

The edge E_r well in L-mode plasmas: Experiments & gyrokinetic simulations

Y Sarazin, G Dif-Pradalier, P Donnel, X Garbet, Ph Ghendrih, V

Grandgirard, P Hennequin, Y Munschy, K Obrejan, O Panico, et al.

▶ To cite this version:

Y Sarazin, G Dif-Pradalier, P Donnel, X Garbet, Ph Ghendrih, et al.. The edge E_r well in L-mode plasmas: Experiments & gyrokinetic simulations. TTF 2023 annual meeting - 27th Joint EU-US Transport Task Force Meeting, Sep 2023, Nancy, France. cea-04233434

HAL Id: cea-04233434 https://cea.hal.science/cea-04233434

Submitted on 9 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

cea irfm

The edge E_r well in L-mode plasmas: Experiments & gyrokinetic simulations

Y. Sarazin¹, G. Dif-Pradalier¹, P. Donnel¹,
X. Garbet^{1,2}, Ph. Ghendrih¹, V. Grandgirard¹,
P. Hennequin³, Y. Munschy¹, K. Obrejan¹, O. Panico¹,
S. Rienäcker³, R. Varennes², L. Vermare³

- ¹ CEA, IRFM Cadarache, France
- ² NTU, Singapore
- ³ Ecole Polytechnique, Palaiseau, France

EU-US TTF workshop, Nancy, 2023-09-12

Motivation – Outline

2

Y. Sarazin

Heuristic dynamical equation on $\langle E_r \rangle$ [Varennes 2023] $\partial_t \langle \mathcal{P} \rangle$ GYSELA • Poisson equation \rightarrow **exact** dynamical equation for $-\langle J_r \rangle$ polarization field at small $k_{\parallel}\rho_i$ [Parra 2009, Abiteboul 2011] $Z_0 n_0 V_{T0}$] $\frac{\partial}{\partial t} \sum_{s} \varepsilon_{pol,s} \left(E_r - \frac{1}{2e_s N_s} \frac{\mathrm{d}P_{\perp,s}}{\mathrm{d}r} \right) = -\sum_{s} J_{r,s}$ Radial currer Radial current density -1 Polarization (electric & magnetic drifts) Permittivity = $\frac{N_s m_s}{R^2}$ $\frac{\partial P_{\perp,s}}{\partial t}$ governed by heat eq. 0.2 0.4 0.6 0.8 1.0 r/a

• Leads to a heuristic equation for $\langle V_{E\theta} \rangle = -\langle E_r \rangle / B \rightarrow$ in banana regime $\nu_* = \frac{\nu_{ii}qR}{\nu_{r-c^{3/2}}} \ll 1$:

Heuristic prediction for $\langle v_{E\theta} \rangle$ – some evidence in experiments

Prediction at equilibrium: balance between turbulence & collisions

 $\langle V_{E\theta} \rangle = V_{E\theta,neo} - \frac{\nabla_r \langle \Pi_{r\theta} \rangle}{\nu_{neo}}$

Fair agreement in the core

Important role of turbulence at staircase locations

- Experiments yield contradictory information in core [Bell 1998, Crombé 2005, Grierson 2013] & edge [Viezzer 2014, Plank 2023]
- Radial force balance (with V_{θ,neo}) not always sufficient to recover experimental measurement of E_r
- Other mechanisms than turb. possibly at play in edge:
 - Orbit squeezing [Shaing 1992, Kagan 2009, Landreman 2010]
 - Ion orbit losses [De Grassie 2011, Chang 2017, Brzozowski 2019]

Turbulent RS not only electric \rightarrow diamagnetic component Π^*

• Exp. evidence: something missing beyond $\Pi \rightarrow \Pi^*$? [Gerrú 2019]

Csq: Pressure is NOT simply advected by ExB flow

• Indeed:
$$\partial_t p_{\perp} + \mathbf{u}_E \cdot \nabla p_{\perp} = 0 \Rightarrow \langle \Pi^* \rangle / \langle \Pi \rangle < 0$$

• Drift ITG: $\hat{p}_{\perp k,\omega} = -\left\langle \frac{\omega^* - \omega_d - k_{\parallel} v_{\parallel}}{\omega - \omega_d - k_{\parallel} v_{\parallel}} \ \mu B \ F_M \right\rangle_v \hat{\phi}_{k,\omega}$

Panico

Poster TTF

• Can be captured in reduced transport models

Core-edge GK simulations with immersed boundary \rightarrow plasma-wall interaction

• Modified quasi-neutrality condition for r/a>1 with Boltzmann electrons**: Enforced plasma-wall // condition $\rightarrow \delta n_e/n_e = e\phi/T_e - \Lambda$

**Ongoing work to include kinetic electrons [Munschy 2023]

Steep gradients associated to sheared E_r

- Steep gradients in the vicinity of the separatrix @ r/a=1
 - Localized poloidally

[Dif-Pradalier 2022]

Vm

electric field [in

Radial

Y. Sarazin

Radial electric field E_r

- Negative in core (r/a<1) → radial force balance
- Positive in SOL (r/a>1) \rightarrow plasma-wall interaction physics
- Well at the edge $r \approx a \rightarrow strong shear$

Build up of E_r well dynamically resolved

Dynamics of toroidally averaged radial vorticity (shear of E_r):

• "Transfer Entropy" \rightarrow causality (directional net flow of information):

[Schreiber 2000, Van Milligen 2014, Nicolau 2018, Dif-Pradalier 2021]

- E_r well born at limiter poloidal location
- **Diamagnetic** Reynolds force dominant initially
- Poloidal entrainment ensures poloidal homogenization
- Electric Reynolds force dominant downstream & at later time

[Dif-Pradalier 2022]

Incidence of plasma current I_p on confinement... and E_r

- **Confinement improves with plasma current I**p [Goldston 1984,
 - $\rightarrow \textbf{Turbulence intensity I}_{turb} \text{ increases with } \textbf{q} \sim 1/\textbf{I}_{p}$ at constant ρ_{*}, ν_{*}, β
- Possible explanations:
 - Growth rate increases with q
 - Threshold ~ s/q [Fourment 2003]
 - Change in wave nb spectrum [Ottaviani 1997, Dannert 2005]
 - Effect of GAMs
- Experimentally: edge E_r well less deep when q increases
 - L-mode (WEST data)
 - H-mode low density branch
 - \rightarrow How does it compare to heuristic prediction?

[Vermare 2022]

0.9

0.95

 ho_{pol}

[Ryter 2014, Bilato 2020, Plank 2023]

[Waltz 1995]

[Angelino 2006]

[Vermare 2022]

Rienäcker

Poster TTF

-6

0.85

$q \sim 1/I_p$ dependence of E_r well \rightarrow different dependence on q of turb. drive & neo. viscosity

- **E**_r well less deep when increasing **q**
 - Qualitatively consistent with experiments
 - Not observed w/o turbulence (neo. only)
 - Although turbulent intensity \uparrow with q
- Present understanding: $\langle V_{E\theta} \rangle = V_{E\theta,neo} \frac{\nabla_r \langle \Pi_{r\theta} \rangle}{U}$
 - + $V_{E\theta,neo}$ almost independent of q
 - v_{neo} scales like q²
 - $\nabla_r \langle \Pi_{r\theta} \rangle$ scales like q^{α} with α <2 (turb. heat flux ~ q^{1.3})
 - \Rightarrow Balance between turbulence drive (Reynolds stresses) and neoclassical viscosity

[Gianakon 2002]

Safety factor

 $a_{0.5}, a_{95} = 1.8$

<u>ce</u>z

Conclusions

- Shear of E_r regulates turbulence
- E_r well at the edge
 - Deepens when H-mode transport barrier
 - Sometimes inconsistent with neoclassical prediction
 - \rightarrow Points towards turbulence, ion orbit losses, ...
- Heuristic E_r prediction from balance between turb. drive Π_{turb} & coll. Viscosity v_{neo}
- Turbulence drive = electric + diamagnetic Reynolds stresses (in phase in ITG turb.)
- Diamagnetic Reynolds stress key to the build-up of E_r well at limiter
- Experimental q-dependence of edge E_r well qualitatively recovered with GYSELA: different dependence on q of Π_{turb} and v_{neo}
- **Next** : impact of kinetic electrons & of the nature of turbulence ITG/TEM?

Back up slides

$q_{ref} \times 0.5$ $e^{-\Phi_{00} \text{ at time = 72000.0/}\omega_c}$ Electrostatic potential fluctuations

Time evolution of E_r

-0.02