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I. INTRODUCTION

In 5G and beyond networks, it is important to ensure that equal opportunity is offered to users regardless of their location and mobility with a dynamic and efficient management of the infrastructure. This flexible infrastructure can be implemented as a service [START_REF] Maman | Coverage Extension as a Service for Flexible 6G Networks Infrastructure[END_REF] by using Mobile Access Points (MAPs) and will better adapt to time-varying user behavior. In recent years, the deployment of these MAPs has been widely studied to improve the flexibility of self-managed infrastructures [START_REF] Catté | Cost-Efficient and QoS-Aware User Association and 3D Placement of 6G Aerial Mobile Access Points[END_REF]. However, their management is still poorly studied in highly dynamic networks, taking into account i) user mobility, ii) interference, iii) time-varying user traffic and iv) changing scenarios. This paradigm needs to balance the real-time placement of MAPs by tracking the evolution of each user's state to improve the experience with long-term behavior to optimize network resources without adding much complexity to network operation. Our objective is to manage the trajectory of MAPs under all these dynamic constraints with reduced complexity.

In the literature, the MAP management firstly followed centralized and combinatorial approaches. Authors in [START_REF] Alsharoa | Trajectory Optimization for Multiple UAVs Acting as Wireless Relays[END_REF] presented a mixed integer linear problem solved iteratively taking into account user's mobility. To include user's demand, authors in [START_REF] Wu | Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks[END_REF] designed a successive convex optimization algorithm. It maximizes the average throughput and place MAPs over time. Authors in [START_REF] Pan | Joint Optimization of Trajectory and Resource Allocation for Time-Constrained UAV-Enabled Cognitive Radio Networks[END_REF] tackled the co-channel interference and MAPs completion time while maximizing average throughput using a particle swarm optimization. These approaches finds optimal solutions for simplified models but fails to handle all constraints at the same time. These methods resolve successive deployment problem over time to create a continuous behavior and adapt to different scenarios with high complexity.

By considering each MAP as an agent, Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) approaches reduce the complex solution to a single Q-function method for creating complex behaviors. The authors of [START_REF] Ghanavi | Efficient 3D aerial base station placement considering users mobility by reinforcement learning[END_REF] address 3D placement with moving users for one MAP. Then, the approach was extended to multiple MAPs in [START_REF] Liu | Reinforcement Learning in Multiple-UAV Networks: Deployment and Movement Design[END_REF] but they consider a short time scale execution via Q-learning. The authors of [START_REF] Saxena | Optimal UAV Base Station Trajectories Using Flow-Level Models for Reinforcement Learning[END_REF] designed a DRL model where each agent acts according to heterogeneous users traffic distribution. Authors in [START_REF] Zhang | Three-Dimension Trajectory Design for Multi-UAV Wireless Network With Deep Reinforcement Learning[END_REF] proposed a DRL model with filtered actions to optimize the sum-rate of moving users while considering interference. The authors of [START_REF] Ji | Trajectory and Communication Design for Cache-Enabled UAVs in Cellular Networks: A Deep Reinforcement Learning Approach[END_REF] and [START_REF] Ding | 3D UAV Trajectory Design and Frequency Band Allocation for Energy-Efficient and Fair Communication: A Deep Reinforcement Learning Approach[END_REF] proposed a dual-clip Proximal Policy Optimization (PPO) algorithm and an actor-critic DRL framework, respectively, to optimize MAP placement and user association at the same time. These solutions deal with a small evolution of scenarios and not all dynamic constraints at the same time, as the function becomes non-trivial for large parameter sets. To handle time-varying scenarios, they need to be re-trained, which makes it difficult to apply them to highly dynamic cases without much complexity.

To handle the large amount of data and factors, a good solution is decentralized RL. Each agent learns a reduced local problem, decreasing all possible combinations and increasing the number of supported scenarios. Since each agent makes an autonomous decision and computes its own local observation, the model has a higher training diversity with reduced complexity to achieve self-management. The authors of [START_REF] Zhao | Multi-Agent Deep Reinforcement Learning for Trajectory Design and Power Allocation in Multi-UAV Networks[END_REF] and [START_REF] Qin | Distributed UAV-BSs Trajectory Optimization for User-Level Fair Communication Service With Multi-Agent Deep Reinforcement Learning[END_REF] proposed a Multi-Agent DRL (MADRL) model with an additional target neural network to stabilize it. Authors in [START_REF] Zhou | Resource Allocation in UAV-assisted Networks: A Clustering-Aided Reinforcement Learning Approach[END_REF] proposed a hybrid solution to optimize user association and MAP trajectory with static clustered users. With predeployed MAPs on user clusters, the proposed decentralized DRL is more likely to converge. However, the movement and distribution to the cluster centers remain centralized and must be recomputed after large changes or for each new scenario. Our approach will exploit distributed DRL to handle timevarying variables and free itself from centralized clustering by including the deployment phase. In this case, agents must learn to cooperate to achieve near-optimal solutions. The distributed cooperation will be achieved through the attention mechanism. It allows the model to build its own representation of the input data to handle non-stationary scenarios. It creates a comprehensive context to encourage cooperation and transmit complex messages [START_REF] Das | Tarmac: Targeted multi-agent communication[END_REF].

In this paper, we formulate the placement problem to manage MAPs over time. Our solution tackles time-varying user traffic and user mobility through a multi-agent DRL. To achieve real-time behavior, the proposed solution learns to perform a distributed MAP-user positions assignment and schedules the path of MAPs among all users without centralized clustering feedback. Our solution exploits a dual-attention multi-agent DRL model via proximal policy optimization to dynamically move MAPs in 3D. The dual-attention takes into account both users and MAPs information. The cooperation mechanism of our solution allows to manage different scenarios, without a priory information and without re-training, which greatly reduces the complexity. The paper is organized as follows. Section II presents the system model and formulates the addressed problem. Then, Section III describes our proposed solution, whereas Section IV provides our numerical results. Finally, Section V concludes the paper.

II. SYSTEM MODEL & PROBLEM FORMULATION

A. System Model

We consider a downlink network composed of M MAPs operating at mmWave frequency and a grounded sub-6GHz Macro-Base-Station (MBS), jointly providing services to K(t) UEs at time t. Let U(t) = {1, . . . , K(t)} denote the set of user equipments (UE) and M = {1, . . . , M } the set of MAPs. In our system model, we assume that each UE is equipped with two antennas and can communicate either with the sub-6GHz MBS or a mmWave MAP. We assume that each MAP coverage range is determined by its antenna aperture angle ϑ i . We assume that each UE is associated with the Access Point (AP) providing the maximum signal to noise ratio (called max-SNR algorithm). In addition, we assume that the backhaul network interconnecting the MAPs with the core network is fully provisioned (i.e. has sufficient capacity). Thus, we do not optimize backhaul links. However, even with such assumptions, MAP trajectory optimization, which is the focus of this paper, is a crucial task to improve the spectral efficiency of the network by dynamically adapting the location of MAPs w.r.t. grounded UEs dynamics while limiting interference. In this work, we aim at maximizing total network sum-rate. Let R i,j (t) be the rate experienced by UE j communicating with its serving AP i, which is given by the Shannon capacity.

R i,j (t) = Blog 2 (1 + SINR i,j (t)). (1) 
Here, B is the total system bandwidth and SINR i,j (t) is the signal-to-interference-plus-noise ratio experienced by the link i → j, which includes intra-cell and inter-cell interference. In particular, the SINR is affected by the channel path losses, which in turn vary according to several factors, including the 3D location ℓ i (t) of MAP i and ℓ j (t) of UE j.

We distinguish between ground-to-ground sub-6GHz path loss and air-to-ground mmWave path loss. The air-to-ground mmWave path loss depends on Line-of-Sight (LoS) conditions and the euclidean distance d i,j (t) = ∥ℓ i (t)ℓ j (t)∥ between MAP i and UE j at time t [START_REF] Al-Hourani | Optimal LAP Altitude for Maximum Coverage[END_REF]. where p is the LoS probability. Here, PL (Los) i,j , and PL (NLos) i,j are the LoS and NLoS path loss respectively, given by:

PL (T ) i,j (t) = p(t)PL (Los) i,j (t) + (1 -p(t))PL (NLos) i,j (t), (2) MAP i MAP k ϑk ℓ k (t) ℓ j (t) θi,j(t) ℓi(t) ck(t) N (UE) i (t)
PL (l) i,j (t) = 20log( 4πf c d i,j (t) c ) + χ σ l , l ∈ {Los, NLos} (3) 
where f c is the carrier frequency, c is the light's velocity, χ σ l captures the large scale shadowing effect with a standard deviation σ l . The LoS probability depends on the relative elevation angle θ i,j (t) (in radians) between MAP i and UE j (as shown in Figure 1):

p(t) = 1 1 + αe -β(θi,j (t)-α) . (4) 
Here, parameters α and β depend on the radio environment (e.g. buildings' height and Los condition) and are given in [START_REF] Al-Hourani | Optimal LAP Altitude for Maximum Coverage[END_REF].

The ground-to-ground sub-6GHz path-loss [START_REF] Sun | Propagation Path Loss Models for 5G Urban Micro-and Macro-Cellular Scenarios[END_REF] is given as:

PL (T ) i,j (t) = 10αlog 10 (d i,j (t)) + β + 10ηlog 10 (f c ) + χ σ l , (5) 
where α, β and η depends on radio environment [START_REF] Sun | Propagation Path Loss Models for 5G Urban Micro-and Macro-Cellular Scenarios[END_REF] and Los condition, f c is the carrier frequency and χ σ l captures the shadowing effect. The details of path loss parameters are given in Table I.

B. Problem Formulation

Let D j (t) refer to the time-varying data demand of UE j at time t. We use x i,j (t) to indicate whether UE j is associated with AP i at time t, in which case x i,j (t) = 1, otherwise x i,j (t) = 0. In particular, since we assume max-SNR policy for user association, x i,j (t) depends on the location ℓ i (t) of MAP i w.r.t. UE j location ℓ j (t). Thus, the effective network sum-rate R(t) reads as:

R(t) = i∈M j∈U (t) x i,j (t) min (D j (t), R i,j (t)) . (6) 
We now formulate the following problem to maximize the long-term sum-rate subject to instantaneous constraints: max

Ψ(t) lim T →+∞ 1 T T t=1 E[R(t)], (P 1 ) s.t. x i,j (t) ∈ {0, 1}, ∀i ∈ M, j ∈ U(t), (C 1 ) i∈M x i,j (t) = 1, ∀j ∈ U(t), (C 2 ) j∈U (t)
x i,j (t) ≤ P, ∀i ∈ M, (C 3 )

ℓ i (t) ∈ L ⊂ R 3 , ∀i ∈ M, (C 4 ) ∥ℓ i (t + 1) -ℓ i (t)∥ ≤ ∆ℓ, ∀i ∈ M, (C 5 )
where 

Ψ(t) = {ℓ i (t)

III. PROPOSED SOLUTION VIA DISTRIBUTED MADRL

Our proposed solution is based on MADRL and models each MAP as an RL agent, which learns to make autonomous decisions based only on local observations and some messages received from its neighboring UEs. Agents first autonomously assign themselves a set (cluster) of UEs based on a common ground obtained by a message passing between the MAPs. Then, each agent learns its optimal trajectory, successively deciding its optimal location over time. To do so, at each instant, an agent can make an action from a predefined set A = {forward, backward, up, down, left, right, hover}, corresponding to a movement along the xyz-axis, with a fixed step-size ∆ℓ. Our proposed solution is distributed and specifically addresses three challenges: i) a model-free approach, which does not require a priori information about the radio environment, channel statistics and UE data demands; ii) efficient representation of agents state observations and design of reward signals to effectively establish a common ground between agents iii) flexibility to support size-varying networks, including changes in topology, number and positions of UEs.

A. Background on MADRL

In a fully observable environment, the decision making process of an agent i can be formalized as a Markov De-cision Process (MDP). Formally, a MDP can be defined as a tuple (S, A, T , R) in which S is the true state space, A denotes the action space, T (s i (t), a i (t), s i (t + 1)) = P (s i (t + 1) | s i (t), a i (t)) is the probability of transitioning to state s i (t + 1) after making action a i (t) in state s i (t), which results in an immediate reward r i (t) = R(s i (t), a i (t)). The problem for agent i in a MDP is to find an optimal policy π i (t) : S → A that maximizes the expected sum of perceived (γdiscounted) rewards E π [ Te τ =t γ τ -t r i (τ )] over a time horizon T e , where γ ∈ [0, 1). In MADRL, such policy is modeled as a neural network (NN) and is learned by the interaction of several agents with a shared environment. Major challenges appear in this context: the non stationarity of the environment due to the simultaneous interactions of agents. In addition, in our work, an agent has access to only a partial observation of its true state, which is either unknown or difficult to obtain through computation or signals. To efficiently represent agent states with limited complexity, we propose a novel approach based on neural attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF].

B. Dual-Attention Mechanism for Effective Representation Learning

To better represent the true states of the agents, we allow information exchange between communicating entities. Specifically, MAP i can collect information about the locations of neighboring MAPs (defined as N (t) < K to limit the complexity of the information exchange. Then, the agent i learns its actual state representation by encoding the received messages using a message encoder. However, in this dynamic environment where the number and position of UEs may change over time, the size of N (r) i (t), ∀r ∈ {UE, MAP} and the order of messages may vary accordingly. In this context, the architecture of the message encoder must not only be invariant to the varying size of the neighborhood, but also to the permutations of the observed messages. To solve this problem, we adopt the idea from neural attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF] (see Figure 2). Specifically, ∀j ∈ N (r)

i (t), agent i defines k (r) i,j (t) = w (r) i,k (ℓ i (t) -ℓ j (t)) T ∈ R n , v (r) i,j (t) = w (r) i,v (ℓ i (t) -ℓ j (t)) T ∈ R n ,
referred to as the relative key and value associated with message of entity j. In addition, agent i computes its query vector q (r)

i (t) = w (r) i,q ℓ i (t) T ∈ R n .
Here, the encoding matrices w i,k , w i,v , w i,q ∈ R n×3 are learnable parameters (e.g., a hidden layer of dimension n). Then, the value of the messages are aggregated independently to compute agent i state representation ϕ

(r) i ∈ R n : ϕ (r) i (t) = j∈N (r) i (t) α i,j (t)v (r) i,j (t), (7) 
where α i,j (t) defines the interaction vector of agent i w.r.t. entity j and reads as follows: Here, softmax is the normalized exponential function. By construction, the size of ϕ (r) i is constant and equal to n and does not vary with the size of the neighborhood N captures the relative perception of MAP i w.r.t. to neighboring UEs. Next, as shown in Figure 2, we combine these two dual representations to serve as input to an actor-critic framework, which we optimize in an end-to-end manner using the well-known proximal policy optimization (PPO). Specifically, we minimize the (ϵ 1 , ϵ 2 )-clipped proximal loss proposed in our previous work [START_REF] Sana | Transferable and Distributed User Association Policies for 5G and Beyond Networks[END_REF].

α i,j (t) = softmax      q (r) i k (r) i,p T √ n   p∈N (r) i (t)    j . (8) 

C. Designing Effective Reward Function

To effectively learn a common ground between agent, we adopt a hierarchical approach for designing the reward signal. Our goal is first to maximize user coverage, then maximize network sum-rate. To do so, during the training phase, each agent i learns to maximize the following reward function:

r i (t) = (δ i (t) -1)d i (t) + δ i (t)(R(t) -d 0 ). (9) 
Here,

δ i (t) = 1(d i (t) ≤ d 0 )
, where d 0 is a reference distance and d i (t) = ∥ℓ i (t)ℓ * i (t)∥ is the distance of MAP i to its optimal location ℓ * i (t) (w.r.t. (P 1 )). Since this location is not known a priori, we approximate it during the training phase with the location of the nearest assigned centroid c i (t) obtained after clustering UEs using e.g. Kmeans algorithm (Algorithm 1). In particular, we obtain the z-coordinate of centroid by computing the minimal altitude at which a MAP with an aperture angle of ϑ i would cover the UE cluster. In this way, we push agent i to first maximize user coverage (first term in Equation 9) and then network sum-rate (second term in Equation 9). It is worth noting that the clustering operation only serves during the training phase for learning a common ground. In contrast, no central coordinator is required during testing and MAPs autonomously coordinate themselves to optimize (P 1 ) (Algorithm 2).

Remark 1. In practice, we normalize d i (t) by a predefined maximum distance and R(t) by to its average value (w.r.t. environment randomness). Also, instead of the step function δ i (t), we use a smooth Gompertz function (see Figure 3), a generalized logistic function δ i (t) = 1 -0.9e -e -0.06(d i (t)-d 0 ) . IV. NUMERICAL RESULTS

We perform the training of our proposed MADRL algorithm for 10000 Monte-Carlo runs. For each run, we deploy M = 3 MAPs moving with a step size ∆ℓ = 5 m; we also deploy K = 25 UEs in M centroids of radius 25 m, randomly sampled in a 200 m by 200 m area. During the training phase, the UEs are static for T e = 300 iterations while they follow a random waypoint centroid mobility at 0.8m/s during the testing phase. As the model has not been trained with specific mobility model, it is able to support time-varying constraints. We set the agent maximum neighborhood size max card

N (UE) i (t) = 15
and max card N I. We train each model with a learning rate equals to 1e -4 and γ = 0.6. We set PPO-clips (ϵ 1 , ϵ 2 ) = (0.01, 0.5), and compose the message encoders with one multi-layer perceptron (MLP) of n = 128 neurons. The actor and critic comprises also one MLP of 2n neurons. Benchmarks. We define two benchmark solutions. The first benchmark (referred to as Centralized Ben.) pre-computes the centroids of UE clusters using a centralized Kmeans algorithm. Then, each centroid is assigned to the closest MAP, whose trajectory is planned using Dijkstra's algorithm. The second benchmark (referred to as SA-PPO) is similar to our proposed solution, in which we employ a single attention mechanism w.r.t. UEs without any cooperation between MAPs. Learning convergence. We first compare the rewards of SA-PPO and our proposed solution. As shown in Figure 3, both models converge for the complex (P 1 ) problem. Indeed, each method obtains a positive reward for all agents, which means that each agent achieves a placement at a distance less than d 0 to the centroid center (Equation 9). Especially, our solution ends with a higher reward for each agent compared to the SA-PPO training. The difference comes from the lack of explicit cooperation among SA-PPO agents, resulting in a lower reward. Indeed, if two MAPs end up serving the same set of UEs, the sum-rate, which is a global performance, drops sharply. In contrast, by using our proposed dual-attention mechanism, agents converge to the same behavior and cooperatively distribute MAPs to UE clusters. Distributed cooperation. In this step, we validate that our solution is able to deploy and place agents with Static and Moving UEs thanks to cooperation and we compare our solution with the centralized benchmark for a τ c = 200. UE traffic requests are always dynamic and moving MAPs introduce fluctuating level of interference. For the Static scenario, Figure 4 shows that our model matches the sum-rate performance of the centralized approach. Therefore, our solution achieves a fast location negotiation explained by the 10 iterations latency on the deployment phase. The first iterations are used to exchange messages to discover and allocate agents to the negotiated positions. Furthermore, it proves that our model is able to compute and focus a virtual point via message exchange, which leads to a distributed clustering behavior. Concerning the Moving scenario, our solution renegotiates its positions to follow network dynamics robustly. Figure 4 shows the importance of not considering only the MAP deployment phase, due to the change of network during MAPs time of flight, preventing a performance drop. It is now important to extend the time window to ensure that our model does not also suffer from a performance drop. Robustness to dynamic networks. In this step, we investigate how the centralized benchmark and our solution support highly dynamic networks with or without centralized user clustering feedback for a long time period (t = [0, 1000]). Figure 5 shows that the centralized benchmark is attractive when the feedback on clustering occurs every time slot (τ c = 1). This comes with a very high complexity. When the feedback becomes less frequent (τ c = 200), the benchmark is not robust to network dynamics and the performance drops after 30 time slots. This is due to the fact that the clustering information is outdated because of major changes in the network. Figure 5 shows that our solution is able to guarantee a sum-rate and load level without any drop when the entire network configuration changes several times and then achieve real-time behavior. Dual-attention agents trade 20% of the network load L i (t), representing the proportion of users connected to a MAP, against outlier UEs with isolated behavior, with a guaranteed expected sum-rate. At this time scale, the few iterations used to the beginning of the negotiation become negligible and this scenario demonstrates the importance of the parameter τ c . Trade-off on clustering. coordinator. The centralized approach must cluster the UEs every τ c = 10 time slots to match our solution. V. CONCLUSION In this paper, we study the optimization of multi-MAP 3D trajectory for dynamic 5G networks. To this end, we addressed the mobility management of MAPs under time-varying user traffic, user mobility and interference. We proposed a dual-attention MADRL solution capable of self-managing a flexible infrastructure using cooperative MAPs. The proposed solution learns to perform distributed assignment of MAPuser positions and schedules the MAP path among all users without centralized user clustering feedback. Agents converge to the same behavior and cooperatively distribute MAPs to UE clusters. The cooperation mechanism also allows to manage different scenarios, without a priory information and without re-training, which significantly reduces complexity. Our solution does not depend on clustering updates coming from a central coordinator and is robust to network dynamics. In future work, the solution will be extended to handle more dynamic parameters and imperfections such as the backhaul connectivity or imperfect beamforming. Moreover, our solution will include additional metrics such as energy and deployment cost.
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 2 Fig. 2. Dual-Attention-PPO architecture. Agent i collects message from its neighborhood N (r) i .
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 3 composed of nearest entities. The UEs traffic follows a Poisson distribution of parameter k = 1000 Mbps. We consider a Nakagami fastfading model of parameter ν = 1 for each channel and other channel parameters are given in Table
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 3 Fig. 3. Proposed solution and single-attention training rewards r i (t) for each agent and associated step and Gompertz functions δ i (•).
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 4 Fig. 4. Instantaneous sum-rate comparison between our solution and the benchmark for static and mobile UEs over time. Results are averaged over 50 random deployments.

  Figure 6 compares our solution with the centralized benchmark for different clustering periods τ c . The benchmark performance strongly depends on τ c which defines the age of information. In contrast, our solution does not depend on clustering updates coming from a central
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 5 Fig. 5. Instantaneous network sum-rate evolution over time with τc = {1, 200}. Results are averaged over 50 random deployments.
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 6 Fig. 6. Average sum-rate R for our solution and the centralized benchmark for different τc clustering periods.

  , ∀i} and the expectation in (P 1 ) is taken w.r.t the random traffic requests and channels realization, whose statistics are unknown. For the MAPs mobility management problem (P 1 ), the constraint (C 1 ) defines x i,j as a binary variable. Eq. (C 2 ) guarantees that each UE is associated with exactly one AP. If a UE is not connected to a MAP, a connection to the MBS is guaranteed. Constraint (C

3 ) ensures that every MAP cannot accept more than P connections simultaneously. Constraint (C 4 ) restricts MAPs mobility within an operation zone defined by L ⊂ R 3 . This restricted zone can for e.g. define the maximum and minimum flying altitude. Finally, constraint (C 5 ) ensures that a MAP cannot move more than a distance ∆ℓ at a time. In particular, ∆ℓ can be fixed based on the maximum authorized MAP's flight speed. Efficiently solving Problem (P 1 ) is challenging. Indeed, the optimal solution of this non-convex combinatorial problem strongly depends on UEs mobility, the dynamics of UEs traffic demands and channel variations. As we jointly optimize the trajectories of multiple MAPs, solutions based on a centralized exhaustive search are unfeasible in practice. To solve this issue, we propose a model-free approach based on MADRL.
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