issue in the instrumented
source code and in the resulting compiled binary code. Then, we check that the label-derived
conditional statements have not altered the semantics of the programs in two ways. First, we
compare manually the behaviour of original and instrumented programs on a curated set of inputs.
Second, we check that fuzzing the instrumented programs does not trigger any inexplicable crashes
vs. fuzzing the original programs.
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Table 3. Time overhead caused by instrumentation over the program build process for the Magma benchmark
(MCC and WM criteria). Instrumenting a program involves code tidying as a preprocessing step (with clang-
tidy), followed by the side-effect extraction phase and the phase where conditionals for the considered labels
are inserted in the code. Finally, the resulting code can be built using the make command.

Program Build Instrumentation + Build Total overhead
make clang-tidy Side-effects Labels make TOTAL with clang-tidy w/o clang-tidy

lua 5s 98s 3s 3s 8s 112s +2,242% +187%
php 260s 137s 14s 15s 300s 465s +79% +26%

libsndfile 48s 342s 47s 46s 62s 497s +937% +223%
libpng 5s 100s 2s 3s 17s 122s +2,245% +336%
libtiff 25s 368s 7s 9s 48s 431s +1,657% +160%
libxml2 21s 1,183s 8s 17s 211s 1,419s +6,516% +999%
sqlite3 24s 361s 8s 10s 72s 451s +1,768% +272%
openssl 225s 544s 61s 59s 487s 1,150s +411% +170%
TOTAL 613s 3,133s 150s 161s 1,205s 4,649s +658% +147%

6.4 RQ1: impact over fuzzer guidance

Impact on grey-box fuzzing.We run the AFL++ grey-box fuzzer over our sixteen executables
from the LAVA-M and MAGMA benchmark, with and without our instrumentation. Tables 4 and
5 then synthesize the observed impact of adding this instrumentation over the fuzzer’s guidance.
More precisely, the tables detail how the fuzzer’s throughput, number of saved seeds, reached
(edge) coverage9 and number of discovered bugs change when the instrumentation is added, as
well as a quantification of the uncertainty affecting these data due to the randomness of the fuzzing
processes. Interested readers can find even more detailed data in the appendices, including raw
throughput and bugs numbers, as well as plots of bugs, seeds and edge coverage evolution across
time. In the next paragraphs, we analyse the consolidated results from Tables 4+5 in more details.

The three smallest executables from LAVA-M (base64, uniq and md5sum) are probably too simple
to enable a meaningful evaluation of our approach. Indeed, AFL++ quickly saturates over these small
programs (see Figure 13) and always detects all of their bugs (with and without our instrumentation,
see Table 15 in appendix).

For the remaining thirteen executables (who from LAVA-M and all the MAGMA executables), one
can observe that adding our instrumentation always decreases the fuzzer’s throughput, whatever the
coverage criterion (MCC, WM or both). This effect can be explained by the fact that instrumenting
the executable makes it slower to run, as the coverage objectives made explicit must be evaluated
every time their corresponding conditional is reached during a run. This mechanically reduces
the number of runs that the fuzzer can perform per unit of time. In addition, because of the added
conditionals, AFL++’s harness generates more coverage data to be subsequently processed by the
fuzzer, slowing down the fuzzing loop. Plotting throughput vs. increase of program size (Figure
12a) shows that the decrease in fuzzer’s throughput is well correlated with the relative increase
of the PUT’s size, caused by the conditionals added by our instrumentation. Put another way,
the denser the PUT is instrumented with explicit fine-grained coverage objectives, the more the
fuzzer’s throughput is usually reduced.
The effect of adding our instrumentation over the number of seeds saved by the fuzzer seems

more intricate, as both rises and falls are observed from one setting to another. This complex
9We always measure edge coverage w.r.t. the control-flow graph of the original PUT, i.e. without any instrumentation.
When fuzzing instrumented versions of the PUT, we save the generated seeds and then run them over the original PUT, to
measure the resulting edge coverage.
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Table 4. Impact of making MCC andWM coverage objectives explicit in the PUT’s code over AFL++’s average
throughput (average of five runs), total number of saved seeds (average of five runs), total number of covered
edges (average of five runs) and total number of discovered unique bugs (consolidated over five runs). Reported
increase or decrease values are against AFL++ applied on the original PUT.

Executable AFL++ with MCC AFL++ with WM AFL++ with MCC + WM
Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs

base64 +29% +2% +2 — +40% +1% — — -5% +2% +2 —
uniq +16% -5% +7 — -1% +12% +10 — -21% +13% +6 —

md5sum +18% -34% -41 — +3% -31% -41 — +25% -24% -12 —
who -6% +19% +133 +165 -9% +28% +6 +98 -19% +22% -4 -56
lua -8% +6% -65 — -33% +7% -159 — -36% +6% -99 —
exif -21% -19% -41 +1 -12% -5% -13 +1 -27% -25% -98 +1

sndfile -48% +2% -239 — -72% +39% -578 — -64% +48% -373 —
libpng_read -7% +64% -33 -1 -3% +45% -12 — -13% +95% -16 —
tiff_read_rgba -49% -2% -268 -2 -48% +11% -354 -1 -45% +15% -158 -1

tiffcp -49% -9% -653 -2 -52% +18% -512 -2 -44% +18% -543 -2
read_memory -84% +35% -1447 — -63% +8% -556 — -86% +53% -1333 —

xmllint -72% +46% -850 -1 -49% +12% +401 -1 -77% +54% -1059 -1
sqlite3 -19% -7% -2489 — -25% -10% -5297 — -45% -19% -6062 —
server -17% -3% +3 -1 -18% -5% -26 -1 -33% -5% -47 -1
client -17% +2% +16 — -27% — -20 — -42% -1% -27 —
x509 -18% +1% -9 -1 -21% +1% -11 — -24% +1% -13 -1

Table 5. P-values from the Mann–Whitney U test [36] corresponding to data reported in Table 4. In a nutshell,
each p-value can be seen as an estimated probability that the difference (increase in throughput, reduced
number of bugs, etc.) synthesized by the corresponding averaged value in Table 4 would be due to the
randomness of the two compared datasets. The p-values in this table are coloured in green if they are smaller
than 2% (difference has among the highest probabilities to be real), in orange if they are between 2 and 50%
(difference has more probability to be real than caused by randomness) and in red if they are above 50%
(difference has less probability to be real than caused by randomness).

Executable AFL++ with MCC AFL++ with WM AFL++ with MCC + WM
Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs

base64 1 1 0.057 1 0.752 0.752 0.817 1 0.401 0.401 0.057 1
uniq 0.059 0.059 0.058 1 0.011 0.011 0.093 1 0.012 0.012 0.399 1

md5sum 0.012 0.012 0.012 0.723 0.011 0.011 0.012 0.441 0.001 0.001 0.011 0.18
who 0.834 0.834 0.916 0.69 0.059 0.059 0.151 0.151 0.142 0.142 0.916 1
lua 0.69 0.69 0.421 1 0.548 0.548 0.151 0.424 0.841 0.841 0.151 1
exif 0.032 0.032 0.059 0.177 0.841 0.841 1 0.177 0.095 0.095 0.021 0.424

sndfile 0.31 0.031 0.032 1 0.008 0.008 0.008 1 0.008 0.008 0.008 1
libpng_read 0.008 0.008 0.222 0.004 0.008 0.008 0.222 0.424 0.008 0.008 0.053 0.177
tiff_read_rgba 0.69 0.69 0.151 0.18 0.095 0.095 0.095 0.905 0.008 0.008 0.548 0.519

tiffcp 0.016 0.016 0.008 0.017 0.008 0.008 0.016 0.056 0.008 0.008 0.008 0.056
read_memory 0.016 0.016 0.008 0.017 0.008 0.008 0.016 0.056 0.008 0.008 0.008 0.056

xmllint 0.008 0.008 0.008 0.233 0.008 0.008 0.151 0.424 0.008 0.008 0.008 0.233
sqlite3 0.151 0.151 0.016 0.424 0.056 0.056 0.008 0.6 0.008 0.008 0.008 0.233
server 0.841 0.841 0.753 0.424 0.222 0.222 0.222 0.424 0.032 0.032 0.008 0.424
client 0.016 0.016 0.069 1 0.69 0.69 0.042 1 0.095 0.095 0.141 1
x509 0.222 0.222 0.401 0.424 0.69 0.69 0.172 1 0.402 0.402 0.209 0.424
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(a) AFL++ throughput decrease vs increase
of executable size due to added fine-grained
objectives (Magma benchmark).

(b) Change in coverage of executable edges
vs AFL++ throughput decrease (Magma
benchmark).

Fig. 12. Impact of adding fined-grained objectives over AFL++’s throughput and edge coverage.

influence can be mainly explained by a couple of intertwined but opposing forces. Indeed, in the
one hand, instrumenting the program with many conditionals reduces the fuzzer’s throughput,
which means less possibilities to save new seeds in the pool within the same fuzzing budget. In the
other hand, as more conditionals are added in the code by our instrumentation, a higher fraction
of the generated inputs are considered as interesting by the fuzzer and saved as seeds in the pool.
Depending on how these two forces combine during the fuzzer run, the net effect will be either a
rise or fall of the number of saved seeds, compared to fuzzing the program without instrumentation.
Adding our instrumentation also impacts the number of PUT’s edges covered during a fuzzer

run. Most of the time, this impact is negative (i.e. less edges are covered) and quite well correlated
with the decrease in fuzzer’s throughput (Figure 12b). This can be explained by the fact that, as
the fuzzer’s throughput decreases, the fuzzer has less chance to discover new branches within the
same fuzzing budget. Yet, in some rare occasions, adding our instrumentation leads to an increase,
sometimes rather significant, in the number of covered edges. One hypothesis to explain this
phenomenon is that some of the additional inputs saved as seeds thanks to our instrumentation
revealed key to help the fuzzer unlock the doors of new parts of the PUT, which could not be
penetrated when fuzzing without instrumentation.

Finally, our instrumentation has a quite positive impact over the number of unique bugs found
in LAVA-M’s who executable with the WM criterion, with about one hundred new bugs found
and a moderate level of uncertainty due to randomness. On MAGMA, the general trend is that the
impact over bug finding is either zero or slightly negative, except for the exif executable, where one
additional bug is consistently found, whatever the metric, with a moderate level of uncertainty due
to randomness. One way to try and explain this result is by looking at Table 1. One can then notice
that who and exif, the two executables where our instrumentation increases the bug finding power,
are also the ones which have been seeded with the highest density of bugs among their respective
benchmarks. The bug density in who (one bug every six lines of code) is also far higher than in exif
(one bug every 1,421 lines of code), which could explain why 98 new bugs were found in who, while
only one was found exif. Another way to look at the bug finding results is by focusing on how the
number of discovered bugs in who evolves when combining the MCC and WM criteria. Each of the
two criteria taken separately enables finding more bugs than without instrumentation (133 with
MCC, but with a strong uncertainty, and 98 with WM). Yet, instrumenting the program with the
objectives from both criteria together leads to no measurable difference between the number of
discovered bugs with and without instrumentation. One hypothesis to explain this behaviour is
that, in this last setting, as the fuzzer’s throughput gets much more reduced than in the first two,
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it reduces also the chance for the fuzzer to find bugs within the same fuzzing budget. A reduced
fuzzing throughput could also explain why the fuzzer misses some bugs in MAGMA, compared to
fuzzing without instrumentation. To sum up, our approach seems better at helping fuzzers clean
bug nests (high bug density) than at helping them find a needle in a haystack (low bug density). In
addition, as our approach decreases the fuzzer’s throughput, it may end up being counterproductive
and reduce bug finding power if the throughput reduction is too strong.
Impact on hybrid fuzzing.We also run the QSYM hybrid fuzzer over our sixteen executables from
the LAVA-M andMAGMA benchmarks, with and without our instrumentation.We report the results
in a similar way to what we did in the previous section for AFL++, with Tables 6 and 7 synthesizing
the observed impact of adding this instrumentation over the fuzzer’s guidance. The tables details
again how the fuzzer’s throughput, number of saved seeds, reached (edge) coverage and number of
discovered bugs change when the instrumentation is added, as well as the corresponding level of
uncertainty. Interested readers can find again even more detailed data in the appendices, including
raw throughput and bugs numbers, as well as plots of bugs, seeds and edge coverage evolution
across time. In the next paragraphs, we analyse how the consolidated results for AFL++ and QSYM
(Tables 4+5 vs 6+7) compare to each other.

As a preliminary remark, by looking at Tables 14 and 15 in the appendices, one can notice that,
with or without instrumentation, AFL++ is intrinsically better than QSYM at finding bugs both in
LAVA-M and MAGMA. This correlates well with throughput and coverage numbers (Tables 12 and
13, as well as Figures 14 and 17 in appendices), which show that QSYM is twice slower than AFL++
in average and usually ends up covering less edges in the PUT than AFL++ does.
Despite this difference in general performance between the two fuzzers, the impact of our

instrumentation over the behaviour of QSYM is similar to the one over AFL++ in many aspects.
Indeed, most of the time, we also observe with QSYM a drop in fuzzing throughput and reached
edge coverage, as well as a mixed effect on the number of saved seeds. Here again, the number
of discovered bugs rises with the who executable and it stays mostly stable or slightly decreases
with the MAGMA executables. Yet, in some settings, adding our instrumentation provokes a
significant burst in fuzzing throughput, making QSYM more than three times faster than without
instrumentation. While QSYM’s internal dynamics appear intricate, these bursts seem linked to
the fact that our added conditionals result in many over-constrained predicates being produced
by symbolic execution. This over-constraining may make the predicates much easier to solve,
sometimes freeing a lot of additional CPU time from the constraint solving process for the raw
fuzzing process.
Finally, it should be noted that no obvious trend emerges from our results about one criterion

(between MCC, WM and the combination of both) being more efficient at guiding the fuzzers to
find bugs. Yet, this does not necessarily mean that none of the criteria has better bug-revealing
capabilities than the others, but that these capabilities might have been diluted by other effects, like
the decrease in fuzzing throughput, which depends both on the picked criterion and the structure
of the instrumented code (leading to more or less instrumentation being added to the PUT).
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Summary of answer to RQ1 (impact over fuzzer guidance)

Instrumenting the PUT with fine-grained coverage objectives usually leads to a drop in
fuzzing throughput and reached edge coverage, as well as a mixed effect on the number of
saved seeds. As more objectives are made explicit in the PUT, it gets slower and the fuzzing
harness returns more coverage data. This slows down the fuzzing loop and thus lessens the
chances of the fuzzer to cover new edges during the same budget. A slower fuzzing loop
also means less possibilities to save new seeds within the same budget. However, this effect
is counterbalanced as the conditionals added by our instrumentation make a higher fraction
of inputs likely to be saved as seeds by the fuzzer.Our instrumentation can significantly
increase bug finding power in the unlikely and hard-to-predict situation where
the PUT is seeded with a high density of bugs and where the number of objectives
is low enough for not slowing down the fuzzer too much. Yet, most of the time,
the impact over bug finding power of fuzzers is either neutral or negative.While
the hybrid fuzzer has more complex internal dynamics and a worse overall performance,
the impact of our instrumentation appears similar in many aspects between grey-box and
hybrid fuzzing.

6.5 RQ2: impact of carefully selecting coverage objectives

Pruning infeasible/trivial objectives out. We have observed that a high density of fine-grained
coverage objectives made explicit in the PUT decreases the fuzzer’s throughput and consequently
hinders its performance. In this light, the final optional stage of our approach, where infeasible and
trivial objectives are pruned out of the PUT before fuzzing, appears as a welcome means to reduce
the objective density and recover fuzzing performance.

Table 8 summarises the impact of this pruning stage over the performance of AFL++ with both
the MCC and WM objectives over the LAVA-M benchmark. As discussed in the previous section,
the results with the three simplest executables should be looked at prudently. In who, removing
the infeasible and trivial MCC and WM conditionals cuts the throughput penalty by two, but no
measurable improvement in the ability to find bugs was reported. In addition, these changes come
at a very high price, as detecting the infeasible and trivial conditionals for LAVA-M required 22
hours and 43 minutes of analysis. This high cost makes our detection approach impossible to scale
to the MAGMA programs, as it requires building each program once per inserted conditional, which
is intractable in reasonable time for large programs including many conditionals. While using a
dedicated static analysis may improve the scalability and performance of our pruning stage, we
chose to consider a much simpler way to reduce the objective density in the MAGMA programs.
We detail and evaluate this technique in the next subsection.

Discarding subcategories of coverage objectives. A simpler way to reduce the density of
fine-grained objectives in instrumented programs is simply discarding some categories of these
objectives. One can then hope that the remaining ones will still improve the fuzzer’s guidance
without impacting too much its throughput.

To test this technique with the MAGMA benchmark, we have notably limited the generation of
MCC objectives at three atomic conditions per combination, reducing so the total number of added
conditionals by 67%. Table 10 synthesizes the impact of such a discarding of objectives, over the
performance of AFL++ with the MAGMA benchmark. In a nutshell, the fuzzer’s throughput, as
well as the number of covered edges and discovered bugs all tend to increase. Yet, this impact is not
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Table 6. Impact of making MCC andWM coverage objectives explicit in the PUT’s code over QSYM’s average
throughput (average of five runs), total number of saved seeds (average of five runs), total number of covered
edges (average of five runs) and total number of discovered unique bugs (consolidated over five runs). Reported
increase or decrease values are against QSYM applied on the original PUT.

Executable QSYM with MCC QSYM with WM QSYM with MCC + WM
Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs

base64 +115% -2% +6 +1 +52% -6% +6 +2 +135% +1% +5 -1
uniq -25% — +1 -4 -8% — — -3 +33% +7% -22 -2

md5sum -8% +3% +5 +1 +3% +14% -13 +1 +10% +24% -6 +1
who +237% +27% +12 +2 +5% +188% +18 +14 +6% +235% +7 +12
lua +323% +61% -168 +1 +218% -19% -558 — +82% +13% -498 —
exif -15% +21% +83 — -11% +12% -11 — -28% -11% -60 —

sndfile -10% -37% -928 -1 -30% +5% -247 -1 -22% +16% -205 —
libpng_read -92% +58% -71 -1 -24% +43% -40 -1 +67% +121% -12 -1
tiff_read_rgba -63% -43% -1424 -1 -89% -46% -1718 -1 -76% -23% -1123 -1

tiffcp -19% -25% -1202 — -52% -21% -1282 -1 +1% -11% -1614 —
read_memory +169% +60% -406 — -90% -4% -1213 -1 -29% +52% -638 -1

xmllint -57% +25% -916 -1 -64% +15% -408 -1 -66% +66% -518 -1
sqlite3 -40% +8% -366 -1 -6% -20% -2476 — -7% +2% -1753 -1
server +3% +2% +4 — -5% +2% +27 — -20% +3% +23 —
client +102% +2% -18 — +5% +2% -6 — +21% +1% -26 —
x509 +14% -1% -6 +1 +220% +2% +15 +1 +6% +1% +18 —

Table 7. P-values from the Mann–Whitney U test [36] corresponding to data reported in Table 6. In a nutshell,
each p-value can be seen as an estimated probability that the difference (increase in throughput, reduced
number of bugs, etc.) synthesized by the corresponding averaged value in Table 6 would be due to the
randomness of the two compared datasets. The p-values in this table are coloured in green if they are smaller
than 2% (difference has among the highest probabilities to be real), in orange if they are between 2 and 50%
(difference has more probability to be real than caused by randomness) and in red if they are above 50%
(difference has less probability to be real than caused by randomness).

Executable QSYM with MCC QSYM with WM QSYM with MCC + WM
Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs

base64 0.6 0.6 0.011 0.742 0.094 0.094 0.014 0.443 1 1 0.014 0.373
uniq 0.75 0.75 1 0.11 0.672 0.672 1 0.16 0.036 0.036 0.841 0.914

md5sum 0.199 0.199 0.396 0.286 0.02 0.02 0.672 0.911 0.011 0.011 0.675 0.386
who 0.016 0.016 0.402 0.059 0.008 0.008 0.346 0.012 0.008 0.008 0.841 0.016
lua 0.008 0.008 0.295 0.177 0.008 0.008 0.011 1 0.151 0.151 0.012 1
exif 0.008 0.008 0.008 1 0.008 0.008 0.548 1 0.917 0.917 0.249 1

sndfile 0.012 0.012 0.008 0.083 0.094 0.094 0.008 0.403 0.012 0.012 0.008 0.434
libpng_read 0.008 0.008 0.016 0.424 0.008 0.008 1 0.424 0.008 0.008 0.548 0.424
tiff_read_rgba 0.008 0.008 0.008 0.027 0.012 0.012 0.008 0.015 0.008 0.008 0.008 0.015

tiffcp 0.008 0.008 0.008 0.041 0.142 0.142 0.008 0.041 0.151 0.151 0.008 0.403
read_memory 0.008 0.008 0.056 0.177 0.151 0.151 0.008 0.067 0.008 0.008 0.008 0.067

xmllint 0.222 0.222 0.095 0.004 0.032 0.032 0.222 0.004 0.008 0.008 0.032 0.004
sqlite3 0.031 0.31 0.222 0.146 1 1 0.031 0.319 0.548 0.548 0.31 0.07
server 0.059 0.059 0.599 0.27 0.142 0.142 0.036 0.631 0.021 0.021 0.248 0.27
client 0.021 0.0221 0.012 1 0.021 0.021 0.523 1 0.094 0.094 0.012 1
x509 0.6 0.6 0.832 0.424 0.151 0.151 0.598 0.424 0.568 0.548 0.399 1
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Table 8. Impact of pruning infeasible and trivial MCC and WM coverage objectives over AFL++’s average
throughput (average of five runs), total number of saved seeds (average of five runs), total number of covered
edges (average of five runs) and total number of discovered unique bugs (consolidated over five runs). Reported
increase or decrease values are against AFL++ applied on the original PUT.

Executable AFL++ with MCC+WM AFL++ with pruned MCC+WM
Labels Runs/s Seeds Edges Bugs Labels Runs/s Seeds Edges Bugs

base64 117 -5% +2% +2 — 62 +1% -2% +2 —
uniq 300 -21% +13% +6 — 165 -12% -3% +5 —

md5sum 308 +25% -24% -12 — 159 +8% -10% -1 —
who 2,171 -19% +22% -4 -56 150 -10% +18% +3 +96

Table 9. P-values from the Mann–Whitney U test [36] corresponding to data reported in Table 8. In a nutshell,
each p-value can be seen as an estimated probability that the difference (increase in throughput, reduced
number of bugs, etc.) synthesized by the corresponding averaged value in Table 8 would be due to the
randomness of the two compared datasets. The p-values in this table are coloured in green if they are smaller
than 2% (difference has among the highest probabilities to be real), in orange if they are between 2 and 50%
(difference has more probability to be real than caused by randomness) and in red if they are above 50%
(difference has less probability to be real than caused by randomness).

Executable AFL++ with MCC+WM AFL++ with pruned MCC+WM
Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs

base64 0.401 0.401 0.057 1 0.917 0.917 0.743 0.424
uniq 0.012 0.012 0.399 1 0.53 0.53 0.841 0.1

md5sum 0.01 0.01 0.011 0.18 0.173 0.173 0.841 1
who 0.142 0.142 0.916 1 0.008 0.008 0.344 1

strong enough to reverse the tide, as the overall trend is still not as good as using AFL++ without
any instrumentation.

Summary of answer to RQ2 (impact of careful objective selection)

Pruning infeasible/trivial objectives out before fuzzing seems capable of signif-
icantly reducing fuzzer slowdown. Yet, more work is needed to make objective
pruning fast enough and scalable in practice. A simpler way to reduce the density of
fine-grained objectives in instrumented programs is discarding some categories of these
objectives. Our trials with large programs containing a low density of bugs show that this
approach can improve the fuzzing performance, but without making the fuzzer gain the
ability to find more bugs than without instrumentation.
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Table 10. Impact of limiting MCC objectives at three atomic conditions per combination over AFL++’s average
throughput (average of five runs), total number of saved seeds (average of five runs), total number of covered
edges (average of five runs) and total number of discovered unique bugs (consolidated over five runs). Reported
increase or decrease values are against AFL++ applied on the original PUT.

Executable AFL++ with MCC AFL++ with 3-bounded MCC
Labels Runs/s Seeds Edges Bugs Labels Runs/s Seeds Edges Bugs

lua 968 -8% +6% -65 — 952 -5% +4% -100 —
exif 2,761 -21% -19% -41 +1 1,481 +2% +4% +10 +1

sndfile 3,454 -48% +2% -239 — 2,686 +8% +3% -151 —
libpng_read 5,412 -7% +64% -33 -1 1652 +14% +9% +26 —
tiff_read_rgba

6,446
-49% -2% -268 -2

3,758
-16% +7% -89 -1

tiffcp -49% -9% -653 -2 -6% +1% -446 -2
read_memory

89,767
-84% +35% -1447 —

19,959
-20% -4% -197 —

xmllint -72% +46% -850 -1 -16% +5% -122 -1
sqlite3 11,247 -19% -7% -2489 — 7,071 -9% -11% -1854 —
server

15,156
-17% -3% +3 -1

6,516
+10% -1% +16 —

client -17% +2% +16 — +9% +2% -3 —
x509 -18% +1% -9 -1 +31% +3% +3 -1

Table 11. P-values from the Mann–Whitney U test [36] corresponding to data reported in Table 10. In a
nutshell, each p-value can be seen as an estimated probability that the difference (increase in throughput,
reduced number of bugs, etc.) synthesized by the corresponding averaged value in Table 10 would be due to
the randomness of the two compared datasets. The p-values in this table are coloured in green if they are
smaller than 2% (difference has among the highest probabilities to be real), in orange if they are between 2
and 50% (difference has more probability to be real than caused by randomness) and in red if they are above
50% (difference has less probability to be real than caused by randomness).

Executable AFL++ with MCC AFL++ with 3-bounded MCC
Runs/s Seeds Edges Bugs Runs/s Seeds Edges Bugs

lua 0.69 0.69 0.421 1 0.69 0.69 0.31 1
exif 0.032 0.032 0.059 0.177 0.346 0.346 0.209 0.424

sndfile 0.31 0.31 0.032 1 0.222 0.222 0.056 1
libpng_read 0.008 0.008 0.222 0.004 0.094 0.094 0.548 0.177
tiff_read_rgba 0.69 0.69 0.151 0.18 0.032 0.032 0.548 0.905

tiffcp 0.016 0.016 0.008 0.017 0.421 0.421 0.008 0.056
read_memory 0.008 0.008 0.008 0.02 0.151 0.151 0.016 1

xmllint 0.008 0.008 0.008 0.233 0.016 0.016 0.075 0.424
sqlite3 0.151 0.151 0.016 0.424 0.056 0.056 0.016 1
server 0.841 0.841 0.753 0.424 1 1 0.209 1
client 0.016 0.016 0.69 1 0.008 0.008 0.249 1
x509 0.222 0.222 0.401 0.424 0.032 0.032 0.675 0.424
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6.6 Discussion and future work

Summary of performed research. While software testing researchers have defined standard
coverage metrics that are finer-grained than branch coverage, these are not used in state-of-the-art
fuzzers, which rely on branch coverage or ad hoc mechanisms [10–12] for guidance. In this work,
we have challenged this situation. First, we have developed a mechanism for existing fuzzers to
support finer-grained coverage objectives out-of-the-box, by making these objectives explicit as
new branches in the PUT code, while carefully avoiding any impact on the PUT’s semantics. Second,
we have taken advantage of this mechanism to evaluate the impact of guiding state-of-the-art
fuzzers (namely AFL++ and QSYM) with state-of-the-art fine-grained coverage criteria (namely
Multiple Conditions Coverage and Weak Mutation Coverage) over the fuzzing performance.

Main conclusions. The experiments that we have performed for this paper have convinced us
that our mechanism to support additional testing objectives, by adding new branches in the PUT,
seemed effective. We have used it here to encode objectives from fine-grained coverage criteria, but
we believe that it has the potential to become a lingua franca for providing fuzzers with additional
guidance at runtime. It could notably be used to encode human directives about interesting program
states or to make explicit bug preconditions automatically computed by static analysers.

We report an essentially negative impact of guiding fuzzers with fine-grained coverage criteria.
The fine-grained objectives added by our approach had indeed either a zero or a negative profitability
in most of the studied situations. The profitability of a set of fine-grained objectives is the difference
between the gain (or penalty) provided by keeping the seeds that satisfy these objectives and the
overhead caused by the need to monitor and react to their coverage. A positive profitability leads to
an increase in fuzzing performance, while a negative profitability decreases it. Our results indicate
that two of the factors that seem likely to increase profitability are a high bug density coupled with
a low objective density:

• A high bug density improves the gain brought by fine-grained objectives compared to a low
bug density, probably because of the very nature of the guidance provided by fine-grained
criteria. Fine-grained objectives indeed enable a much denser sampling of the subtle local
differences of behaviour in the code, probably at the expense of a broader coverage of the
complete codebase;

• A low objective density reduces the overhead due to fine-grained objectives by limiting the
induced decrease in fuzzing throughput, compared to a high objective density. Objective
density is determined by the chosen coverage criterion and the particular structure of the
PUT code.

As it appears difficult to predict the profitability of a set of fine-grained objectives a priori, before
actually fuzzing the instrumented PUT, and given that positive profitability appears infrequent in
practice, we do not recommend fine-grained coverage criteria as a general means to guide fuzzers.

Future work. We think that additional research would be useful to check whether leveraging
fine-grained criteria could be beneficial in some possibly favorable use cases:

• A first favorable use case could be not to instrument the whole codebase with some explicit
fine-grained objectives, but only small parts of it, like those that are the most sensitive or
that should be the most fragile (e.g. because they have been coded or patched recently).
Such an à la carte instrumentation could avoid penalising the fuzzing speed too much by
adding only a limited number of objectives (low overhead), while still enabling a denser
sampling of sensitive or fragile code behaviours (high gain), resulting possibly in a profitable
instrumentation with fine-grained objectives;
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• A second favorable use case could be running first a classical fuzzing campaign, relying
simply on branch coverage, to explore the code as much as possible at full speed, and then,
if necessary, using the collected seeds for a subsequent finer-grained fuzzing campaign, to
stress more carefully all the discovered branches in the code.

It also remains an open question whether and how much it would be beneficial (1) to use an
improved static pre-identification of polluting [30] and low-profit fine-grained objectives, (2) to
remove the covered fine-grained objectives on-the-fly through binary patching [37], and (3) to
abandon the ability to reuse existing fuzzers out-of-the-box, in order to enable a tighter integration
between test objectives generically encoded with labels and fuzzing algorithms. Providing evidence
of the actual interest (or lack of interest) of these three research trails are other interesting directions
for future work.

6.7 Threats to validity

Threats to internal validity. A first class of threats to the internal validity of our conclusions
arise because the software artifacts that we used, including (1) our toolset to instrument code
with explicit fine-grained coverage objectives, (2) the studied AFL++ and QSYM fuzzers and (3)
our experimental infrastructure to run fuzzing campaigns and collect relevant data, could be
defective. However, we have crosschecked our results in several ways. First, some hand-picked
fragments of the instrumented programs have been manually inspected and verified, in order to
make sure that the code instrumentation process did produce the expected source code and that
the instrumentation was not tampered by compilation to assembly code. Second, the behaviour
of the original and instrumented programs were manually compared on a curated set of inputs,
to make sure that the inserted label-derived conditional statements had not altered the semantics
of the programs. To double-check the proper conservation of program semantics modulo our
instrumentation, we have also taken advantage of the performed massive fuzzing campaigns, to
make sure that the instrumented code did not trigger any inexplicable crashes compared the original
one. Our experimental infrastructure has been tested on small-scale fuzzing campaigns, where
we have checked that it was producing consistent results for a set of significantly different fuzzer
configurations. All these sanity checks succeeded. In addition, the code of our instrumentation
toolset and experimental infrastructure has been reviewed by at least two and up to three different
developers. It has been made available as an open-source artefact for review by the community. At
the heart of our experimental evaluation, AFL++ is a solid, community-maintained and open-source
fuzzer. By September 2022, the project had been starred more than three thousand times on Github
and it was reported to have led to the discovery of dozens of CVEs in various applications. As
an additional fuzzer to support our evaluation, QSYM is probably closer to a research prototype
than an all-weather tool like AFL++. Still, it has been presented at the prestigious USENIX Security
conference, where it won a distinguished paper award. It has also been open-sourced and starred
more than five hundreds times on GitHub, by September 2022. Finally, it is reported to have led to
the discovery of 13 previously unknown vulnerabilities in eight non-trivial programs, including
ffmpeg and OpenJPEG.

A second class of threats to the internal validity of our conclusions is that our fuzzing performance
results might not be significant, due to the highly random nature of the fuzzing processes. However,
we have mitigated this threat by averaging all the collected numbers over five different twenty-four
hours runs of the fuzzer, for a total two and a half years of CPU time dedicated to our experiments.
In addition, we have systematically estimated and reported the uncertainty in our results using a
state-of-the-art statistical hypothesis test.
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Threats to external validity. Common to all empirical studies, this one may be of limited
generalisability. To reduce this threat, we have performed our experiments over twelve various
open-source programs for a total of more than seven hundreds of thousands of lines of code. These
programs exhibit a wide range of sizes, different coding styles (leading to different profiles of
fine-grained coverage objectives) and belong to two state-of-the-art fuzzing benchmarks, involving
either high-density artificial bugs or low-density real bugs. To perform our experiments, we have
considered two state-of-the-art coverage criteria, embodying two of the most common approaches
to derive fine-grained coverage objectives, based either on analysing logical expressions at decision
points or on simulating common faults with mutations operators. The experiments were performed
with two both recent and popular state-of-the-art fuzzers, which implement cutting edge capabilities
either in grey-box or hybrid fuzzing.

7 RELATEDWORK
Several works have considered providing better guidance to fuzzers for selecting seeds that trigger
interesting program behaviours.

Aschermann et al. [38] propose IJON: a human-in-the-loop technique that gives feedback to the
fuzzer. The user first identifies hard-to-cover code and then annotates it with special primitives to
capture the associated program states. The annotation process requires domain knowledge of the
target program and much manual work. Additionally, modifying the fuzzer itself is needed for it
to capture the program states. In contrast, our work aims at using various code coverage criteria
from the software testing literature to guide the fuzzer; in addition, our code annotation is done
automatically and there is no need for any modification of existing fuzzers. It would also be an
interesting future work direction to investigate whether labels could become a lingua franca for
user annotations to guide fuzzers.

Wang et al. [39] study the performance impact of implementing different variants of the branch-
coverage metric within the fuzzer. They also provide a theoretical concept of metric sensitivity
that can be used to compare different coverage metrics. The study shows that no branch coverage
variant surpasses the others. For instance, a more sensitive variant may choose more inputs as
seeds, which results in the fuzzer needing more time to schedule or adequately mutate all of the
seeds; thus, reducing fuzzer throughput. On the other hand, less sensitive variants may choose
fewer inputs as seeds; hence, potentially missing some intriguing ones. To address this problem,
Wang et al [40] proposed AFL-HIER: a fuzzer embedded with a multi-level coverage metric enabling
seed clustering. The key idea is to use finer-grained metrics such as edge coverage for seed selection
and coarser-grained metrics such as block coverage for clustering. Furthermore, the technique
uses a reinforcement learning-based hierarchical scheduler for seed selection. Contrary to these
two works, our method does not alter the fuzzer to handle additional metrics, but it adds branches
encoding the new objectives directly to the tested program, enabling off-the-shelf reuse of any
fuzzer based on branch coverage. In addition, these two works focus either on shallow standard
metrics, like block and branch coverage, or on their own ad-hoc variants of branch coverage,
while our work proposes to leverage the many fine-grained metrics widely studied in the software
testing literature. However, our method does also increase the number of inputs taken as seeds and
thus hampers the performance of the fuzzer for this reason as well. Taking inspiration from the
multi-level approach proposed by Wang et al. to cluster seeds and tame the performance reduction
in our approach is a promising lead for future work.

Ankou [41] proposes to modify the fuzzer to save as seed any input that covers any uncovered
combinations of branches, instead of any uncovered branches alone. In practice, this means that
the fuzzer uses some variant of the path coverage metric, instead of branch coverage. However,
such an exhaustive metric delivers far too much data, resulting in seed explosion (similarly to the
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path explosion occurring in symbolic execution, which is also based on path coverage). Ankou
reduces the amount of data with Principal Component Analysis (PCA) and performs adaptive seed
pool updates to prevent seed explosion. In contrast, our technique enables supporting a wide set of
additional metrics (and not just one) without modifying existing fuzzers. In addition, the metrics
that we currently support are finer-grained than branch coverage but coarser-grained than path
coverage, possibly providing a better compromise between fuzzing precision and seed explosion.

Fioraldi et al. [42] consider to save as seeds any input that violates likely block-level invariants
of the program, collected through a prior dynamic analysis. The technique considers thus a very
different source of information than ours to guide the fuzzer and, again, it requires the modification
of the fuzzer to capture the violations of invariants.

A blog post from 2016 [43] proposes to help fuzzers penetrate blocks guarded by a magic bytes
comparison, through splitting the guard into nested smaller comparisons. While this mechanism
also relies on additional branches in the code to guide the fuzzer, its essence is splitting a hard-to-
penetrate branch into an equivalent sequence of easier-to-penetrate branches. Our approach is
different, in the sense that we consider adding extra branches everywhere needed in the program
to improve the guidance. We use this general mechanism to guide the fuzzer with state-of-the-art
finer-grained coverage metrics and not to help it circumvent magic bytes comparisons.

At the same time or following the initial publication of this pre-registered paper at the FUZZING’22
workshop, six groups of authors [19–21, 44–46] have disclosed their efforts to look at a possible
combination between fuzzing and either mutation or data-flow coverage, which we discuss in the
forthcoming paragraphs. This signals an emerging trend where the fuzzing community try and
take advantage of the existing body of work on fine-grained code-coverage criteria.
Quian et al. [19] run the inputs generated by the fuzzer against a set of mutants of the PUT.

Inputs that (strongly) kill these mutants are given more chance to be selected for further mutation
by (a modified version of) the fuzzer. In the one hand, this paper also uses a fine-grained coverage
metric (together with edge coverage) to guide a fuzzer and the considered metric (strong mutations)
is out of reach of our approach (but we still handle a close and less costly approximation of it: weak
mutations). In the other hand, contrary to this work, our approach can handle a wide set of various
metrics generically and there is no need for any modification of the fuzzer. It is interesting to notice
that the issues faced by the authors of this work and the results that they have obtained can be
related to ours. First, while the used mutation operators produced up to dozens of thousands of
mutants per PUT, only ten mutants had to be considered during each fuzzing campaign to "ensure
the efficiency of fuzzing". Second, the impact on fuzzing performance, measured in terms of branch
and mutation coverage, reveals that strong mutations do not provide a significant and unconditional
advantage against branch coverage alone.
Mantovani et al. [20] modify the instrumentation mechanism of the AFL++ fuzzer to reward

inputs covering new variable definition-use pairs, in addition to control edges. In the one hand,
this paper also uses a fine-grained coverage metric (together with edge coverage) to guide a fuzzer,
and, while the considered metric (a variant of data-flow coverage) is conceptually supported by
our approach (see encoding of data-flow test objectives with labels in Figure 5), this support has
not been evaluated in practice. In the other hand, contrary to this work, our approach handles
a wide set of various metrics generically without modifying the fuzzer. As in our discussion of
Quian et al. in the previous paragraph, it is interesting to notice that the issues and results reported
by Mantovani et al. can also be related to ours. First, solutions had also to be found to reduce the
number of considered additional test objectives, in order to avoid overwhelming the fuzzer and
to reduce the overhead. These solutions involve considering the definition-use pairs only from a
subset of the PUT’s variables, as well as pruning out redundant objectives [30]. Second, the authors
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also report that their technique slows down the fuzzer (by 10-14% in average) and reduces the total
number of edges that it covers. In addition, they report that their technique can discover different
bugs, compared to the original fuzzer, on code with a "data-dependent structure". Yet, such code also
yields a higher density of additional test objectives, which could penalise the fuzzer by "injecting
too much instrumentation".
Concomitantly to the initial publication of this work, two other preliminary reports [21, 45]

about fuzzing and fine-grained coverage criteria were also presented at the FUZZING’22 workshop.
Herrera et al. [21] provide a preliminary evaluation of a data-flow-guided fuzzer. The described
early results suggest that (1) pruning strategies (like considering the definition-use pairs only
from a subset of the PUT’s variables) are required to avoid reducing the fuzzing throughput too
much and (2) edge coverage remains a better metric than data-flow coverage in general, but shows
promises with specific sorts of code. Groce et al. [45] propose to spend half of the fuzzing budget
running the fuzzer on mutants of the PUT, and then to use the produced seeds as initial seeds to
fuzz the PUT itself. The preliminary results suggest that (1) fuzzing each mutant for five minutes
within a 10 hours total fuzzing budget implied that only a tiny subset of the mutants (1-2%) could
actually be fuzzed and (2) the approach seems to improve the bug finding power of the fuzzer on
the fuzzgoat bug-laden program (about 1k lines of code).
Finally, two (non-peer-reviewed) research proposals have recently been made public about

combining mutation coverage and fuzzing. Laybourn et al. [44] propose to use mutation coverage
to augment the coverage feedback of fuzzers, while Gopinath et al. [46] evaluate the challenges of
using mutation coverage to build fuzzing benchmarks.

8 CONCLUSION
In this work, we have taken advantage of the large body of research over fine-grained code coverage
criteria and used these criteria as additional proxies to select interesting inputs for mutation in
coverage-based fuzzers. A noticeable aspect of our approach is that we make coverage-based fuzzers
support most fine-grained coverage criteria out of the box (i.e., without changing their internals).
We have achieved this by making the test objectives defined by these metrics (such as conditions to
activate and mutants to kill) explicit as new branches in the target program. Fuzzing such a modified
target is then equivalent to fuzzing the original target, but the fuzzer will also retain inputs covering
the additional metrics objectives for mutation. In addition, all the fuzzing mechanisms designed
to penetrate hard-to-cover branches will serve to help covering the additional metrics objectives.
We have used this approach to evaluate the impact of supporting two representative fine-grained
coverage metrics (multiple condition coverage and weak mutation) over the performance of a
state-of-the-art grey-box and hybrid fuzzer (AFL++ and QSYM) with the standard LAVA-M and
MAGMA benchmarks. This evaluation has revealed that our guidance mechanism, where the fuzzed
code is instrumented with additional branches, is effective and could possibly be leveraged in other
contexts, like with human directives or bug preconditions from static analysers. However, this
evaluation has also revealed that the impact of fine-grained metrics was hard to predict before
fuzzing and most of the time either neutral or negative, so that we do not recommend using them
as a general means to guide fuzzers. Yet, it remains an open question whether such metrics could
be useful in some specific favorable circumstances, like for limited parts of the codebase or as
a complement to classical fuzzing campaigns. Overall, as the interest in fine-grained coverage
metrics is rising in the fuzzing community, we provide in this work a significant step towards better
understanding how these metrics could or could not be useful in the context of fuzzers.
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DETAILED FUZZING DATA FOR AFL++
This appendix gathers detailed data about the measured impact of making MCC and WM coverage
objectives explicit in the PUT’s code over AFL++’s behaviour. More precisely, it details the observed
impact over the fuzzer’s throughput (Table 12), the number of seeds saved by the fuzzer (Figure 13),
the reached edge coverage (Figure 14) and the number of discovered bugs (Table ?? and Figure 15).

Table 12. Impact of making MCC and WM coverage objectives explicit in the code over AFL++’s throughput
(average of five runs).

Executable
Average fuzzer throughput (PUT executions/second)
AFL++ with MCC with WM with MCC +WM
(baseline) objectives objectives objectives

base64 1.3K 1.7K (+29%) 1.8K (+39%) 1.3K (-)
uniq 1.7K 2.0K (+15%) 1.7K (-1%) 1.4K (-21%)

md5sum 659 777 (+18%) 681 (+3%) 824 (+25%)
who 1.2K 1.1K (-6%) 1.1k (-9%) 951 (-18%)

AVERAGE 1.2K 1.4K (+14%) 1.3K (+8%) 1.1K (-8%)
lua 746 689 (-8%) 502 (-33%) 475 (-36%)
exif 173 137 (-21%) 152 (-12%) 127 (-27%)

sndfile 916 472 (-48%) 256 (-72%) 334 (-64%)
libpng_read 1.2K 1.1K (-7%) 1.2K (-3%) 1.0K (-13%)
tiff_read_rgba 1.6K 832 (-49%) 851 (-48%) 894 (-45%)

tiffcp 1.3K 664 (-49%) 633 (-52%) 740 (-44%)
read_memory 977 159 (-84%) 361 (-63%) 140 (-86%)

xmllint 792 224 (-72%) 403 (-49%) 183 (-77%)
sqlite3 705 569 (-19%) 531 (-25%) 388 (-45%)
server 46.8 38 (-17%) 39 (-17%) 32 (-32%)
client 95 79 (-17%) 69 (-27%) 56 (-42%)
x509 446 365 (-18%) 350 (-21%) 341 (-23.5%)

AVERAGE 750 444 (-41%) 446 (-41%) 392 (-48%)
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Fig. 13. Impact of making MCC and WM coverage objectives explicit in the code over AFL++’s seed pool (average of five runs).
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Fig. 14. Impact of making MCC and WM coverage objectives explicit in the code over the edge coverage reached by AFL++ (average of
five runs).
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Fig. 15. Impact of making MCC and WM coverage objectives explicit in the code over the time to trigger bugs
with AFL++ (consolidated over five runs and the whole LAVA-M and MAGMA benchmarks).
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DETAILED FUZZING DATA FOR QSYM
This appendix gathers detailed data about the measured impact of making MCC and WM coverage
objectives explicit in the PUT’s code over QSYM’s behaviour. More precisely, it details the observed
impact over the fuzzer’s throughput (Table 13), the number of seeds saved by the fuzzer (Figure 16),
the reached edge coverage (Figure 17) and the number of discovered bugs (Table ?? and Figure 18).

Table 13. Impact of making MCC and WM coverage objectives explicit in the code over QSYM’s throughput
(average of five runs).

Program
Average fuzzer throughput (executions/second)

QSYM with MCC with WM with MCC +WM
(baseline) objectives objectives objectives

base64 224 481 (+115%) 341 (+52%) 527 (+135%)
uniq 1.7K 1.3K (-25%) 1.6K (-8%) 2.3K (+33%)

md5sum 63 58 (-8%) 65 (+3%) 69 (+10%)
who 66 221 (+237%) 69 (+5%) 69 (+6%)

AVERAGE 513 515 (-) 518 (+1%) 741 (+45%)
lua 50 213 (+323%) 160 (+218%) 92 (+82%)
exif 55 47 (-15%) 49(-11%) 40 (-28%)

sndfile 62 56 (-9%) 44 (-30%) 49 (-22%)
libpng_read 1.6K 129 (-92%) 1.3K (-24%) 2.7K (+67%)
tiff_read_rgba 854 316 (-63%) 94 (-89%) 205 (-76%)

tiffcp 64 51 (-19%) 30 (-52%) 64 (+1%)
read_memory 252 677 (+168%) 26 (-90%) 179 (-29%)

xmllint 62 27 (-57%) 23 (-64%) 21 (-66%)
sqlite3 688 417 (-39%) 647 (-6%) 639 (-7%)
server 24 25 (-5%) 24 (-5%) 20 (-20%)
client 70 141 (+102%) 73 (+5%) 85 (+21%)
x509 167 190 (+14%) 535 (+220%) 176 (+6%)

AVERAGE 329 191 (-42%) 250 (-24%) 356 (+8%)
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Fig. 16. Impact of making MCC and WM coverage objectives explicit in the code over QSYM’s seed pool (average of five runs).
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Fig. 17. Impact of making MCC and WM coverage objectives explicit in the code over the edge coverage reached by QSYM (average of
five runs).
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Fig. 18. Impact of making MCC and WM coverage objectives explicit in the code over the time to trigger bugs
with QSYM (consolidated over five runs and the whole LAVA-M and MAGMA benchmarks).
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DETAILED UNIQUE BUG FINDING DATA FOR AFL++ AND QSYM
Table 14. Impact of making MCC and WM coverage objectives explicit in the code over the total number of unique bugs found by AFL++ over five runs.
Variance between the five runs is reported through the measured interquartile range (IQR) and standard deviation (SD).

Program Bugs AFL++ AFL++ with MCC AFL++ with WM AFL++ with MCC + WM
Found bugs IQR SD Found bugs IQR SD Found bugs IQR SD Found bugs IQR SD

base64 48 48 (100%) 0 0 48 (100%) 0 0 48 (100%) 0 0 48 (100%) 0 0
uniq 29 29 (100%) 0 0 29 (100%) 0 0 29 (100%) 0 0 29 (100%) 0 0

md5sum 57 57 (100%) 2 1.41 57 (100%) 1 0 57 (100%) 0 0 57 (100%) 0 0
who 2234 1412 (63%) 71 57.92 1577 (71%) 479 249.82 1510 (68%) 137 80.52 1356 (61%) 16 67.55

TOTAL 2368 1541 (68%) 1706 (75%) 1639 (72%) 1485 (66%)
lua 4 1 (25%) 0 0 1 (25%) 0 0 1 (25%) 0 0 1 (25%) 0 0
php 16 2 (13%) 0 0 3 (19%) 1 0 3 (19%) 1 0 3 (19%) 0 0

libsndfile 18 7 (39%) 0 0 7 (39%) 0 0 7 (39%) 0 0 7 (39%) 0 0
libpng 7 3 (43%) 0 0 2 (29%) 0 0 3 (43%) 0 0 3 (43%) 1 0
libtiff 14 8 (93%) 2 1.00 6 (64%) 0 0 7 (71%) 1 0 7 (71%) 0 1.41
libxml2 17 4 (41%) 0 0 4 (35%) 1 0 4 (35%) 0 0 4 (35%) 0 0
sqlite3 20 4 (20%) 0 0 4 (20%) 0 0 4 (20%) 1 0 4 (20%) 0 0
openssl 20 3 (20%) 0 0 1 (10%) 0 0 3 (15%) 0 0 1 (10%) 0 0
TOTAL 116 41 (35%) 34 (29%) 37 (32%) 36 (31%)

Table 15. Impact of making MCC and WM coverage objectives explicit in the code over the total number of unique bugs discovered by QSYM over five runs.
Variance between the five runs is reported through the measured interquartile range (IQR) and standard deviation (SD).

Program Bugs QSYM QSYM with MCC QSYM with WM QSYM with MCC + WM
Found bugs IQR SD Found bugs IQR SD Found bugs IQR SD Found bugs IQR SD

base64 48 18 (38%) 1 0 19 (40%) 2 1 20 (42%) 1 1.41 17 (35%) 1 1
uniq 29 14 (48%) 1 2 10 (34%) 0 0 11 (38%) 3 1.73 12 (41%) 2 2

md5sum 57 24 (42%) 2 1.41 25 (44%) 1 0 25 (44%) 0 0 25 (44%) 0 0
who 2234 38 (2%) 1 4.36 40 (2%) 4 2.82 52 (2%) 1 4.9 50 (2%) 6 4.69

TOTAL 2368 94 (4%) 94 (4%) 108 (5%) 104 (4%)
lua 4 1 (0%) 0 0 1 (25) 0 0 1 (0%) 0 0 1 (0%) 0 0
php 16 2 (19) 0 0 3 (19%) 0 0 3 (19%) 0 0 3 (19%) 0 0

libsndfile 18 7 (39%) 0 0 6 (33%) 0 0 6 (33%) 1 0 7 (39%) 1 0
libpng 7 3 (43%) 0 0 2 (29%) 0 0 2 (29%) 0 0 2 (29%) 0 0
libtiff 14 5 (36%) 1 0 2 (29%) 0 0 4 (29%) 0 0 4 (29%) 0 0
libxml2 17 2 (12%) 0 0 2 (12%) 0 0 1 (6%) 0 0 1 (6%) 0 0
sqlite3 20 2 (10%) 1 0 1 (5%) 1 0 2 (10%) 1 0 1 (5%) 0 0
openssl 20 2 (10%) 1 0 3 (15%) 0 0 3 (15%) 1 0 2 (10%) 0 0
TOTAL 116 24 (21%) 23 (20%) 21 (18%) 20 (17%)
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