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Abstract. Assuring that security requirements have been met in design phases is
less expensive compared with changes after system development. Security-critical
systems deployment requires providing security cases demonstrating whether the
design adequately incorporates the security requirements. Building arguments and
generating evidence to support the claims of an assurance case is of utmost im-
portance and should be done using a rigorous mathematical basis, namely formal
methods. In this paper, we propose an approach that uses formal methods to con-
struct security assurance cases. This approach takes a list of security requirements
as input and generates security cases to assess their fulfillment. Furthermore, we
define security argument patterns supported by the formal verification results pre-
sented using the GSN pattern notation. The overall approach is validated through
a case study involving an autonomous drone.

Keywords: Formal methods · Assurance case · Argument pattern · Security re-
quirements · Security case

1 Introduction

Security-critical systems are prone to failure and security violations. Vulnerabilities
can be caused by many factors: poor requirement specifications, underestimating the
threat, and malicious exploitation of all the above by an attacker. Consequently, security
engineers are required to provide assurance cases containing evidence and arguments
to prove the security property of the system. Assurance cases are bodies of evidence
organized in structured arguments that justify specific claims about a system property
hold [12]. When assurance cases aim to demonstrate the security of a system, they are
known as security cases. Formal model-based security cases are the ones that contain
a formal model from which evidence for the top-level claims is derived. Formal meth-
ods are applicable in specifying and verifying critical systems from various industrial
domains[3]. Despite this, there are limitations to formalizing large-size systems, such
⋆ Corresponding author: marwa.zeroual@cea.fr
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as ensuring that the program works correctly with the hardware and operating system
and the complexity involved in creating formal definitions of semantics for language
constructs and software system components [2]. Building security cases to document
and demonstrate that a system design meets the primary security requirements (SRs)
is challenging, especially because sufficient evidence is needed to support assurance
claims and traceability for compliance checks. In this paper, we propose an approach for
demonstrating the compliance of SRs at the design level in the form of security cases.
First, we assume a complete list of SRs that are determined following a secure devel-
opment methodology. Next, we formalize the system model and the SRs using Alloy
language. Then, we verify the SRs compliance and the system model. Afterward, secu-
rity cases are defined and supported by the formal verification results. This is followed
by the derivation of re-utilizable security argument pattern.

The remainder of this paper is organized as follows. Section 2 presents some defi-
nitions and the illustrative example. Section 3 details the proposed approach. Section 4
presents the proposed security argument patterns and exemplifies their application. Sec-
tion 5 reviews related works. Finally, Section 6 concludes with future work directions.

2 Background

2.1 Overview of Alloy

Alloy is a lightweight formal modeling language based on first-order relational logic.
An Alloy model comprises a set of signatures, each defining a set of atoms. There are
several ways to specify constraints in the model. One is to treat them as facts that should
always hold. Another is to treat them as predicates defined in the form of parameterized
formulas that can be used elsewhere and as assertions that are intended to follow from
the facts of a model. The semantics of Alloy is defined using instances. An instance is a
binding of values to variables (e.g., signatures, signatures fields). A core instance is an
instance associated with the model’s facts, and the implicit constraints in the signature
declarations. We can instruct Alloy Analyzer to verify whether the property prop of the
system design holds, with the command: check prop for n, which would exhaustively
explore every model instance within n atoms typed by each signature. If the property
does not hold, the analyzer generates a counterexample we can visualize. The absence
of counterexamples guarantees that the property holds in the modeled system within
the specified scope. As claimed in [7], most counterexamples are found in a reasonably
small scope.

2.2 Goal Structuring Notation

There are several notations and existing tools for developing and documenting assurance
cases, and the most popular of these is Goal Structuring Notation (GSN). GSN is a
graphical notation that can be used to visualize arguments that assure critical properties:
safety, security, and resilience of systems, services, or organizations. This paper adopts
the GSN pattern notation (an extension of core GSN [6]) to visualize and present the
argument structure. A summary of the graphical elements of the GSN Pattern Notation
is provided in Fig. 1.
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Fig. 1: Principal elements of the GSN Pattern Notation

2.3 Illustrative example

We illustrate our contributions using an example from ACAS Xu [8], a collision avoid-
ance system for drones. The scenario involves two drones. One called the ”ownship.”
The system is visualized in Fig. 2. The ownship’s sensors collect data about other drones,
which is then processed to determine an appropriate avoidance strategy. A planner gen-
erates a trajectory to navigate, and the actuator executes actions to follow the planned
trajectory. The system’s security is compromised if an attacker can modify messages
sent to the processor, leading to decisions that result in a collision.

Fig. 2: Architecture of ACAS Xu

We extract from the work [1] a selection of SRs that impose requirements to design a
secure ACAS Xu: SR1 : The GPS messages are genuine and have not been intentionally
altered, SR2 : The processor must receive data only from valid sensors, and finally
SR3 : The system should employ mechanisms to mitigate unauthorized disclosure of
the planning information.

3 General overview of the methodology

We propose constructing security cases from the SRs via their formal specification and
verification in Alloy. Our approach runs in parallel to and is informed by the system
development process. Each activity of our approach recovers artifacts from system
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development and provides a security case to ensure and demonstrate the development
and assurance activities.
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Fig. 3: Generating security cases from formal specification and analysis of SRs

As visualized in Fig. 3, we distinguish two main processes that influence the con-
struction of security cases: 1 elicitation of security requirements, 2 representation of
formalised system security requirements in formal models. Note that the construction of
security cases is done by applying argument patterns reporting on the formal specifica-
tion of the system and the SRs. If we can not build security cases, we revisit and improve
the formalization of the requirements and the system. The grey shows this dependence
dashed line in Fig. 3. The elicitation of the SRs is out of the scope of this paper.

3.1 Formal specification and analysis of SRs in Alloy

The formal method Alloy provides a structured way to specify the system model and
its SRs. Subsequently, the formal verification provides strong evidence that a system is
secure and meets its SRs. We formalize security objectives, as an implementation of
SRs at the architecture level. The output of this process includes two main elements: the
formal specification results (which consist of the system architecture model and the for-
malization of security objectives) and the formal verification results. These two elements
correspond, respectively, to the first and second arrows from the formalization to the
security cases construction top to bottom. To do so, we rely on works from [10] where,
first, we adopt a metamodel to describe the architecture and capture 1 the functional
architecture in terms of components and connectors, and 2 the behavioral aspects of the
architectural elements. The modeling is done in the context of component-based archi-
tecture (CBA) while adopting the message passing paradigm for the communication.
Formally speaking, a subset of these elements is specified in Listing 1.1.

1 s i g Component { u s e s : s e t P o r t}
2 s i g Msg ex tends Communica t ionS ty l e { s e n t : one Tick ,
3 r e c e i v e d : Component −> l one Tick , p a y l o a d : one Pay load } . . . . . . . .

Listing 1.1: Declarations of some architecture elements
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The metamodel enables us to describe the objectives: each objective is associated
with a representative property that is defined as a Predicate constraint. After that, these
properties are used in the realization of the objectives through model checking: we
define assertions to check that the properties are not violated. Alloy Analyzer detects
the violation of an objective due to the violation of the assertion by finding a coun-
terexample. For example, the predicate payloadIntegrity showed in Listing 1.2 is a
representative property associated with the payload integrity objective and the assertion
integrityNotHold is used to detect the violation of this objective. The objective is defined
as follows: “if some component c2 is able to get the payload p of m then p is the accurate
payload of m (has not been altered).” Formally speaking:

1 pred p a y l o a d I n t e g r i t y { a l l m: Msg , c : Component , p : Pay load |
2 E g e t p l d [ c ,m, p ] i m p l i e s once s e n t w i t h [m, p ] }
3 a s s e r t i n t e g r i t y N o t H o l d {
4 a l l c1 , c2 : Component , m: Msg | p a y l o a d I n t e g r i t y [ c1 , c2 ,m] }

Listing 1.2: Payload Integrity property

Alloy Analyzer finds a counterexample related to the violation of the payloadIntegrity
property. Consequently, an appropriate security requirement is added to codify a security
mechanism to satisfy the payload integrity objective. The intg requirement is defined
as a predicate on the connector that guarantees that the sender’s payload is the same
payload received by the receiver through this connector.

1 pred Connec to r . i n t g {
2 a l l m: Msg , t : Tick , c : Component , d : Pay load |
3 m in t h i s . b u f f e r . t i m p l i e s E s e t p l d [ c ,m, d , t ]
4 i m p l i e s some a l : A l lowedSe tP ld | a l . msg = m and a l . comp = c
5 a l l c : Component , t : T ick | E i n j e c t [ c ,m, t ]
6 i m p l i e s some a l : A l lowedSe tP ld | a l . msg = m and a l . comp = c }
7 a s s e r t i n t e g r i t y H o l d { ( a l l c : Connec to r | c . i n t g )
8 i m p l i e s a l l c1 , c2 : Component , d : Pay load | p a y l o a d I n t e g r i t y [ c1 , c2 , d ] }

Listing 1.3: Payload Integrity solution

Finally, we check if the added requirement intg implies the satisfaction of the assertion
violated previously. According to Alloy, no counterexample was found. The satisfaction
of intg property allows the fulfillment of the corresponding security requirement to
realize the payload integrity, as shown in Listing 1.3.

3.2 Construction of security cases

We build the security cases by applying argument patterns. We derive these patterns
from the previous approach processes. First, the formal model development requires an
argument about the well-definedness of the system model upon which we applied the
formal method. It is the role of (P1). Building this argument is based on Alloy semantics
provided in 2.1 and which shows the necessary conditions for a model to be well-defined.

Moreover, the formal methods involve building security cases by providing evidence
elements and guiding the arguing process according to the formal language elements
used for the property specification as shown in (P2). The strategies used are mainly
inspired by the formal specification and verification of the requirements. Regarding the
evidence elements, we use the results of the formal verification. In summary, the outputs
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of the approach provide reusable security argument patterns: an argument pattern for the
well-definedness of the system model (P1), and an argument pattern for the satisfaction
of SR (P2). The following section will present these three argument patterns in detail.

4 Security argument patterns

This section presents the argument patterns derived from the approach presented in
section 3 and their application on the case study presented in section 2.3.

4.1 Pattern for the well-definedness of the system model (P1)

The goal of this pattern in Fig. 6 is to claim the well-definedness of the system model
according to Alloy language semantics. A consistent model has at least one instance
that resolves all the facts and the declarations. The system model describes assumptions
about the world in which a system operates, requirements that the system is to achieve,
and a design to meet those requirements. The root claim in (G0) resumes the main goal
of the pattern in the context (C0, C1). According to Alloy language rules (C2), a model
is inconsistent if it does not have any core instances (S0,J0,J1). The goal (G1) claims
that the model has an instance that resolves constraints formed by the conjunction of the
facts (C3) and the declarations (C4). The analysis results (Sn0) form the evidence to
support the claim. On one side, the set of declarations regroups all implicit constraints in

J0 According to Alloy
semantics, if there is no core

instance so the model is
inconsistent 

J

J1 A core instance
 is an instance that makes 

the facts and the  declatation
constraints true

J

G0  Formal development of
{system} model 
is well-defined

S0 Argue over
consistancy of

the model

C0 Formal
specification of the 

system model  in Alloy

Sn0 Alloy Analyzer
finds a core

instance 

C2 Alloy
analyzer 

C3 {F} is
the conjunction

 of the facts 

C4  {D} is
the conjunction of 
the declarations

G1  The model has a core
instance  that resolves the
constraints in {F} and {D} 

C1 Well-defined
means that it conforms
to the specification and

it's without errors

Fig. 4: Pattern for the well-definedness of the system model (P1)

the signatures, mainly type and multiplicity ones. Listing 1.1 depicts some examples of
declarations constraints used for the specification of the CBA metamodel from [11]. On
the other side, a subset of the conjunction of the facts used to build the CBA metamodel
from [11] is presented in Listing 1.4.
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1 f a c t Componen t sConnec to rFac t s {
2 no d i s j m,m’ : Msg | some m. p a y l o a d and m’ . p a y l o a d
3 a l l m: Msg | o r i g i n s e n d e r != r e c e i v e r . . . }

Listing 1.4: Examples of facts

We illustrate the application of this pattern (see Fig. 5). First, we define the components
and the connectors connecting them based on the metamodel shown in Listing 1.1. Then,
we have to formally show that the ACAS Xu model is consistent. We use particularly
the facts from 1.4 as the context in the node (C3). The metamodel is built with all the
constraints, we will not add new facts to describe the ACAS Xu architecture. However,
we add new declarations as shown in Listing 1.5 to instantiate the context node (C4).

1 s i g P r o c e s s o r ex tends Component {} {u s e s = P o r t P l a n O u t + P o r t S e n I n}
2 s i g S e n s o r s ex tends Component {} { u s e s = Por tSenOut } . . . .

Listing 1.5: Some declarations used to describe ACAS Xu

J0 According to Alloy
semantics, if there is no core

instance so the model is
inconsistent 

J
J1 A core instance

 is an instance that makes
 the facts and the declaration

constraints true
J

G0  Formal development
of ACAS Xu model 

is well-defined

S0 Argue over
consistancy of

the model

C0 Formal
specification of the 

system model  in Alloy

Sn0 Alloy
Analyzer

finds a core
instance 

C2 Alloy
analyzer 

C3 Listing 1.4 is
the conjunction

 of the facts 
C4 Listing 1.5 is

the conjunction of 
the declarations

G1  The model has a core
instance  that resolves the
constraints in Listing 1.4 

and Listing 1.5

C1 Well-defined
means that it conforms
to the specification and

it's without errors

Fig. 5: P1 instantiation example

4.2 Argument pattern for the satisfaction of SRs (P2)

The goal of (P2) is to provide a convincing argument about using Alloy as a formaliza-
tion language to formalize and verify the SRs. The structure of (P2) is shown in Fig. 6.
The root claim (G2) of the pattern is about the satisfaction of the requirement {security
requirement}. We refer to the requirement in the node (C5). Context node (C6) provides
extra details about the system model and describes the operating environment in which
the system operates securely. Since the pattern claims that the system model realizes
the SR, it is wise to assume that the system model is well-defined in Alloy (A0) and
reflects the true system (A1). The pattern (P1) represents an argument to develop this
assumption (A0). The proposed strategy (S1) involves arguing through formal speci-
fication and verification of the security requirement presented as model property. The
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argument implies that if the sub-claims (G3, G4) are satisfied, then the system satisfies
the requirement. Sub-claim (G3) claims that the proposed formalization property (C7)
is the proper formalization of the requirement. We rely on domain and formalization
experts’ inspection (Sn1) as evidence that the formulated expression is the proper spec-
ification of the requirement and is well-defined according to restrictions imposed in
Alloy. According to claim (G4), the model satisfies the property {property}. This claim
is supported by the results of model checking on property: Alloy Analyzer (C8) doesn’t
find a counterexample. We assume that the tool support (Alloy Analyzer) is correct (A2)
(i.e., analysis parameters (e.g., scope analysis) are well defined).

G3  Formulated {property}
is the appropriate
specification of the

requirement.

G4 The model satisifes
the property {property}

Sn1 
Agreement

over inspection 
conducted by 
domain and
formalization

experts

C7  {Property} as the formalization
of {requirement}

Sn2 
Results of

model checking
on {property} 

G2  {System} model satisfies
{security requirement} 

C5  Description of
{security requirement}

          S1 Argue over formal
specification and
verification of the

requirement represented
as model property 

A2 Alloy Analyzer is
correct

 

C8 Alloy Analyzer 
 

A

C6  Description of
{system} model 

A0 {System} model is
well defined in Alloy

 
A

A1 The {system} model
reflects the true system

A

Fig. 6: Argument pattern for the satisfaction of security requirement (P2)

We illustrate the application of this pattern (Fig. 7). We refer to the system in
nodes (G2, C5, A0, A1). For the sake of simplicity, we only showcase one instance of
(P1) for the satisfaction of the security requirement (SR1). First, we refer to the require-
ment (SR1) in the context node (C5). SR1 is prescribing the need for a mechanism to
realize the message integrity objective. Recall that Listing 1.2 shows the formalization of
the integrity objective of any message’s payload exchanged between all the components.
Particularly, for messages exchanged between GPS sensors and the processor. Conse-
quently, the property GPSMsgIntegrity shown in Listing 1.6 is the formal specification
of the requirement and is referred to in nodes (C5, G3, G4, Sn2). We follow the same
steps to instantiate (P1) for the realization of SR2 and SR3.

1 a s s e r t GPSMsgIn teg r i ty{ p a y l o a d I n t e g r i t y [ Senso r s , P r o c e s s o r ]}
2 check GPSMsgIn teg r i ty f o r 3

Listing 1.6: Formal specification of SR1
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G3  Formulated GPSMsgintegrity
is the appropriate  specification of

the requirement.

G4 The model satisifes the
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Fig. 7: P2 instantiation example

5 Related Works

Several approaches suggest mapping the activities from the security cases construction
process to those of the secure system development process. Activities from different
stages of the secure system development process help create either of the two parts
(viz., argumentation strategies and evidence) of security cases or both. The work in [5]
proposes to use Architecture Analysis and Design Language (AADL) and annex it with
Resolute language to specify the system architecture, safety rules, and security claims.
The analysis leads to the generation of fragments of assurance cases. This approach,
like ours, avoids inconsistencies between a design and its assurance cases, thanks to
automated model transformation. However, it needs to show how to assemble these
fragments since each fragment is separately arguing about one component from the
AADL metamodel. In [9], the authors introduce security assurance cases and present
an expansion to the agile development process that entails the construction of these
documents. They extract from the security procedures execution the evidence and argu-
mentation needed to support the assurance case. The approach only applies to modular
software, where security claims are associated with specific components. Unlike this,
we formalized security requirements involving more than one component.Another work
in [4] proposes embedding the Isabelle proof assistant and SACM (Structured Assur-
ance Case Model) to generate safety cases. The requirements are expressed using High
Order Logic, which allows for specifying more advanced requirements. However, the
paper needs more argumentation about model correctness and well-definedness, which
is mandatory for model-based development in general, and development using formal
methods in particular.
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6 Conclusion

In this paper, we propounded a formal model-based approach for the rigorous generation
of a security case for critical systems. The approach takes a set of complete and consistent
SRs as input and produces security cases for realizing these requirements, along with a
well-defined system model. Our work in this paper is security-oriented and Alloy-aware,
however, the approach remains valid for other properties (safety, reliability, etc.) and
uses other formal methods. However, using the approach in different domains requires
basic knowledge of formal modeling, requirements engineering, and assurance cases
construction. The argument patterns generated by the approach can be expressed in
various notations and have the potential for re-usability. In future work, we aim to develop
a tool to facilitate the use of these patterns and instantiate them for constructing error-
free security assurance cases. Furthermore, future work includes developing additional
argument patterns to support consistency and completeness assessments of identified
security requirements, aiming to enhance the confidence in the security case.
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