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Federated Multi-Agent Deep Reinforcement Learning for Dynamic and Flexible 3D Operation of 5G Multi-MAP Networks

This paper addresses the efficient management of Mobile Access Points (MAPs), which are Unmanned Aerial Vehicles (UAV), in 5G networks. We propose a two-level hierarchical architecture that dynamically reconfigures the network while considering Integrated Access-Backhaul (IAB) constraints. The high-layer decision process determines the number of MAPs through consensus, and we develop a joint optimization process to account for co-dependence in network self-management. In the low-layer, MAPs manage their placement using a doubleattention based Deep Reinforcement Learning (DRL) model that encourages cooperation without retraining. To improve generalization and reduce complexity, we propose a federated mechanism for training and sharing one placement model for every MAP in the low-layer. Additionally, we jointly optimize the placement and backhaul connectivity of MAPs using a multiobjective reward function, considering the impact of varying MAP placement on wireless backhaul connectivity.

I. INTRODUCTION

5G aims to offer fair opportunities for User Equipments (UE) regardless of their location or mobility via efficient management. Mobile Access Points (MAPs), which are Unmanned Aerial Vehicles (UAV), are gaining attention as a flexible infrastructure, useful for various applications [START_REF] Mozaffari | A tutorial on uavs for wireless networks: Applications, challenges, and open problems[END_REF]. MAPs can collaborate to form a Multi-MAPs network, but there is limited research on managing them in dynamic networks with user mobility, interference, varying traffic, and fluctuating MAP numbers. Our objective is to efficiently manage multiple MAPs in terms of their number, placement, and trajectory, while considering dynamic constraints over a longer time-scale than current state of the art approaches. Previous studies have explored different approaches leveraging the 3-dimensional (3D) mobility of MAPs, but often without accounting for all the dynamic network constraints simultaneously. For instance, in [START_REF] Peer | User mobility-aware time stamp for uavbs placement[END_REF], the authors proposed an iterative optimization method for MAP placement based on user's mobility. Another study by Ghanavi et al. [START_REF] Ghanavi | Efficient 3d aerial base station placement considering users mobility by reinforcement learning[END_REF] extended the scenario to multiple MAPs managed by a reinforcement Q-learning algorithm. Wang et al. [START_REF] Wang | 3d uav deployment in multi-uav networks with statistical user position information[END_REF] introduced a virtual forces algorithm based on statistical user distributions for computing network cartography. It is worth noting that user distribution can impact MAP numbers and deployment positions, even when the number of UEs remains constant. These diverse solutions demonstrate the variety of MAP management techniques, highlighting the need for iterative approaches to efficiently handle dynamic network constraints. However, ensuring long-term performance in a constantly changing network remains a challenge.

The aforementioned papers highlight the potential of using a greedy MAPs deployment approach to determine their optimal number. For instance, in [START_REF] Sharafeddine | On-demand deployment of multiple aerial base stations for traffic offloading and network recovery[END_REF], [START_REF] Sabzehali | Optimizing number, placement, and backhaul connectivity of multi-uav networks[END_REF], [START_REF] Zhang | Genetic algorithm enabled particle swarm optimization for aerial base station deployment[END_REF], [START_REF] Lyu | Placement optimization of uav-mounted mobile base stations[END_REF], [START_REF] Qin | Edge-prior placement algorithm for uav-mounted base stations[END_REF], proposed solutions adjust the number of deployed MAPs iteratively to meet network constraints. However, this approach may suffer from convergence delays and does not account for network evolution. In contrast, our study proposes a hierarchical architecture that dynamically determines the number of MAPs for user coverage, independent of the placement procedure. Our architecture aims to strike a balance between cost and coverage by determining both the number and positions of MAPs, as these aspects affects each other.

Naturally, MAP management must adapt to changing network conditions, including trajectory adjustments. In [START_REF] Wu | Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks[END_REF], authors used a successive convex optimization to optimize MAP trajectories and UE data rates under mobility constraints. However, a significant breakthrough in MAP trajectory optimization has been achieved with Multi-Agent Deep Reinforcement Learning (MADRL) models. In [START_REF] Zhao | Multi-Agent Deep Reinforcement Learning for Trajectory Design and Power Allocation in Multi-UAV Networks[END_REF] and [START_REF] Qin | Distributed UAV-BSs Trajectory Optimization for User-Level Fair Communication Service With Multi-Agent Deep Reinforcement Learning[END_REF], authors proposed target MADRL models based on the actorcritic architecture to handle multiple factors. Authors of [START_REF] Zhou | Resource Allocation in UAV-assisted Networks: A Clustering-Aided Reinforcement Learning Approach[END_REF] proposed a MADRL approach with pre-deployed MAPs on UE clusters. This approach takes advantage of the low-complexity deployment algorithm and the ability of MADRL model to adjust positions in complex environments.

Our paper presents a problem formulation and proposes a two-level hierarchical architecture based on a joint optimization for dynamic 5G network while considering Integrated Access-Backhaul (IAB) constraints. The decision process is scalable and distributed and it determines the number of MAPs through consensus in the high-layer. In the low-layer, MAPs manage their placement using a double-attention based DRL model that encourages cooperation without any a-priory information or retraining procedure. To increase the model's generalization ability, reduce complexity and improve performance in novel scenarios, we propose a federated mechanism that involves training and sharing one placement model for every MAP, as suggested in [START_REF] Hu | Meta-reinforcement learning for trajectory design in wireless UAV networks[END_REF]. Additionally, we aim to jointly optimize backhaul connectivity of MAPs using a multiobjective reward function, considering the impact of varying MAP placement on wireless backhaul link as highlighted in previous studies [START_REF] Iradukunda | Uav-enabled wireless backhaul networks using non-orthogonal multiple access[END_REF] and [START_REF] Dai | Uav placement and resource allocation for multi-hop uav assisted backhaul system[END_REF].

The paper is organized as follows. Section II presents the system model and Section III formulates the addressed problem. Then, Section IV describes our proposed solution, whereas Section V provides our numerical results. Finally, Section VI concludes the paper. 

II. SYSTEM MODEL

We consider a downlink network composed of M MAPs operating at mmWave frequencies. Each flying MAP can establish a backhaul link with a grounded IAB donor. We define M s (t) as the number of deployed MAPs at time t that can move to provide services to K(t) UE. Let U(t) = {1, . . . , K(t)} be the set of UEs, S 0 (t) the set of all Base-Station (BS) including the IAB donor indexed by 0 and S(t) = {1, . . . , M } denotes the dynamic set of deployed MAPs 1 . In this network, each UE has two antennas and can communicate via an access link with either a MAP through mmWave or the IAB donor using sub-6GHz communication. Moreover, each UE is moving and changes its location ℓ j (t) on each time slot. In this context, we assume that UEs can only be associated with one BS i ∈ S 0 providing the maximum signal to noise ratio (via max-SNR algorithm). Once deployed, MAP i ∈ S can adapt its 3D location ℓ i (t) in a region L of R 3 space and can only serve at most K i (t) UEs due to beamforming capability. However, even with such assumptions, optimizing the number and placement of MAPs is an important task to improve the network spectral efficiency. MAPs should dynamically adjust their number and location to follow UE's dynamics while limiting interference.

A. Channel Modeling

Our system model considers an out-of-band relaying network where we assume that the access and backhaul links are orthogonal and do not interfere on each other. We split the mmWave bandwidth B into backhaul and access links, where µ ∈ [0, 1] represents the fraction of B allocated to the backhaul network, while (1 -µ)B is used for UEs served by Spatial Division Multiple Access (SDMA). With all the bandwidth allocated, UE j receives data from BS i at rate R i,j and experiences the downlink signal-to-interference-plus-noise ratio SINR (a) i,j :

SINR (a) i,j (t) = ζ i,j (t)P Tx i,j G Tx i,j (t)G H i,j (t)G Rx i,j (t) I (a) i,j (t) + (1 -µ)N 0 B . ( 1 
)
1 For sake of clarity, we adopt S and S 0 notation for the rest of the paper where P Tx i,j is the transmit power from BS i towards UE j, N 0 is the Gaussian noise power spectrum density. We define G Tx i,j (t) the transmit antenna gain, G Rx i,j (t) receive antenna gain between antenna of BS i and UE j. To reflect the impact of the environment on channels, we define ζ i,j (t) the smallscale fading coefficient, G H i,j (t) channel gain representing the path-loss and large-scale shadowing effect and I (a) i,j (t) the total interference experienced by UE j communicating with BS i coming from inter-access links. Hence, the access capacity for a link between BS i and UE j C (a) i,j (t) is defined as:

C (a) i,j (t) = (1 -µ)B • log 2 (1 + x i,j (t)SINR (a) i,j (t)) (2) 
where x i,j is the binary UE association variable, which equals 1 when UE j is associated with BS i and 0 otherwise. Similarly, we define z i (t) the binary backhaul link association variable that determines if a MAP is currently deployed and C

(b) i (t) the backhaul capacity for the link between MAP i and the IAB donor as:

C (b) i (t) = µB • log 2 (1 + z i (t)SINR (b) i,j (t)) (3) 
where the experienced SINR (b) i (t) by the MAP i deployed to the IAB donor indexed by 0 is defined as follows:

SINR (b) i (t) = ζ 0,i (t)P Tx 0,i G Tx 0,i (t)G H 0,i (t)G Rx 0,i (t) I (b) i (t) + µN 0 B (4) 
In the case of backhaul link, I (b) i (t) comprises intra-backhaul interference and self-interference coming from transmitted and received messages with MAPs.

In both link definitions, the SINR and the channel capacity depend on path losses and interference influenced by various topological factors. Our system model considers ground-toground sub-6GHz path loss and air-to-ground mmWave path loss, which are affected by Line-of-Sight (LoS) conditions and the distance d i,j (t) = ∥ℓ i (t) -ℓ j (t)∥ between MAP i and UE j at time t. For detailed formulations and parameters, please refer to our previous work [START_REF] Catté | Dual-attention deep reinforcement learning for multi-map 3d trajectory optimization in dynamic 5g networks[END_REF].

B. Effective Rate and Network Sum-rate

From the above context, we assume that MAP i ∈ S shares a fraction

β i,j (t) ∈ [0, 1] of its backhaul capacity C (b) i (t) to each associated access link. For each served UE i, we define Γ i,j (t) = min(D j (t), C (a) 
i,j (t)) the effective data requirement when associated to BS i with D j (t) the UE j traffic request at time t (in bps). Hence, the instantaneous effective rate R i,j (t) perceived by UE j from BS i is given as:

R i,j (t) = min(Γ i,j (t), β i,j (t)z i (t)C (b) i (t)), ∀i ∈ S, Γ i,j (t), if i = 0. (5) 
Finally, we define the total network sum-rate R(t) as:

R(t) = i∈S j∈U (t) R i,j (t) (6) 

III. PROBLEM FORMULATION

As defined in the previous section, our goal is to optimize the user experience in dynamic networks with varying demand, locations, and numbers of MAPs and UEs. We aim to optimize at the same time i) the number of deployed MAPs, ii) their backhaul allocation and iii) the trajectory of each MAP. To that end, we formulate the Multi-MAPs management problem to maximize the long-term sum rate: max

Ψ(t) lim T →+∞ 1 T T t=1 E[R(t)], (P) s.t. x i,j (t), z i (t) ∈ {0, 1}, ∀i ∈ S 0 , j ∈ U(t), (C 1 ) j∈U (t) x i,j (t) ≤ K i (t), ∀i ∈ S 0 , (C 2 ) i∈S0 x i,j (t) ≤ 1, ∀j ∈ U(t), (C 3 ) i∈S z i (t) ≤ M, (C 4 ) β i,j (t) ∈ [0, 1], ∀i ∈ S, j ∈ U(t), (C 5 ) j∈U (t) β i,j (t) ≤ 1, ∀i ∈ S, (C 6 ) ℓ i (t) ∈ L ⊂ R 3 , ∀i ∈ S, (C 7 ) ||ℓ i (t + 1) -ℓ i (t)|| ≤ ∆ℓ, ∀i ∈ S, (C 8 ) 0 ≤ M s (t) ≤ M, ( C 9 ) 
where variables Ψ(t) = {M s (t), z i (t), β i,j (t), ℓ i (t), ∀i, j} and the expectation in (P) is taken w.r.t. the random processes, whose statistics are unknown. Concerning the Multi-MAPs management problem (P), constraint (C 2 ) ensures for each BS i to serve at most K i (t) UEs simultaneously. Eq. (C 3 ) guarantees that each UE is associated to one single BS at the same time. Respectively, (C 4 ) ensures that the IAB donor serves at most M active backhaul links simultaneously. Moreover, (C 5 )-(C 6 ) guarantees a positive maximum backhaul allocation β i,j (t) for each UE i connected to MAP i ∈ S and sum to at most one at each time t. Concerning MAPs mobility, (C 7 )-(C 8 ) define a bounded region L of space where MAPs cannot move more than ∆ℓ meters at a time. Finally, constraint (C 9 ) ensures to not activate more than MAP M at the same time. Problem (P) is a non-convex combinatorial problem that increases with network size, where each variable is interdependent. The required number of MAPs depends on UE topology, such as location and traffic demand distribution, which determines whether a dense or scattered deployment is necessary. For determining the optimal MAP locations, a centralized exhaustive search is not feasible due to interdependence between the number and locations of MAPs and the complexity of the network's interference profile. Therefore, we propose a two-level hierarchical optimization framework to optimize Ψ(t).

IV. PROPOSED SOLUTION

We propose a two-level framework to address problem (P), wherein the high-level is responsible for jointly determining the number of MAPs and the low-level uses federated MADRL to position the MAPs under time-varying network constraints. 

A. High-Level -Decentralized Trade-off

In this section, we discuss the intuitions and motivations behind the proposed distributed Trade-off algorithm. First, the MAP number issue must be addressed simultaneously with topology and radio configuration conflict constraints. In fact, the number of MAP adjustment depends on: i) the network topology i.e. UE's distribution; ii) the network nodes configuration i.e. UE's association; which are not considered in standard approaches like clustering. We propose to include both aspects in the calculation of the trade-off θ i . Thus, the associated problem raises multiple challenges: the selfdependency of MAP locations and number; ensuring sufficient UE coverage; maintaining backhaul connectivity; minimizing the number of MAPs to limit operational complexity. To tackle these objectives with low complexity and a long-term vision, we propose an iterative algorithm that considers both aspects in the trade-off calculation.

B. Trade-off Computation

As described in alg.1, each MAP i maintains a trade-off dictionary θ i (t) to decide if it needs to enable a new MAP for support or to be repatriated. Then, each MAP computes its UEs inertia Φ i (i), determined by the sum of squared distance of active UEs to the MAP; which captures the topology consideration. Additionally, the MAP i determines if its beams are currently overloaded or lower than a threshold number of beam K i,min ; which capture current network configuration. When the inertia is high or when the station is overloaded, θ i 

C. Low Level -Cooperative Placement

To solve the dynamic MAP placement problem, we propose to model each MAP as an autonomous agent that have to cooperate to serve a dynamic 5G network. This approach comes with new challenges: follow and distributes UEs demand; schedules their path over time; collect and process surrounding information perception by their own. For this purpose, we propose a Multi-Agent Deep Reinforcement Learning (MADRL) algorithm included in the low-level of our hierarchical architecture. Thus, to efficiently solve the MADRL problem, we proposed in [START_REF] Catté | Dual-attention deep reinforcement learning for multi-map 3d trajectory optimization in dynamic 5g networks[END_REF] a double-attention actor-critic architecture. This model achieves a distributed cooperation without any prior information and without retraining procedures for time-varying scenarios. This cooperation is accomplished by learning, exchanging and interpreting messages m i,j between agents. The proposed solution solved multiple challenges : i) Model-free property for the incoming radio environment; ii) Agent state observations efficient representation; iii) Network scalability; iv) Distributed Cooperation. In addition, as described in the previous section, the placement optimization problem for re-configurable Multi-UAV 5G networks implies a size varying set of M s (t) agent which implies new challenges: i) Agents context-free representation to M s (t); ii) Model scalability through varying S; iii) Limited solution complexity; iv) Generalization ability, which is a current and fundamental topic for MADRL field. Thus, the core of our work is to build and develop a MADRL model to solve these challenges through the prism of the MAPs dynamic placement.

D. Codebook Construction

With the agent set varying, the first trivial approach is to build a collection of scenario specific models to form a Codebook. This codebook will serve as a Baseline since it can be assimilated to state of the art solutions applied in our scenario. In this approach, the codebook is constructed with one specialized optimal model {π k,i }, ∀k ∈ {0, ..., i}, ∀i ∈ S per agent i per possible agent set {0, ..., M s (t)}, M s (t) ∈ {0, ..., M } distributed by the model dispersion entity. Furthermore, the core of our contribution is to propose a single common model capable of handling all possible scenarios with a minimal loss of performance. In that scope, we define the operational efficiency of the approach as : η = R(t)

Oc , where O c is the operational complexity defined by the number of different policy to maintain. By construction, the codebook contains optimal models but does not fit the challenges defined above. In fact, this solution is context-aware and can not be generalizable as it must have been trained for specific scenarios with high complexity: O c = M (M +1) 2 (Table I). In this context, we propose to reduce the number of models by increasing their generalization ability. As each agent will handle more configurations, each model must improve its contextual representation with a guaranteed stability.

E. Share to Conquer

In the context of varying number of agent, we propose a curriculum MADRL (referred to C-MADRL) training approach. In contrast to the previous approach, each agent maintain its own model through all possible configurations which reduces the operation complexity to O c = M and do not need additional model loading to deployed MAPs. Each agent continuously learns to make autonomous decisions based on a partial observations from its neighboring UEs N (U E) i and messages received from all other MAPs that may join or leave the network. This decision process can be formalized as a Markov Decision Process (MDP). Each time slot, agents receive UEs locations ℓ i (t) and other agents encoded location ℓ i (t) to form their observations. Observations from UEs o i,U E (t) and from agents messages o i,M AP (t) of agent i are gathered and combined to the observation o i (t) to construct its state s i (t) which is used to perform a i (t), the action of agent i from a predefined action space A = {forward, backward, up, down, left, right, hover} with a fixed step size ∆ℓ. This action leads to a new state s i (t + 1) with a probability T (s i (t), a i (t), s i (t+1)) = P (s i (t+1)|s i (t), a i (t)) and to an immediate reward r i (t) = R(s i (t), a i (t)). We define the multi-objective reward r i (t) as :

r i (t) = (δ i (t) -1)d i (t) + δ i (t)(C (b) i (t) -d 0 ). (7) 
Here,

δ i (t) = 1(d i (t) ≤ d 0 )
, where d 0 is a reference distance and d i (t) = ∥ℓ i (t) -ℓ * i (t)∥ is the distance of MAP i to its optimal location ℓ * i (t). Since this location is not known a priory, we approximate it during the training phase with the location of the nearest assigned centroid obtained after clustering UEs using e.g. Kmeans algorithm. As demonstrated in our previous work [START_REF] Sana | Learning hierarchical resource allocation and multi-agent coordination of 5g mobile iab nodes[END_REF], this multi-objective reward pushes agents to maximize user coverage and backhaul capacity at the same time. Then, each agent learns to provide connectivity and autonomously reconfigure the backhaul network w.r.t. network dynamics. To do so, each agent learns a policy π i (t) that maximizes the expected sum of perceived (γ-discounted) rewards E π [ Te τ =t γ τ -t r i (τ )] over a time horizon T l , where γ ∈ [0, 1). However, as defined above, each agent partial observations o i (t) of the network state do not scale with a varying number of agent. We propose to fix the observation o i (t) size of each agent i to only consider a neighboring set of agent to communicate N (M AP ) i

. Thus, each agent may be trained and exploited independently of the total number of agent M s (t). This result is supported by the double-attention mechanism for cooperation: we allow message exchange between agents and coming from UEs so that they can build their own feature map Φ i (t) that captures their relative perception of the surrounding environment and that is invariant of the messages permutations and size by construction. We propose to increase the generality ability by learning the cooperation skill in one single model that can be distributed to every agent.

F. Federated Mechanism

On that section, we propose a Federated MADRL (referred to F-MADRL) mechanism. The goal is to share the knowledge of placement and collaboration into a single policy π f that can be propagated to new any agent, no matter their number, no matter which agent is enabled which reduce the operational complexity to O c 1 (Table I). This approach brings the MAP placement problem to a new dimension where the issue is no longer to determine the architecture of the models but the processing of observations and cooperation. Then, contrary to C-MADRL, where each agent can be distinguished fundamentally by its model, this approach introduces the new challenge of distinguishing agents based solely on observations. To achieve this, during the training phase [START_REF] Catté | Dual-attention deep reinforcement learning for multi-map 3d trajectory optimization in dynamic 5g networks[END_REF], the Federated mechanism retrieves the weights of all the agent models w i (t) to average them and updates the agent models with a proportion rate α f every τ f :

w i (t) = α f × w i (t) + (1 -α f ) × w i (t).
In this proposed solution, parameters α f and τ f ensures the model stability while generalizing avoiding lack of convergence and slowing down. As shown in figure 2, we federate weights of an actor-critic framework comprising two attention mechanism layer (Att.Mec) which is optimized in an endto-end manner using proximal policy optimization (PPO) to minimize the the (ϵ 1 , ϵ 2 )-clipped proximal loss function.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of our twolevel hierarchical framework in a dynamic 5G network. We set PPO-clips (ϵ 1 , ϵ 2 ) = (0.01, 0.5), and compose the message encoders with one multi-layer perceptron (MLP) of n = 128 neurons activated via rec. The actor and critic comprises also one MLP of 2n neurons. For the Codebook construction, we train a set of model for scenarios with {2, 3, 4} MAPs. This approach may be assimilated to the standard state-of-the-art approach with specialized models that do not take into account a variable number of MAP. For the exploitation phase, when M s (t) > 4, a random model is sampled from the M s (t) = 4 Federation Policy Convergence. To begin, we assess convergence performances of proposed benchmarks. Fig 3 shows the rolling averaged reward over a 500-sized window and over all agents. Under the constraints of a single policy, the F-MADRL solution is able to acquire the capacity to cooperate within a single policy as it have the same convergence than the C-MADRL and Codebook approaches. Though there are drops in reward due to the federation mechanism, it stabilizes during training, confirming the acquisition of cooperation capacity in one single policy. However, due to the generalization capability provided by the federation, the observed reward is lower compared to the specialized Codebook approach, which is specialized for a every scenario.

(U E) i , N (M AP ) i } {15, 5} D i (t)( k-Poisson) 1000 
Federation for Generalization. We examine every MADRL generalization ability in the dynamic 5G network. For 200 configurations that last T l = 100 iterations, we deploy now K(t) = 60 UEs and M s = K(t)/K i MAPs. UEs now follow a random way-point centroid mobility at 0.8m/s with a blockage probability of 0.5 that which leads to a variable total number of connected UE and MAPs between each episodes. As every model has not been trained with specific mobility model, it is able to support multiple type of mobility. Here, the Codebook approach suffers of a drop of performance in unseen configuration, while the F-MADRL continuously increases and scale with the network with a 31% improvement with M s (t) = 6, while the 

VI. CONCLUSION

This study proposes a scalable and distributed solution for determining the optimal placement and number of MAPs in a dynamic 5G network with IAB constraint. The solution utilizes a two-layer hierarchical approach where MAPs decide on their number and optimize backhaul connectivity while autonomously reconfiguring the network. Numerical evaluations show up to 62% network sum-rate increase and improved operation compared to a state-of-the-art baseline. The proposed solution removes the constraint for a fixed number of deployed MAPs, paving the way for new possibilities in multi-agent systems with a varying number of agents.
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 1 Fig. 1. System model with one IAB Donor, 2 deployed MAPs maintaining their trade-off value {θ M 1 , θ M 2 } and sharing policy π f with 1 joining MAP, 5 communicating UEs with 1 joining UE and corresponding links.
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Algorithm 1 :

 1 Trade-off Algorithm Input: S set of MAPs; U set of UEs Ki maximum beam per MAP 1 Enable K(t)/Ei[Ki] MAPs and start low-level MADRL algorithm [17] 2 for t ∈ [0, Tn] do 3 if t%τn = 0 then Init θi = {i : 0}∀i ∈ S

	4	for i ∈ S do
	5	if θi < 0 then MAP i decides to repatriate
	6 7 8	if θi > 0 then MAP i enables new MAP i * MAP i * loads model π f from the IAB donor
	9	if Ms(t) < M then
	10	Update network environment
	11	for i ∈ S do
	12	Update θi through local monitoring
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