
HAL Id: cea-04228011
https://cea.hal.science/cea-04228011

Submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AIMOS: Metamorphic testing of AI - An industrial
application

Augustin Lemesle, Aymeric Varasse, Zakaria Chihani, Dominique Tachet

To cite this version:
Augustin Lemesle, Aymeric Varasse, Zakaria Chihani, Dominique Tachet. AIMOS: Metamorphic
testing of AI - An industrial application. Lecture Notes in Computer Science, 2023, 14182, pp.328-
340. �10.1007/978-3-031-40953-0_27�. �cea-04228011�

https://cea.hal.science/cea-04228011
https://hal.archives-ouvertes.fr


AIMOS: Metamorphic Testing of AI - An
Industrial Application

Augustin Lemesle1, Aymeric Varasse1, Zakaria Chihani1, and Dominique
Tachet2

1 Université Paris-Saclay, CEA, List F-91120, Palaiseau, France
firstname.surname@cea.fr

2 Production Engineering Industrial System Renault, F78280, Guyancourt, France
firstname.surname@renault.com

Abstract. Despite initial fears of a renewed AI winter, the current sum-
mer seems to have no end in sight. AI in general and Deep Learning in
particular are permeating a growing number of our daily applications
with an undeniable added value. As with Computer Science itself, this
increasing entanglement with our lives calls for a special attention to
safety and demands adequate verification and validation methods and
tools to assist in the development of reliable AI. In this paper, we present
the AIMOS tool as well as the results of its application to industrial use
cases. Relying on the widely used Metamorphic testing paradigm, we
show how the process of verification and validation can benefit from the
early testing of models’ robustness to perturbations stemming from the
intended operational domain.

Keywords: metamorphism · testing · artificial intelligence · neural net-
works · support-vector machines · verification and validation

1 Introduction

Advocating for the added value of AI in many industrial applications is becoming
as unnecessary as justifying the usefulness of computer science itself. Indeed,
while the jury is still out on the future of some aspects such as Artificial General
Intelligence, the stakeholders in general and the AI community in particular
seem convinced that AI winters are a thing of the past. As a matter of fact,
the recent developments, particularly in the subfield related to Neural Networks
(NN), have shown a phenomenal ability to assist humans in numerous, albeit
specific, tasks such as image recognition and some limited forms of command
and control.

While the efficiency in these tasks is far from sufficient to completely replace
all systems, they can still be of great value as subcomponents in more traditional
cyber-physical systems such as vehicles and electronic devices. In some of these
systems, reliability is more than a desirable feature, it can be a critical sine qua
non for the adoption of an AI-based component. This makes any method and
tool able to aid in the verification and validation process a useful commodity.



2 A. Lemesle et al.

In this paper, we report on one such tool, AIMOS, specialized in metamorphic
testing for AI, and its application on two industrial use cases.

1.1 Our contribution

Our contributions can be summed up by the following:

1. We propose a methodology to assess the stability of an AI system on a given
dataset based on the specification and the test of metamorphic properties.

2. We provide a model-agnostic tool that implements and automates the entire
process of applying these metamorphic properties on the inputs and outputs
of an AI model, and of comparing and compiling the result of the subsequent
test into a stability score which can then be presented in a graphical way.

3. We apply our method and tool to two industrial use cases with different
metamorphic properties to show their usefulness.

1.2 Related work

Invented by T.Y. Chen and others in a technical report in 1998, later repub-
lished [2], metamorphic testing was then applied to many domains, from embed-
ded systems [13] to bioinformatics [9], including machine learning [4]. A com-
prehensive survey [10] of these applications was conducted, closely followed by
another [3], this time by the original authors.

As traditional testing methods are inherently limited when applied to ma-
chine learning models, metamorphic testing has been considered as a viable
alternative, particularly for critical uses of AI-based components. One of the
predominant use case where metamorphic testing has been used is autonomous
driving, with [5], which focuses on identifying implementation bugs in machine
learning based applications, [12] and [14] that concentrate on deep neural net-
works for autonomous driving and [15] that uses metamorphic testing on Apollo
(Baidu’s self-driving vehicles on-board software).

From there, various other use cases have also been tackled, such as au-
tonomous drones, in [8], where metamorphic testing is used in combination with
model based testing to test autonomous drones. Another use case is neural ma-
chine translation (NMT) models, where in [?], another metamorphic testing
approach is proposed, called structure-invariant testing, specially designed for
NMT models. In [?] mutation is combined with metamorphic testing to detect
inconsistency bugs in NMT models, to provide tests for real-world machine learn-
ing translation models and repair the mistranslations found during the testing
phase.

While also based on metamorphic properties, and more specifically on ge-
ometric transformations, the work in [1], specific to neural networks, tries to
formally verify a neural network against these metamorphic transformations. By
computing linear relaxations for these transformations, they are able to prove,
by using external formal verification tools, the robustness of the model around
a set of selected inputs.



AIMOS: Metamorphic Testing of AI - An Industrial Application 3

Overall, while there are plenty methods and tools to apply metamorphic
testing to AI models, all of them have been designed either for a specific use
case or for a specific technology (e.g. deep neural networks built with Keras), and
therefore they lack adaptability for other AI systems or metamorphic properties.

In contrast to these methods, the tool presented here is self-sufficient, does
not rely on other provers and is completely task agnostic. In a sense, AIMOS
allows to rapidly test a much larger set of inputs in a much shorter time, which
offers a simple and rapid early problem detection mechanism. In layman’s terms,
our testing is useful to cover a much larger ground surface, detecting unwanted
mines, so to speak, with little cost and in little time, whereas the formal ver-
ification techniques such that of [1] can verify at a much deeper level a much
smaller space.

2 Background

2.1 AI in this document

As the aim of AIMOS is to be as agnostic as possible, the necessary background
to understand it and the work presented in this paper is henceforth quite small.
In this document, we simply consider any type of AI model to be a function
p : X → Y with X its input space and Y its output space. We call this function
the inference function of the AI model. In that sense, we consider any AI model
such as Neural Networks, Support Vector Machines (SVM), Decision Trees, ...
as a black box to be tested by AIMOS. The inherent specificities of each model
type will not impact our testing procedure.

2.2 Metamorphic property

Simply stated, the main idea behind metamorphic testing is that certain rela-
tionships (e.g., R1, R2) on some inputs (e.g., a, b, c) should induce, in a sound
software S, other relationships (e.g., R′

1, R
′
2) on the outputs. For example:

∀a, b, c, R1(a, b) ∧R2(b, c) → R′
1(S(a), S(b)) ∨R′

2(S(b), S(c))

Consider the most common example: a software S that computes the minimal
cost of travel between two points, a and b, in an undirected graph. Even if the
actual result of this operation is not known, it is possible to generate an arbitrary
number of tests using the knowledge that the result should be impervious to
symmetry. Here, the relation between the inputs (a, b) and (b, a) is the symmetry,
and the relationship on the outputs S(a, b) and S(b, a) is the equality. Such a
process can be considered a generalization of the data translations techniques
mentioned above (rotations, flip, etc.,), since they can all be mathematically
described, making them a subset of metamorphic properties. Crucially, focusing
on metamorphic properties opens the possibility of more general data generation.
Indeed, the relationships can be more complex. Consider an evolution S′ of the
software S above, that takes as input a point of origin o and a list L of points



4 A. Lemesle et al.

and computes the lowest cost for package delivery to all of them and come back
to the origin. One can generate numerous partitions of L into lists L1, L2, ...,
and the sum of the results of calls S′(o, Li) should be greater or equal than the
result of S′(o, L). (For the mathematically inclined: ∀L1, . . . , Ln, L =

⊕n
i=1 Li →

S′(o, L) ≤
∑n

i=1 S
′(o, Li), where

⊕
is the list concatenation).

To apply this concept, a metamorphic property will rely on the following set
of functions:

– the input transformation fi : X → X , (e.g., if fi is used for R1 above, then
fi(a) = b)

– the output transformation fo : Y → Y,

– and the inference transformation fpred : (X → Y) → (X → Y).

In that definition, fi will be a transformation on the input space. This can be
seen as a function that produces a perturbation on the inputs, either through
adversarial attacks, symmetries, rotations or noise. Similarly, fo represents the
expected transformation on the outputs which could be the identity, a symmetry,
etc. When checking for an unchanged classification for example, fo will be the
identity. These two functions are completed by a transformation on the inference
function of the model, as this function can also depend on the setting, as it will be
shown later with the ACAS Xu use case (Section 5.3). We note p′ = fpred(p) to
ease the notation, most of the time, however, fpred will be the identity function as
we infer the result keeping the same function. This function only targets specific
use case with multiple decision models. From there, this metamorphic property
can be applied to any given subset of X and a model as defined by its inference
function p(x).

3 Metamorphic testing

As mentioned, our approach aims at testing a given AI model on a dataset using
metamorphic properties. As such, we present a tool named AIMOS, standing for
AI Metamorphism Observing Software. This approach and tool are black-box as
we do not use in any way the intrinsic characteristics of an AI model, we are
treating the model as an inference function.

Our approach with AIMOS improves the usual approaches which only test
a model against a perturbation without considering potential change to the
output. Indeed, a transformation on the input space can also be linked to a
transformation on the output space, e.g., a symmetry on the input can mean a
symmetry on the outputs as well (e.g., a left arrow becoming a right arrow). A
rough schema of the principle behind AIMOS is shown in Figure 1.

AIMOS is implemented in Python as it is the most commonly used language
for AI nowadays to allow an easy interface with numerous AI frameworks, such
as TensorFlow/Keras, PyTorch, scikit-learn, and others. By default, AIMOS
supports different format for inputs (e.g.,.png, .jpg, .csv, etc) and for models (.h5,
.pb, .onnx, .nnet) and implements different classical metamorphic properties



AIMOS: Metamorphic Testing of AI - An Industrial Application 5

Fig. 1. AIMOS principle

(rotation, brightness, dead pixels, etc.,). It can be easily extended with specific
loader or properties with simple Python functions.

Figure 2 shows an example configuration file of AIMOS to launch a simple
test on CIFAR-10 easily. AIMOS aims to allow the user to provide a more flexible
and complete framework for property testing thus specific efforts were made in
order to simplify the various APIs in AIMOS such as this config file. In the same
figure we show a simple developed graphical interface for AIMOS, once again to
ease its usage.

Fig. 2. AIMOS user interfaces: a configuration file (left) and its GUI (right)

As we are agnostic of the model type used, AIMOS can compare different
types of models or architectures and, in turn, provide incentives for a choice
between one type or another. As such, this permits comparisons between simi-
lar models types but with different architectures (e.g., one Convolution vs two
Convolution layers) but also between very different architectures (e.g., Neural
Networks vs SVMs vs Decision Trees) in similar settings, or also of simply dif-
ferently trained models.



6 A. Lemesle et al.

The aim of this approach is to rapidly and widely test a given AI model on
a given dataset. This testing can serve to exhibit inefficiencies of the models,
compare them to gauge the most stable ones, etc. Thus, while being far from a
panacea for validation (but, indeed, no tool can pretend to that status) AIMOS
can be an important part of an AI development process, providing a framework to
facilitate and automate a rapid testing procedure. The metamorphic properties
themselves, as part of the testing procedure, should be carefully selected to
provide a good criterion of evaluation for the model when tested with AIMOS.
For instance, if the problem represented by the AI model does not present any
axe of symmetry, it would be of little value to test it against that.

4 Use cases

4.1 Welding use case

The first use case considered for the testing of AIMOS is the control of the
conformity of welds of rear axles on a vehicle production line of Renault at
a factory in Le Mans. This control is realized by the analysis of the image of
the weld by an algorithm which has been trained on weld images labelled by a
professional operator.

In Renault’s quality process, the need was expressed to test the performance
of the algorithm beyond its accuracy. To assist in this task, test cases have to
be defined in which the initial test images will be degraded following some spe-
cific criteria. These degradations were selected by Renault by analyzing their
Operational Design Domain (ODD) for this system. Defined initially in the con-
text of autonomous vehicles in the standard J3016, ODD can be extended to any
autonomous system such as this algorithm. Therefore, the ODD defines the oper-
ating conditions under which a given system is designed to function, including,
but not limited to, environmental, geographical, and time-of-day restrictions,
and any other characteristic of interest.

In Figure 3, we can see the result of Renault’s context analysis on the problem
with both the fixed input parameters (AD) and the ODD parameters to take
into account for testing.

Through the analysis with AIMOS of the algorithm results on the original
quality image and on the degraded image, Renault aims to gauge the perfor-
mance of a given model but also to define the tolerance of the system with a
confidence indicator. This tolerance will then be used in the scope of other works
in the monitoring of each characteristic of the ODD. Indeed, it bears repeating
that such metamorphic testing is far from being a comprehensive answer to any
and all validation process, and the properties it tests are not the be-all and end-
all of safety assurances. But such a process remains an essential part of software
validation and its extension to AI is actively pursued by industrial and academic
actors alike.

Two models are currently being used by Renault depending empirically on
where they achieve the best results:



AIMOS: Metamorphic Testing of AI - An Industrial Application 7

Fig. 3. ODD Renault Welding

– Models generated automatically through Google’s AutoML framework.
– Specific models created by data scientists at Renault internal research and

development lab, henceforth named RD.

These models have different architectures. The AutoML models are using
a succession of 52 convolution layers including 17 depth-wise convolution and
some residual connections. The RD models are built by combining a pre-trained
mobilnet-v1 neural network on the ImageNet dataset to work as a feature ex-
tractor and Support Vector Machine (SVM) trained on the output of the first
NN. Both models take the image as input after a resizing and have two outputs:
whether the weld is OK or it needs to be reworked.

4.2 ACAS Xu use case

The second use case we will tackle is the widely known ACAS Xu as presented
by [7] as an Airborne Collision Avoidance System for unmanned vehicles. As
opposed to regular and large lookup tables producing advisory, this system uses
a deep neural network to produce the advisory to avoid midair collisions. The
approach was partly introduced to reduce the memory requirements for hardware
of the original 2 GB tables down to 3 MB. The authors in [7] express concerns
on the certification of such a system based on neural networks and, indeed, in
such safety critical systems a basis of trust in those systems should be built.

Fig. 4. ACAS Xu setting

Figure 4 shows the different pa-
rameters of the problem. Two ad-
ditional parameters, τ (s), the time
until loss of vertical separation and
aprev (°/s) the previous advisory, com-
plete the 7 input parameters of this
use case. Five advisories are possible
for the system: ”Clear-of-Conflict”,



8 A. Lemesle et al.

”Weak right”, ”Strong right”, ”Weak left”, or ”Strong left”, corresponding re-
spectively to the heading rates 0°/s, -1.5°/s, -3.0°/s, 1.5°/s and 3.0°/s. By dis-
cretizing the last two inputs τ and aprev with respectively 9 and 5 values, 45
networks are created, one for each combination. Each network is composed of five
inputs and 6 hidden layers of 50 neurons each with ReLU activation functions.
We denote their respective inference functions as pτ,aprev

.
As mentioned, the concerns on such a system are related to certification and

how to show that the DNNs are well representing the properties of the original
problem and tables. For example, the setting and the original tables in this use
case are symmetric alongside the ownship heading direction. In that sense, we
should observe here the same symmetry on the DNNs trained from the tables.

5 Experimentation

As AIMOS does not require more than the inference function of the selected
AI model and its execution in terms of computing power, it can be run on a
similar architecture as the one normally used for the inference of the model. In
this section, all the experimentations were run on a 16 cores and 64 GB RAM
server.

5.1 Renault Welding use case

For the Renault Welding use case, we will consider 3 different production lines
called C10, C20 and C34 and their corresponding weld. As seen in Figure 5, each
weld has different characteristics such as lighting conditions or orientation. All
the images are initially Full HD images which are then resized for the inference
with the models. Our test set is composed of several hundreds of images depend-
ing on the weld (898 for C10, 1069 for C20 and 1070 for C34).

Fig. 5. Welds C10, C20 and C34 of a rear axles production line. (from left to right)

For the purpose of this use case, we compare the two available types of mod-
els on each of these production lines with five different AutoML trained models
(TFLite) and one Renault own in-house model (pickle format). The accuracy of
all models is on average over 97% and is thus sufficient to be able to correctly
consider their stability to metamorphic properties.

For each of these models, we will focus on the blur perturbation as it is
included in the ODD defined by Renault. The range chosen to test this per-
turbation is purposefully quite large to include the ODD of Renault but also



AIMOS: Metamorphic Testing of AI - An Industrial Application 9

Fig. 6. Example of blur applied on a C34 weld image. Left is original image, middle
has a kernel size of 10 and right of 20.

show results outside this zone. The resulting perturbations can thus also imply
that the image should not be recognizable by the human or the model. Follow-
ing this, the metamorphic property tested is the absence of classification change
after applying the perturbation and are defined more formally as follows:

– fi(x) = blur(x, k) where blur is a convolution by a kernel with k ∈ [1, 20]
the kernel size chosen for the blur with a step of 1.

– fo(x) = x and fpred(x) = x

5.2 Results on the Renault Welding use case

The blur modification is created using a normalized box filter which is convo-
luted to our original image through the OpenCV library. Given the size of the
chosen filter each pixel is averaged with its neighbors and thus blurred. In Re-
nault’s setting this blur can come either from the sensors themselves, i.e., the
camera settings are slightly off, or from vibrations caused by the production line
operation. For our testing, we will consider a filter size ranging from 1 to 20.
The effect on the intensity of the blur can be seen on Figure 6.

As shown in Figure 7, the different AutoML models, which have the same
architecture, present a similar trend in their response, i.e., the stability of the
model drops quickly for low perturbation then plateaus at a lower level. Some
variations can nevertheless be seen between the models, such as with the first
and third model of C20 or the fifth of C34, showing the differences here that the
training can bring even at similar accuracy.

On the contrary the RD model on each weld presents greater stability than
AutoML models up until a certain point, then drops drastically in stability.
This drop, at varying kernel sizes for each weld, shows the limit of the model
before it fails to even identify the weld and thus infers a rework is needed for
everything (here the test set presents a majority of OK labelled welds). This
clearly contrasts with the AutoML models which tend to classify everything as
OK at high blur values. After further discussion with Renault, the results of the
AutoML models is indeed problematic as it is overly robust and is not desirable
for them. Indeed, at high blur level, which are not recognizable by a human, the
default action should be to ask for a rework and not the validate the weld.

The different models’ responses between the different welds also vary in in-
tensity, showcasing that the setting of each weld can bring different responses.



10 A. Lemesle et al.

Fig. 7. Stability of the models on the C10, C20 and C34 welds for the blur property with
kernel size ranging from 1 to 20. Value points are linked only for aesthetic consideration
to improve readability as AIMOS does not perform interpolation.

C10 drops in stability are the most moderate with AutoML models staying above
90% whereas it goes down as low as 53% for C20’s fourth model and 80% for
C34’s third model. A possibility here is that the blur is more present in the
training dataset for certain production lines as it occurs more frequently there,
leading to a better stability.

With these results from AIMOS, metrics can be defined on the stability at a
given blur kernel and thus include this indicator in a quality process at Renault
to validate or not a model. This could be further linked with other results on
different perturbations such as brightness, rotation, etc. Of course, all of this
should remain coupled with some performance indicator like the accuracy of the
model to avoid selecting models outputting constant values (which would always
be stable).

As a preliminary work, further testing were also made with AIMOS to com-
pare different type of robust training for the models. Randomized smoothing or
1-Lipschitz models were thus compared to original models. Nevertheless, no clear
conclusion were found as some of them appear overly robust like the AutoML
models and other present varying degree of stability. A more complete study
should be pursued and linked to the full ODD of Renault.

Overall, the chosen perturbation for this paper was kept simple for pedagogi-
cal concerns, and more complex perturbation (rotation on top of blur, etc) could
be used. Even so, we already see here some notable differences between the vari-
ous model types and architectures in the way they respond to these metamorphic
properties. In fact, the results on these properties have shown the utility of this
tool to Renault. We are currently collaborating to extended our work on the
rest of the control elements as defined in Renault’s Operational Design Domain.
AIMOS would then be able to be integrated in Renault’s quality process.



AIMOS: Metamorphic Testing of AI - An Industrial Application 11

5.3 ACAS Xu use case

For the ACAS Xu use case, we tested the symmetry of all 45 models to a sym-
metry alongside the ownship heading axis. The models are available under the
NNet format and AIMOS is able to directly read and infer from this format.

For our tests, we defined two test scenarios on different ranges of input. The
first one is defined on the full range of the five inputs, and we pick 100 000 test
points uniformly on this range. We remarked that more than 85% of these points’
output was ”Clear-of-conflict”. As such while it should remain unchanged by the
symmetry it did not allow to fully test this transformation on the output right
and left. We then defined a second scenario and selected 100 000 uniformly on
a more restricted part of the input space. This subspace was chosen so that a
majority of the inputs in that subspace are predicted as either ”Strong right” or
”Strong left” or if τ is high as ”Clear-of-conflict”. For smaller τ , around 95% of
the inputs is for each network either ”Strong right” or ”Strong left”

Finally, as explained previously, the 45 networks were discretized through
the previous advisory as such when considering a symmetry on the system,
the previous advisory should also be symmetrized, leading to inferring the result
with a different network. This is the incentive behind the extension (mentioned in
Section 1.1) of metamorphic testing from the usual transformations on the inputs
and expected transformations on the output to include also transformations on
models themselves. In that sense, we defined the metamorphic property tested
here as follows:

– fi((ρ, θ, ψ, vown, vint)) = (ρ, −θ, −ψ, vown, vint)
– fo(a) = −a with a in °/s
– fpred(pτ,aprev

) = pτ,−aprev
.

5.4 Results on the ACAS Xu use case

Overall, the stability of the models w.r.t. to our defined symmetry metamorphic
property is quite high on the full input space as the average stability over all 45
networks is above 97%, even the worst network drops only to 94%. Nevertheless,
on a more restricted space we can see more difference w.r.t. to the previous
advisory. Indeed, on average over the previous advisory we are at 89.7% stability
with ”Clear-of-Conflict” and with Left advisories we are at 95% while we are
above 99.6% for Right advisories. This shows a clear imbalance between the
models of left and right previous advisory. On the other hand, there does not
seem to be any correlation between τ and the stability.

Figure 8 shows the differences between networks in function of τ when the
previous advisory is ”Clear-of-conflict”, where the stability is the lowest. In fact,
this comes from the 3 models with intermediate values of τ that show only 66%,
67% and 76% of stability to the symmetry. As the network should have trained on
fully symmetrical tables, this results shows a discrepancy between the networks
and the table and that further training might be necessary for these networks.

This second use case and the metamorphic property tested with AIMOS
are presenting more complex and essential properties that one can test using



12 A. Lemesle et al.

Fig. 8. Stability of the ACAS Xu models with ordered by τ with previous advisory
being ”Clear of Conflict” on the restricted space.

our tool. Indeed, such considerations, like the symmetry of the model trained,
should certainly be considered when the dataset and what it represents are also
symmetrical. In the same idea, rotation or translation properties can also be
considered by AIMOS. All these types of properties can in turn help to design a
more comprehensive dataset for further training if needed, e.g., in case some con-
figurations were underrepresented. As an additional note, such properties have
also been tested in two other settings in maritime and avionics use cases (e.g.,
with our Technip Energies partners, as a part of a larger reliability assessment,
mentioned in [11]).

6 Conclusion

We presented AIMOS, a metamorphic testing tool specialized in AI applications,
as well as the results of its usage in industrial contexts. Through these results,
we hope to advocate for the inclusion of such tools in the verification and val-
idation process of AI-based components. AIMOS will be made freely available
for teaching and research purposes as a part of an ongoing effort to increase the
awareness of reliability issues in the future generations of AI practitioners. It
will also be integrated in more holistic open-source platforms for characterizing
safety in AI systems such as CAISAR [6].

This participation in a greater effort for validation will allow AIMOS to col-
laborate more closely with other tools, such as formal provers. By integrating
in a wider platform, we also hope to facilitate the application of AIMOS to the
AI-based components of software products that also have non-AI-based compo-
nents, which is essential for system-wide verification and validation.

Further future work, more intrinsic to AIMOS, is the coverage of more trans-
formations. Several of our industrial partners have expressed the need for specific
transformations, beyond the usual ones such as rotation and luminosity. These
are related to the operational domains of our partners which prevents us from
detailing them further.

Finally, we are investigating application to another type of use cases, very
prevalent in the industry, which is time series. Here again, several partners are
particularly interested in time-series-specific transformations and this is part of
our medium-term plans.



AIMOS: Metamorphic Testing of AI - An Industrial Application 13

Acknowledgments This work has been supported by the French government
under the “France 2030” program, as part of the SystemX Technological Re-
search Institute. The AIMOS tool is also funded under the Horizon Europe
TRUMPET project grant no. 101070038 and the European Defence Fund AIN-
CEPTION project grant no. 101103385.

This preprint has not undergone peer review (when applicable) or any post-
submission improvements or corrections. The Version of Record of this contri-
bution is published in Computer Safety, Reliability, and Security. SAFECOMP
2023 Workshops, and is available online at https://doi.org/10.1007/978-3-031-
40953-0 27.

References

1. Balunović, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geometric
robustness of neural networks. In: Advances in Neural Information Processing Sys-
tems 32. vol. 20, pp. 15234 – 15244. Curran (2020). https://doi.org/10.3929/ethz-
b-000395340

2. Chen, T.Y.: Metamorphic testing: A simple method for alleviating the test oracle
problem. In: Proceedings of the 10th International Workshop on Automation of
Software Test. p. 53–54. AST ’15, IEEE Press (2015)

3. Chen, T.Y., Kuo, F.C., Liu, H., Poon, P.L., Towey, D., Tse, T., Zhou, Z.Q.: Meta-
morphic testing: A review of challenges and opportunities. ACM Computing Sur-
veys (CSUR) 51(1), 1–27 (2018)

4. Ding, J., Hu, X.H., Gudivada, V.: A machine learning based framework for verifi-
cation and validation of massive scale image data. IEEE Transactions on Big Data
(2017)

5. Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R.M., Bose, R.P.J.C., Dubash, N.,
Podder, S.: Identifying implementation bugs in machine learning based image clas-
sifiers using metamorphic testing. In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM (jul 2018).
https://doi.org/10.1145/3213846.3213858

6. Girard-Satabin, J., Alberti, M., Bobot, F., Chihani, Z., Lemesle, A.: Caisar: A
platform for characterizing artificial intelligence safety and robustness. In: AISafety.
CEUR-Workshop Proceedings (Jul 2022), https://hal.archives-ouvertes.fr/
hal-03687211

7. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Pol-
icy compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). pp. 1–10 (2016).
https://doi.org/10.1109/DASC.2016.7778091

8. Lindvall, M., Porter, A., Magnusson, G., Schulze, C.: Metamorphic model-
based testing of autonomous systems. In: 2017 IEEE/ACM 2nd Inter-
national Workshop on Metamorphic Testing (MET). pp. 35–41 (2017).
https://doi.org/10.1109/MET.2017.6

9. Pullum, L.L., Ozmen, O.: Early results from metamorphic testing of epidemiologi-
cal models. In: 2012 ASE/IEEE International Conference on BioMedical Comput-
ing (BioMedCom). pp. 62–67. IEEE (2012)

10. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic
testing. IEEE Transactions on software engineering 42(9), 805–824 (2016)



14 A. Lemesle et al.

11. Serge, D., Augustin, L., Zakaria, C., Caterina, U., François, T.: Reciph: Relational
coefficients for input partitioning heuristic. to be presented at ICML’s workshop
on Formal Verification of Machine Learning (WFVML 2022) (2022)

12. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-
network-driven autonomous cars (2018)

13. Tse, T., Yau, S.S.: Testing context-sensitive middleware-based software applica-
tions. In: Proceedings of the 28th Annual International Computer Software and
Applications Conference, 2004. COMPSAC 2004. pp. 458–466. IEEE (2004)

14. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: Deeproad: Gan-based
metamorphic testing and input validation framework for autonomous driving sys-
tems. In: 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 132–142 (2018). https://doi.org/10.1145/3238147.3238187

15. Zhou, Z.Q., Sun, L.: Metamorphic testing of driverless cars. Communications of
the ACM 62, 61 – 67 (2019)


