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Abstract—This paper presents an ar-
chitecture for broadband wireless trans-
ceivers operating in the D-band with 
the aim of covering tens of GHz of band 
over the air with a limited bandwidth per 
channel at the baseband. The main idea 
is to combine several baseband chan-
nels in a multi-channel radio-frequency 
(RF) signal. This is in contrast with the 
more conventional trend of using a single 
channel from baseband (or intermedi-
ate frequency) to RF. In this work, the 
main challenges introduced by this type 
of broadband channel bonding architec-
ture are analyzed and some solutions are 
provided. A prototype implementation in 
CMOS 45 nm RFSOI technology and low 
cost PCB technology is used to illustrate 
the  potentialities of this disruptive ap-
proach.

Index Terms—xxx.

I.  INTRODUCTION

IN the race to increase the wireless data 
rate to satisfy the growing demand in 
connectivity and capacity of current 

and future communication systems and 
networks, the D-band, located between 
110 and 170 GHz, is becoming a strong 
candidate as the first wireless frequency 
band able to offer throughputs that are 
competitive with optical fiber communi-
cations. The goal is to be able to provide 
a data-rate of 100 Gb/s or higher at dis-
tances up to a few hundreds of meters, 
which are common requirements of fron-
thaul/backhaul links for 5G and beyond 
5G networks [1,2]. Other applications 
include shorter distance links for kiosk 
or docking fast downloading and medium 
distance links to replace cables in a data 
center or even guided links using dielec-
tric waveguides to connect the baseband 
unit to the remote radio head at the mobile 
network or fixed wireless internet access 
points [3].

In this context, maximizing the spec-
tral and energy efficiencies are key objec-
tives. The maximum data rate that can be 
achieved by a wireless link is ultimately 
limited by the available bandwidth (BW) 
and the noise according to the Shannon 
capacity limit [4]. Figure 1 shows the 
maximum attainable data rate for a set of 
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reasonable link parameters shown in the 
figure inset. In this figure, a reasonable 
fractional BW of 20% is considered for 
all carrier frequencies. The figure com-
pares the maximum capacity of the chan-
nel for different modulation schemes. In-
terestingly, the peak capacity is achieved 
for 16-QAM at different distances and 
carrier frequencies. It is worth noting that 
100 Gb/s can be achieved at 200 m using 
16-QAM modulation. Therefore, a BW in 
the order of a few tens of GHz is required 
to achieve the 100 Gb/s data rate. 

In this work, channel bonding architec-
tures are proposed as an energy efficient 
alternative to conventional broadband 
single channel transceivers operating at 
the D-band. They support tens of GHz of 
RF BW but with much smaller baseband 
(BB) BW than other competing approach-
es. Section 2 introduces the proposed 
channel bonding – or channel aggregation 
– architecture as well as the main chal-
lenges. Section 3 presents some examples 
of implementation of the proposed trans-
ceiver architectures. Section 4 covers 
experimental point-to-point links results 

and the conclusions of this work and per-
spectives are summed up in Section 5.

II.  CHANNEL BONDING  
TRANSCEIVERS

The basic idea behind the proposed ar-
chitecture consists of building the wide-
band signal sent over the air by combin-
ing multiple narrower band channels. This 
principle is illustrated in Figure 2, where 
a total RF BW of 34.56 GHz is obtained 
by combining 16 channels of 2.16 GHz 
band each. The figure shows the trans-
mitter (TX) section; the receiver (RX) 
is just a mirror version. Instead of bring-
ing the 16 channels directly from  BB 
to  RF band,  a two-step  up-conversion  
scheme is preferred. It allows reducing 
the number of required local oscillator 
(LO) signals. Indeed, by grouping the BB 
channels in bundles of four channels and 
implementing a first up-conversion to in-
termediate frequency (IF), only four LOs 
are required, assuming all bundles of four 
BB channels share the same IF. Next, the 
four IF signals (containing four BB chan-

Fig. 1.  Maximum link data rate as a function of carrier frequency according to the Shannon capacity limit 
for a 20% fractional bandwidth channel.
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nels each) are converted to four different 
sub-bands at RF. This requires four ad-
ditional LO frequencies. In this way, the 
up-conversion of the 16 BB channels only 
requires eight LO signals.

The careful selection of the frequency 
plan allows for a further property of the 
proposed transceiver architecture shown 
in Figure 2. All LO frequencies are integer 
multiples of the same number, 2.16 GHz, 
which corresponds to the channel spacing. 
This allows generating all LO frequencies 
using integer-N frequency multiplication 
[5] from the same common input refer-
ence. This technique has been proved to 
be very effective in generating multiple 
LO signals with adjacent channels spurs 
smaller than –25 dBc [6,7]. This feature is 
important since channel-to-channel inter-
ference in this type of transceivers should 
be kept below –20 dBc in order to enable 
a good enough signal to interference plus 
noise ratio (SINR) for high order modu-
lations such as 16-QAM or 64-QAM [8]. 
Phase noise (PN) is also a limiting factor 
for high order modulations. The investiga-
tion of [8] indicates that the PN at 1 MHz 

offset from the carrier and the noise floor 
should be better than –98 dBc/Hz and 
–120 dBc/Hz, respectively, in order to de-
grade the SINR by less than 1.5 dB.

One additional challenge for this 
type of architecture is the way the dif-
ferent channel bonding operations are 
performed. In the proposed architecture 
shown in Figure 2, two channel bonding 
operations need to be realized. The first 
one happens at IF (V-band) and in the im-
plementation of [9] it is realized using an 
on-chip hybrid coupler at the expenses of 
around 9 dB of insertion losses. The sec-
ond one is done at RF (D-band) and sev-
eral options are possible, such as on-chip 
[10], in-package [11], or over the air pow-
er combining [12]. From all these options, 
over-the-air power combining is the most 
power-efficient, as shown in [12].

III.  CHANNEL BONDING TX AND 
RX EXAMPLES

Several implementation examples of 
channel bonding TX and RX modules 
and circuits are presented in the next sub-

Fig. 2.  Channel bonding TX architecture.

TEMOB.indb   59TEMOB.indb   59 25/07/23   4:16 PM25/07/23   4:16 PM



60� DISRUPTIVE TRX DESIGN FOR THE D-BAND

sections. They are used in the point-to-point 
link experiments presented in Section 4.

Baseband to IF up-converter
The first implementation example 

corresponds to the first up-conversion 
and channel aggregation step of the TX 
architecture in Figure 2. This circuit is 
used to generate each one of the IF signal 
four-channel bundles described in Section 
2. The circuit block diagram and micro-
photograph is shown in Figure 3. It con-
stitutes four lanes with the same structure. 
Each lane contains an LO generator and 
a I/Q up-converter composed of a couple 
of I and Q active filters, an I/Q mixer and 
a voltage controlled amplifier (VGA). 
The output of each lane contains the cor-
responding BB channels up-converted 
to a different channel at the IF band, as 
shown in Figure 3. The four lane outputs 
are combined on-chip using a differential 
hybrid coupler. More circuit details can 
be found in [9]. The circuit is fabricated 
using a 45 nm RFSOI process and con-
sumes 475 mW from a 1 V supply, occu-
pying an area of 2 × 3.5 mm2.

IF to D-band TX and RX modules
A first version of a two-channel TX 

and RX D-band circuit was implemented 
in 45 nm RFSOI technology. The block 
diagram, circuit microphotographs and 
module boards, including the antennas, 
are shown in Figure 4. The TX realizes 
the up-conversion and channel bonding 
operation for the two uppermost D-band 
sub-channels of the transmitter shown 
in Figure 2. The two IF signals are taken 
from the same circuit input for testing sim-
plicity. The RX realizes the down-conver-
sion of the same two uppermost D-band 
sub-channels but provides them at sepa-
rate IF outputs. Both circuits are mounted 
on a four-layer PCB module integrating 
the antennas. Each of the two D-band 
ports of the ICs (outputs for the TX and 
inputs for the RX) is connected to a sep-
arate sub-array of a four-patch square an-
tenna array implemented in the back-side 
of the PCB. These in-package antennas 
are intended to be combined with planar 
lenses to realize a high gain in the order 
of 30 dBi. More details about the anten-
na system can be found in [11,13] and 
the circuits are described in detail in [14]. 

Fig. 3.  BB to IF band up-converter and channel bonding circuit implementation.

TEMOB.indb   60TEMOB.indb   60 25/07/23   4:16 PM25/07/23   4:16 PM



TECHNOLOGIES ENABLING FUTURE MOBILE CONNECTIVITY AND SENSING� 61

The summary of TX and RX single tone 
measurements are shown in Figure 5 
(note that the gains from IF to RF in the 
figure do not include the flat lens anten-
na gain). The effective isotropic radiated 
power (EIRP) at the 1 dB compression 
point achieved by the TX module (includ-
ing the transmit array lens) is 26.4 dBm. 
For a multi-channel signal using high-
order modulation the back-off should be 
larger than for single-channel signals due 
to a higher peak-to-average power ratio. 
A back-off of 9 dB has been found to 
be required for 16-QAM multi-channel 

Fig. 4.  D-band TX and RX modules and circuits.

Fig. 5.  D-band channel bonding TX and RX mod-
ule frequency domain characteristics.
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modulations in our system, resulting in 
an effective TX EIRP for modulated sig-
nals of 7.4 dB. The receiver module has 
a noise factor (NF) that varies from 11 to 
15 dB across the band. The power con-
sumption of the TX and RX circuits are 
600 mW and 400 mW, respectively.

LO generation
The multiple LO signals required in 

the circuits presented in Sections 3.1 
and 3.2 are all generated using the same 
technique based on integer-N frequen-

cy multiplication described in [5]. The 
four LO signals required for the first up-
conversion operation are shown in Figure 
6. The PN at 1 MHz offset is better than 
–100 dBc/Hz and the PN noise floor is 
better than –120 dBc/Hz. The LO signals 
for the second up-conversion step (the 
two highest frequency LO frequencies) 
are shown in Figure 7. The PN at 1 MHz 
offset is also smaller than –100 dBc/Hz 
and the PN noise floor is better than –125 
dBc/Hz. Additionally, LO spurs in the 
adjacent channel frequencies are smaller 
than –30 dBc in the worst case. All these 

Fig. 6.  LO signals spectrum and PN for the BB-IF up-converter.

Fig. 7.  LO signals spectrum and phase noise for the D-band TX and RX circuits.
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features enable multi-channel operation 
with modulations schemes up to 64-QAM 
over individual channel BW of 2.16 GHz.

IV.  POINT-TO-POINT LINKS  
EXPERIMENTS

Two point-to-point links experiments 
are presented in this section, the first in-
volving the IF to D-band modules pre-
sented in Section 3.2 and the second one 
involving a full BB to D-band TX combin-
ing the circuits from sections 3.1 and 3.2.

Link demonstration based on D-band TX 
and RX modules

The TX and RX modules are inserted 
into a full link demonstration platform 
combining a MATLAB signal-processing 
environment that implements the digital 
BB (DBB) TX and RX functions and 

controls an arbitrary waveform genera-
tor (AWG) and a digital sampling scope 
(DSO) to interface with the analog com-
ponents. In this first experiment, the IF 
signals at the input of the D-band TX 
module are generated by the AWG over 
the whole IF BW and up-converted to 
V-band using a commercial mixer and 
LO generator, as shown in Figure 8. The 
IF output signals of the D-band RX mod-
ule are directly sampled by the DSO. 
The full TX-RX point-to-point link set-
up is shown in Figure 8. The TX module 
is equipped with a transmit array planar 
lens but not the RX module. The link 
distance is set to 42 cm. Figure 9 shows 
the signal spectrum and received constel-
lations. The maximum data-rate is 56.32 
Gb/s for 16-QAM modulation with er-
ror vector magnitude (EVM) better than 
13% in all channels.

Fig. 8.  Point-to-point links implemented using the D-band TX and RX modules described in Section 3.2.
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Link demonstration based on BB to 
D-band TX

For the second experiment, the TX cir-
cuits from Sections 3.1 and 3.2 are com-
bined in order to realize a full transmit-
ter from multiple BB channel up to the 
D-band. The block diagram of the BB to 

D-band TX is shown in Figure 10. The 
RX is implemented using a commercial 
D-band receiver with standard 20 dBi 
horn antenna. The complete link set-up is 
shown in Figure 11. The BB signals are 
generated using a multi-channel AWG 
and a DSO is used to sample the IF signal 

Fig. 9.  D-band point-to-point link results.

Fig. 10.  BB to D-band TX block diagram.
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at the output of the D-band commercial 
receiver. This circuit has a worst case NF 
of 18 dB across the signal band. Table 1 
shows a link budget analysis. The SNR 
should be 14 dB for 16-QAM modula-
tions in order to attain a raw bit error rate 
(BER) of 10–2 that results in an acceptable 
packet error rate (PER) of 10-4 with rea-
sonable LDPC forward-error correction 
codes [15]. This is achieved at a 70 cm 

link distance considering the available 
EIRP and the RX NF numbers, with a 
small implementation margin.

The link shown in Figure 11 is mea-
sured for various distances. The DBB RX 
provides performance metrics such as sig-
nal power per channel, BER, EVM and 
the received constellations. The results of 
Figure 12 show the evolution of EVM per 
channel as the distance is increased from 

Fig. 11.  BB to D-band point-to-point link set-up.

TABLE 1
Link budget analysis

Parameter Per channel Full band

BW (GHz) 2.16 IF: 2 × 4 × 2.16
RF 8 × 2.16

BB I or Q diff. peak amp. (mV @ 100 Ω) 750

BB I or Q rms amp. (mV @ 100 Ω) 270

BB to IF up-converter gain (dB) –29

IF signal power (dBm) –30.4 –24.4 (×2)

D-band TX gain (dB) 37

EIRP@1dBCP (dBm) 17.4 26.4

Back-off (dB) 10

EIRP for IF power (dBm) 7.4 16.4

Path Loss @ 70 cm (dB) 72.7

Rx antenna gain (dBi) 20

Rx NF (dB) 18

RX signal @ antenna aperture (dBm) –45.3 –36.3

RX noise @ antenna aperture (dBm) –62 –53

SNR 16.7

Margin for BER 10–2 on 16-QAM (dB) 2.7
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Fig. 12.  EVM versus channel RX signal power for the set-up shown in Figure 11 as the TX-RX link dis-
tance is varied.

Fig. 13.  RX signal waveform, spectrum and constellations for a link distance of 35 cm and 56.32 Gb/s of 
total data-rate.
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16 to 70 cm. Note that the target EVM 
of –14 dB, or 20%, (for BER = 10-2) is 
obtained for single channel power of –45 
dBm, which corresponds to a link dis-
tance of 70 cm. The RX signal waveform 
and spectrum as well as the constellations 
for each channel for an intermediate dis-
tance of 35 cm are shown in Figure 13. 
Each channel is modulated with a 7.04 
Gb/s 16-QAM signal resulting in a total 
link data-rate of 56.32 Gb/s and in an en-
ergy efficiency of 27.5 pJ/bit.

V. CONCLUSION

In this work, a disruptive implemen-
tation of TX and RX for high-data rate 
wireless communications based on chan-
nel bonding architectures is presented. 
The most challenging issues, including 
multiple LO signals generation and pow-
er combining approaches have been dis-
cussed. A full BB to D-band transceiver 
and two different experiments of point-to-
point links have been presented showing 
the potentialities of these type of architec-
tures for 100 Gb/s wireless links achiev-
ing energy efficiencies in the range of a 
few tens of pJ/bit.
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