N

HAL

open science

Chromatic analysis of numerical programs
David Defour, Franck Vedrine

» To cite this version:

David Defour, Franck Vedrine. Chromatic analysis of numerical programs. ARITH 2023 - 30th IEEE
International Symposium on Computer Arithmetic, Sep 2023, Portland, United States. pp.1.

04232798

HAL Id: cea-04232798
https://cea.hal.science/cea-04232798
Submitted on 9 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

cea-

https://cea.hal.science/cea-04232798
https://hal.archives-ouvertes.fr

Chromatic Analysis of Numerical Programs

David Defour, Franck Vedrine
LAMPS, Univ. of Perpignan Via Domitia, France
Université Paris-Saclay, CEA, List, Saclay, France

Abstract—This paper introduces the concept of chromatic
numbers, which allows to tint a scalar or a set of scalars to
estimate the relations between input and output variables under
additive property. This consists in proposing a decomposition of
a resulting value as a sum of tinted values. We illustrate how
this concept can be used on a deep neural networks example by
tinting group of value at once allowing to track a large number
of values together.

Index Terms—IEEE-754, sensitivity analysis, automatic differ-
entiation, rounding error analysis

I. INTRODUCTION

A numerical program is a sequence of instructions executed
by a computer that process a set of values as input and
produces a numerical output. The sequence of instructions
can itself be broken down into floating-point operations and
numerical values on which we can perform error analysis to
track the propagation of errors and approximations. However,
such solutions do not help to understand and estimate the
contribution of input values, parameters and constants in a
given result.

This phenomenon is accentuated by the recent trend toward
smaller representation formats to reduce memory and data
transfer costs. This is especially true for applications such as
neural networks. This trend reflects the fact that we are more
interested in the few leading digits of the final results and less
interested in error propagation, event thought both are related.

We propose to estimate the weight of input values, param-
eters and constants in the output produced by a program, and
interpret them graphically using colors, which has inspired
the name of the method: Chromatic Analysis (CA). In other
words, it is a way when running a program to say “these output
values have been influenced by this set of input values by this
amount”.

The rest of this article is organized as follows. Section
II introduces the concept of chromatic numbers. Section III
illustrates how chromatic numbers can be used to produce
numerical and graphical interpretations.

II. CHROMATIC ANALYSIS

A chromatic number (or CN in the sequel of this article)
corresponds to a set composed of: a floating-point number z,
a constant k, and a vector V, of n floating-point numbers
representing the weight of the n chromaticity (or tint) within
x, as defined in Definition 2.1.

Definition 2.1 (Additive property): A chromatic number
corresponds to a triplet (x, k., V) such that x is a scalar

This research was supported by the InterFLOP (ANR-20-CE46-0009)
project of the French National Agency for Research (ANR).

and V,, is a vector of scalar value of size n representing the
decomposition of x as the sum of tracked values such that
7= 0 Valil
Thanks to this definition, each floating-point number is
replaced by the set (x, k;, V,) corresponding to a chromatic
number. This requires to substitute regular arithmetic on
floating-point numbers by a new arithmetic on triplet. This
can be done at the language level using operator overloading,
similar to the dual number concept (section IV-B). Regular
arithmetic is used on the first component z, and an arithmetic
that preserves the property x = i > o Vali] on the third
term:
o Addition:
(@, ko, Vo) + (Y ky, Vy) = (@ + 4,1, Vo /ke + Vyy [ky)
o Subtraction:
(@, Kz, Vo) = (y, Ky, Vy) = (@ —y, 1, Vo [ko = Vyy [Fey)
o Multiplication:
(@, kg, Vi) Yy, by, Vi) = (.Y, by + by, y. Vo + 2.V)
« Division:
(@, ke, Va) [y by, Vy) = (2/y, ke + Ky 2/ Vy + Vo)
= (2/y, ks + ky. (2/y2).Vy + Va) if (y £ 0)
o Sqrt:
sqrt({x, ky, V) = (sqrt(z), 1, Va /(ky.sqri(x)))
e tanh:
tanh({(z, ks, Vy)) = (tanh(z),1,V,/(k,.Q)) with
Q =1+[I, tanh(V,[i])
and in general for the function f,

f((I,kJ,Vﬁ s <y7ky7Vy>) =
<f($ +y), ke + kyvf(xvvy) + f(mey»

This arithmetic gives a component-wise decomposition of
a numerical value with additive property. At initialization, a
tint corresponding to an index 7,0 < j < n is set for each
scalar x to be followed, so that the given scalar is promoted
to a CN (z,k, = 1,V,), with V;[i] =0 for i # j,0<i<mn
and V. [j] = . The goal of the parameter k, is to ponderate
the relative weight of tracked values during multiplication and
division (see section III for an example).

One can notice that a CN consisting of associating a tint
with a scalar value can be extended by associating the same
tint to a set of scalar without violating the 2.1 property. This
helps track multiple values at the same time, while reducing
the curse of dimensionality of the problem by allowing ag-
gregation (or tinting with the same color) of sets of numbers.
Indeed, to ease the interpretation, the aggregation should make
sense in the additive sense.

In order to compare the weight of tracked values with others
which are non-tracked, we require to dedicate a specific tint for

non-tracked element in V,, which we named garbage element.
The purpose of this element is to collect contributions of
non-chromatic numbers encountered during the execution of a
program such that the property 2.1 is preserved.

One can notice that this element would be optional if there
were no rounding errors in any of the operations, since x =

7 2imo Valil

A. Impact of floating-point arithmetic

Except for the element k& which is an integer, every elements
composing a CN are stored as floating-point numbers and are
subject to rounding error and cancellation.

The first implication is with the additive property which may
not stand exactly as the operations done on the first element x
of a CN are different from the operations done on the vector
of element V.

The second implications is that chromatic analysis will fails
delivering information when dramatic cancellation is encoun-
tered. Let consider the (u,v)=FastTwoSum(a,b) algorithm with
b < a which computes v = a+band v =b— ((a+b) —a) to
illustrate this issue. Chromatic analysis will informs us how
is influenced by a and b, but will return a zero vector for v. A
non-detailed workaround is to track and propagate rounding-
error performed on the first element of a CN along V.
One can notice that this issue is encountered with automatic
differentiation as well.

B. Implementations

We implemented the previous arithmetic using operator
overloading in both Python and C++. For each of them,
we designed two versions, depending on the usage. A first
implementation stores the vector V,, as an array of floating-
point values. This requires knowing and setting the number
of track values at the beginning of the section to be observed.
This version is efficient as it is fully vectorized. However, if the
vector V,, is mostly sparse, this solution may be inappropriate.

To address this case where the interaction between the
tracked values is limited, we designed a second version that
represents the vector V, as a dictionary (hash tables). This
is particularly useful to represent sparse contributions and/or
to discard contributions that become too small compared to
others. However, this solution works element-wise requiring
control-flow therefore hindering executions optimisations.

III. EXAMPLES

We illustrate how chromatic information propagate thanks to
CN on examples and what kind of informations it can delivers.

A. Cancellation

As a first example, lets take 2 CN a = (2,1,[0,2,0])
and b = (3,1,[0,0, 3]), the element of index 0 in the vector
corresponding to the garbage element. Then the sequence of
operations 7 = (a.a).b — 12 will produce the resulting CN
r = (0,1,[—12,8,4]) meaning that we have encountered a
cancellation involving non-tracked element leading to a value
—12, with a sequence of operations involving a and b with the
weight of a double the weight of b (respectively 8 and 4).

H
10
25
48

AD value in log scale (2°x)

o 5 10 15 20 25 30 E 0 5 10 15 20 25 30 E
Chromatic Analysis iteration number Automatic Differentation iteration number

Fig. 1. Chromatic Analysis (left) and Differentiation Analysis (right) for
Muller’s series, where values are represented using symmetric logarithmic
scale.

B. Muller’s series

For this example, we consider the Muller’s series:

Uug = 5.9
w = 6L.0/11.0
Upy1 = 111.—1130./uy + 3000. /(U tpn—1)

which is known to converge mathematically toward 6 and
numerically toward 100 when executed using either binary32
or binary64. When using chromatic analysis on the first 30th
iterations we get figure 1(left) with wug, u; tinted.

We can observe on this figure that the relative weight of
those two tinted values is oscillating with a huge contribution
up to iteration 13, and is vanishing after iteration 35 to
the profit of non tracked values (in this case the constants
111, 1130, 3000). At iteration 13, the sum of the contributions
10 ~ 248 is close to the value 5.9 of the series. The different
order of magnitude between the contributions and the result
suggests an unstable result. After the 35" iteration, ug and
u; does not “influence” the final result any longer and the
output value (in blue) is fully linked with non-tracked scalars
(in orange).

Muller’s series has been widely used as a case study
to evaluate how numerical tools behave. On this example,
stochastic analysis, Automatic Differentiation or sensitivity
analysis provides information about an issues such as instabil-
ity due to the propagation of rounding errors. Figure 1 (right)
represents an Automatic Differentiation analysis according to
() and Uui.

C. DNN

We have successfully used the Python implementation on
the MNIST classification problem, which consists of images of
digits from O to 9, of shape 28x28x1. We have designed 2 types
of tests by reimplementing a 3 fully connected layers deep
neural network (28x28, 100, 50, 10) with sigmoid activation
function in Python.

The first one is designed to track the relative weight of
pixels during the inference phase for a given network. The
second one consists in tracking the relative weight of images
according to the category to which they belong during the
training phase.

1) Inference & adversarial attack: The first test is to track
the relative weight of pixels for a given image during the
inference phase, so that the resulting classification probability

7317833177 7317833177
TRAIR2S3377) X222 EO)
BR2YTFITISHN1ES BIFTITSH|RE
N F22313329F 17823V 33¢ 7
23372971 F593 33372971253
AFTIZ2TA 753 291379187353
7#1275333833% 7#+12733333
73323717337 2332317337
271713337133 2727133377513

SN ARIFIIFT 211X T2 IS

Fig. 2. Adversarial construction on MNIST dataset of 3s and 7s such that each
example has a minimal number of pixels alterted to mislead the discrimination
between the two sets among the ten classification bins.

can be decomposed according to pixel weight. This is done
by assigning a different tint to each pixel of an image.

For the MNIST classification, the input images consist of
an array of 28 x 28 pixels, with the resulting 10 output class
corresponding to the probability of an image belonging to a
given class. The array of input pixels is first converted to
a floating-point number in the range [0,1], and then to a
chromatic number such that pixels of index ¢ are represented
as (x;,Vy;) where x; is the float value of the pixel and
Vilk] = x; for k =i+ 2 and 0 for all other components.

At the end, we get 10 chromatic numbers, one for each
output class. Each number Cy = (¢, Vex) corresponds to
the output probability c; for the given class k£,0 < k < 9,
and the weight of each input pixel represented by the vector
V.1, such that 2?2“528 Verli] = ci. With this information, it
is possible to perform an adversarial attack, or to determine
the transformation to be applied to each input pixel in order
to change the output probability classification. This can be
done by solving an optimization problem, similar to the fast
gradient sign method in [1].

Figure 2 corresponds to a dataset from the MNIST 3s and 7s
using a 3 fully connected layers deep neural network (28x28,
100, 50, 10) with sigmoid activation function in Python,
altered to mislead all ”7” images toward ”3” and the contrary.
If © is the parameter of the model, x the input image and y
the associated category and J(O,x,y) the cost function, we
generated an optimal max-norm perturbation by replacing each
pixel of z with a chromatic number to generate a component
wise cost function. The number of components corresponds to
the number of pixel in the original image.

Let

9
F(i,r) =Y J(O,2,y[k])i] - 2.J(8, 2, y[r])[i]

k=0

with r = 3 if the image is a 7, which we want to mislead to
a 3, or 7 = 7 on the contrary. Then we iteratively select the

pixel 7 so that
i =max (|F(i,r)|: i =0,...,28 x 28)

and change z[i] to maximize F'(i,7) until enough changes are
needed. In this way, we minimize the number of modified
pixels and the execution overhead induced by using the
chromatic number is less than 100.

Fig. 3. Example of absolute pixel weight generated to classify image ”7”
with a given network trained with chromatic numbers, where image pixels
are indexed according to the class to which they belong (index between 0

and 9). On each image, the color of the pixel corresponds to the contribution
weight of the pixel.

2) Training & categorized classification: The second test
on DNN consists in tracking the relative weight of image
classes during the learning phase. The goal is to obtain a
resulting network of chromatic numbers tinted according to
the image class to which they belong. In this version, each
pixel value of a given image is tinted with the same values
corresponding to the class between 0 and 9 to which it belongs.

The resulting network is then used during the inference
phase to understand the relative weight of each pixel according
to the resulting classification vectors. Each chromatic number
could be interpreted as the weight of the input class images
given during the learning phase that led to the resulting
output probability. This corresponds to a simple graphical
interpretation of the relationship between the images provided
during the training phase and the image provided during the
inference phase. An example of such a correlation is shown
in figure 3 for the image “test_0.jpg” from MNIST, which
corresponds to number 7. This test was performed by training
the network on the first 100 images of the MNIST training set,
which takes 5400 seconds using chromatic numbers versus 3
seconds using standard IEEE-754 arithmetic.

IV. COMPARISON WITH OTHER ARITHMETIC AND TOOLS

There exists other numerical methods and tools delivering
related information to CA which we will describe next.

A. Sensitivity analysis

Sensitivity analysis is a method used to study how variations
in the input parameters of a model affect the output [2]. It is
used to determine the effect of small changes in the input
parameters on the output of the model and to identify which
input parameters have the greatest effect on the output. It
allows one to determine the range of input values that result in
acceptable output values. It is commonly used in engineering,
finance, and economics to evaluate the robustness of a model
and to identify potential sources of uncertainty.

Sensitivity analysis can be either local or global. Locally,
it tracks how a (small) perturbation of the input perturbs the
output. It can be done by computing either the numerical or
analytical derivative using for example Automatic Differen-
tiation (section IV-B). It considers one parameter at a time,
keeping the rest of the process identical, in order to study its
effect of the entire process.

Globally, from multiple runs, it recreates models of output
with respect to the influential variables, and evaluates the
magnitude of the output with respect to these influential
variables using Monte-Carlo technique along with factorial
analysis and differential sensitivity analysis.

Among the problems these analyses face, we can cite the
curse of dimensionality, their inability to handle correlated
input, or to interpret variation on multiple output. The curse
of dimensionality is due to the need for multiple runs, which
leads to important execution time depending on the input
exploration space, that is exponential w.r.t the influential vari-
ables. The space exploration relies on measuring the impact
of small perturbations on the input, which are explored one
at a time, missing the correlation between inputs. In addition,
for problems with multiple correlated outputs, the sensitivity
measure can be difficult to interpret.

B. Automatic differentiation

Automatic differentiation (AD) is a method for numeri-
cally computing the derivative of a function using the basic
arithmetic operations of the function [3]. It is an efficient
and accurate alternative to numerical methods, such as finite
differences, for finding derivatives.

In automatic differentiation, backward and forward accu-
mulation refer to the two main methods for calculating the
gradients of a function with respect to its inputs. Both methods
are based on the chain rule and the choice of which method
to use depends on the specific problem at hand.

It is possible to perform forward automatic differentiation
with minor code modifications thanks to dual number arith-
metic and operator overloading. Each number is given a new
component to represent the derivative of a function at the
number requiring to define a new algebra. Each number x
is replaced by a new number x = x + x’¢, where 2’ is the
derivative and e is an abstract number such that €2 = 0. This
arithmetic is implemented by introducing an arithmetic on
ordered pairs {(x,z’) [4], [5].

AD has become the pervasive operation behind all of the
machine learning library such as PyTorch or TensorFlow. It
has been successfully used to perform adversarial attack on
neural network.

We have seen that, AD on Muller’s series will allows
us to produce the second part of figure 1. This example
illustrate the fact that the information produced by AD is very
similar to CA as we are able to notice along the iterations
when the derivative for (ug,u;) vanishes meaning that small
modifications on them does not influences the results. On this
example, AD lacks information about the set of parameters
that influence the results, whereas CA does. The coefficients
computed for Muller’s series with automatic differentiation are
25 times more important in magnitude at iteration 13 than
the coefficients obtained with CA at the same iteration. This
conforms to the fact that automatic differentiation computes a
local gradient providing information about the neighborhood
for a given point according to specific variables whereas CA
provides information about how a given point is decomposed
according to variables. Moreover, with CA, we have access
to the sum of the contributions giving a stability criteria
of the result by comparing the order of magnitude of the
norm of the contribution vector with the absolute value of
the result. This criteria is absent in automatic differentiation.
If the contributions alternate in CA whereas the derivative

contributions do no change sign along the iterations, this is
due to the interpretation of the inverse operation: this operation
generates a positive contribution in CA and a negative one
in AD for positive values. AD lacks information about why
this series is converging toward 100, whereas CA gives this
information straightaway with ponderation.

C. Automated sparsity detection

To accelerate AD of complex multivariate programs, it is
possible to rely on the computation of the sparsity pattern
of the Jacobian or Hessian matrix of term j—% with x and y
respectively input and output vectors, such that y = f(x) with
f representing an arbitrary program execution [6]. As a 0 in the
Jacobian implies that ; has no influence on y;, computing the
sparsity pattern helps identifying the set of parameter that has
an influence over a set of output. The sparsity corresponding
to a binary matrix, it does not embed any information about
the relative weight but only indicates if a given parameters
can influence an output but not by how much. This is why
this solution is usually linked with AD.

V. CONCLUSION

We have presented a solution to answer to the problem of
identifying the set of values that influence outputs and how
there are related together. The proposed solution rely on an
additive rule offering the possibility to merge contribution
of several scalars together. Thanks to this possibility, we are
able to better deal with the dimensionality problem by either
discarding values that become too small or aggregating input
values under a given tint.

This work is a preliminary version and as future work,
we will look at how this analysis could be linked with
other analyses. For example, global sensitivity analysis is very
useful, but does not work well when the number of inputs to
track is large. In this case, prior knowledge is needed to select
the variables of interest. Therefore, chromatic analysis could
automatically identify such variables.

REFERENCES

[1] L J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing

adversarial examples,” in 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[Online]. Available: http://arxiv.org/abs/1412.6572

A. Saltelli, “Sensitivity analysis for importance assessment,” Risk Analy-

sis, vol. 22, no. 3, pp. 579-590, 2002.

A. Griewank and A. Walther, Evaluating derivatives: principles and

techniques of algorithmic differentiation. SIAM, 2008.

W. Yu and M. Blair, “DNAD, a simple tool for automatic differentiation of

Fortran codes using dual numbers,” Computer Physics Communications,

vol. 184, no. 5, pp. 1446-1452, 2013.

[5] J. A. Fike and J. J. Alonso, “Automatic differentiation through the use
of hyper-dual numbers for second derivatives,” in Recent Advances in
Algorithmic Differentiation, ser. Lecture Notes in Computational Science
and Engineering, S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther,
Eds. Berlin: Springer, 2012, vol. 87, pp. 163-173.

[6] S.Gowda, Y. Ma, V. Churavy, A. Edelman, and C. Rackauckas, “Sparsity
programming: Automated sparsity-aware optimizations in differentiable
programming,” 2019.

[2

—

3

—

[4

—

