

Fluorescence corrections for activity measurements of ^{93m}Nb in niobium dosimeters by X-ray spectrometry

Marie-Christine Lepy, Jonathan Riffaud, Christophe Domergue, Hervé Phillibert, Christophe Destouches, Hubert Carcreff

▶ To cite this version:

Marie-Christine Lepy, Jonathan Riffaud, Christophe Domergue, Hervé Phillibert, Christophe Destouches, et al.. Fluorescence corrections for activity measurements of 93m Nb in niobium dosimeters by X-ray spectrometry. IRRMA 11-11th International Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications, Jul 2023, Bologne, Italy. cea-04224986

HAL Id: cea-04224986 https://cea.hal.science/cea-04224986

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Presentation V

Services 💙

Laboratoire National Henri Becquerel

R&D activities 💙

Fluorescence correction for activity measurement of ^{93m}Nb in niobium dosimeters: calculation and experimental validation

SSD

Marie-Christine Lépy¹, Jonathan Riffaud¹, Christophe Domergue²,

Hervé Phillibert², Christophe Destouches², Hubert Carcreff³

¹ Université Paris-Saclay, CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), 91120 Palaiseau, France

 ² CEA, DES/IRESNE/DER/SPESI, Laboratoire de Dosimétrie, Capteurs et Instrumentation (LDCI), Cadarache, 13108 Saint Paul-lez-Durance, France
 ³ Université Paris-Saclay, CEA, ISAS/DM2S, Service d'études des réacteurs et de mathématiques appliquées, 91191 Gif-sur-Yvette cedex, France

Introduction

Outline

X-ray spectrometry

Efficiency calibration Processing of X-ray spectra Self-attenuation correction

Fluorescence effects

Corrective factors

Experimental validation

Spectrometry measurements Activity results

Conclusion

Introduction

- Niobium dosimeters are used in reactors to characterise neutron fluxes in the energy range around **1 MeV**.
- Information based on the activity of ^{93m}Nb resulting from the activation reaction ⁹³Nb(n, n').
- ^{93m}Nb decays by isomeric transition with a strong internal conversion coefficient.
- This decay results mainly in emission of niobium K X-rays which are used to determine the activity of ^{93m}Nb by:
 - direct measurement (solid sample) using X-ray spectrometry,
 - after sample dissolution, using X-ray counting or liquid scintillation counting.

Half-life (years)	Type of emission	Energy (keV)	Intensity (%)	
16.12 (15)	Gamma	30.77	0.000591 (9)	
	ΧΚα	16.58	9.66 (17)	
	ΧΚβ	18.67	1.89 (4)	

Marie-Christine Lépy | Fluorescence correction for ^{93m}Nb activity measurement – IRRMA 11 - Bologna – July, 27, 2023

^{93m}Nb decay scheme

Introduction

• Direct measurement : no preparation of the sample

$$A = \frac{N(E)}{I(E) \varepsilon(E) t} \prod_{i} C_{i}$$

- A: sample activity N(E): Net peak area I(E): photon emission intensity $\varepsilon(E)$: detection efficiency t: counting time (live time) C_i : corrective factors
- Some difficulties for X-ray spectrometry:
 - Efficiency calibration $\varepsilon(E)$ and spectra processing
 - Self-attenuation within the dosimeter volume
 - Fluorescence effects

Marie-Christine Lépy | Fluorescence correction for ^{93m}Nb activity measurement – IRRMA 11 - Bologna – July, 27,

Radionuclide decay data: DDEP http://www.lnhb.fr/nuclear-data/ http://www.lnhb.fr/nuclear-data/module-lara/

Many applications, such as applied research or detector calibration, require knowledge of the atomic and nuclear data that follow radioactive decay, e.g. half-life, decay modes and branching ratios, the energies and intensities of the various emissions, etc.

In order to provide users with carefully recommended data, an international working group (Decay Data Evaluation Project, <u>DDEP</u>) was created in 1995. The update of the recommended data pages is performed by the Laboratoire National Henri Becquerel.

More specifically for users of alpha and gamma spectrometry, we have also developed **Nucléide-Lara**.

The online application makes it possible to consult and query the decay data for more than 400 radionuclides (half-life, decay mode, emission energy and intensity, decay scheme...).

Nucléide-Lara Application

Below are the **tables of recommended data** for more than 200 radionuclides with detailed comments describing how these values were obtained.

Tables of recommended data

Nucléide - Lara Library for gamma and alpha emissions	^{93m} Nb - Emissions and decay scheme					
uclide list:	Data Emissions Tools Scheme					
3Nb-M A Nuclide element or	Data					
3Mo mass number search:	Element: Niobium (Z=41)					
3Mo-M or	Daughter(s): Nb-93 (I.T., 100%)					
4Sr (e.g.: 57Co, Co-57, Co, 57)	Q ^{IT} : 30.77 keV					
4Y 🗸	Half-life (Th): 16.12 (15) a = 508.7 (47) 10 ⁶ s					
ergy threshold (keV):	Decay constant (λ): 1.363 (13) 10 ⁻⁹ s ⁻¹					
tensity threshold (%):	Specific activity (Am): 8.82 (8) 10 ¹² Bq.g ⁻¹					
incidence threshold (%): 10	Reference: KRI - 2013					
ow γ-γ coincidences 🗹	Associated data files: Table - Comments - ENSDF - PenNuc					
rt by decreasing intensity 🔽	Data and emissions file (ASCII text format): Nb-93m.lara.txt					
ow daughter emissions 🔽	Emissions					
rt by nuclide if in chain 🗹	Coincidence threshold: 10%					
splay:	Emissions (6 lines) sorted by decreasing intensity					
Data Emissions Tools Scheme nissions: X Gamma Alpha	Energy (keV) Intensity (%) Type Origin* Levels Possible coincidence with (keV) / Start* End* Possible sum of (levels)					
	16.6152 (-) 6.34 (15) X _{K01} Nb					
nguage: 💿 EN 🔵 EO 🔵 FR	16.5213 (-) 3.32 (8) X _{K02} Nb					
Show all data Show scheme only	2.285 (-) 2.88 (6) XL Nb					
	18.67 (-) 1.64 (4) X _{KP1} Nb					
Nuclide search criteria	18.967 (-) 0.246 (11) X _{Kβ2} Nb					
cay mode: 🔽 β*,ε 🔽 β* 🔽 IT 🔽 α	30.77 (2) 0.000591 (9) у Nb-93 1 0					
O And ⊙ Or O XOr) nissions: ✔ X ✔ Gamma ✔ Alpha	Tools Activity ≓ Mass conversion: 1000 Bq ≓ 1.133E-10 g					
hergies (or range):	Decay calculation: 1 calculation step(s)					
2: $t_1 \rightarrow t_2 = 1.612E1 \rightarrow 3.224E1$ a $(0, t_1 \rightarrow t_2) = 1.612E1 \rightarrow 3.22E1$						
±/- keV J	Nuclide (T½) A0 A(t1) A(t2)					
tensity:						

X-ray spectrometry

High-purity germanium (HPGe) detector (N-type)

Source-to-window distance = 8 cm

Cez

Efficiency calibration using standard point sources – relative uncertainty = 1.1 %

X-ray spectrometry

Cez

COLEGRAM* software: detailed processing using Voigt function for each peak (X-ray natural linewidth)

^{*} Ménesguen, Y., Lépy, M.-C., 2021. COLEGRAM, a flexible user-friendly software for processing of ionizing radiation spectra, Nuclear Inst. and Methods in Physics Research, A 1003,165341. <u>https://doi.org/10.1016/j.nima.2021.165341</u>

X-ray spectrometry

Self attenuation

The number of **exiting** photons is lower than the number of **emitted** photons.

Depends on the **material** and on the **energy** Depends on the **thickness** (x) of the dosimeter

Approximation:
$$C_{att} = \frac{1 - \exp(-\mu \cdot x)}{\mu \cdot x}$$

 $\boldsymbol{\mu} :$ mass attenuation coefficient of Nb for the energy of emitted photons

 C_{att} also depends on the measurement geometry

Corrective factor $(1/C_{att})$ by dedicated software (GESPECOR, EFFTRAN, ETNA, etc.) Or using Monte Carlo simulation 20 µm-thick Nb at 8

Gamma detector (HPGe)

	Self attenuation	Κα	Κβ
cm:	Strip	0.89	0.93
	Disc	0.90	0.92

1. Activation products from ${}^{93}Nb$ (n, 2n) (n, γ), (n, p) reactions

<u>cea</u>

Additional Nb X-rays due to fluorescence from activated Nb

1. Activation products from 93 Nb (n, 2n) (n, γ), (n, p) reactions

Peaks due to the decay of Nb activation products Gamma rays* X rays (Zr, Mo) Nb K-X rays

*Quantification using gamma-ray spectrometry

<u>cea</u>

Fluorescence corrections

2. Activation products of the impurities (Ta, Mo, W)

Main characteristics of ^{93m}Nb and of gamma-emitting impurities

Radionuclide	Half-life	Energy (keV)	Emission intensity (%)	Reference
^{93m} Nb	16.12 (15) a	16.58 18.67	9.66 (17) 1.89 (4)	DDEP – KRI 2013 [4]
^{92m} Nb	10.15 (2) d	934.44	99.07 (4)	NDS 66 – 1999 [3]
⁹⁴ Nb	20.0 (24) 10 ³ a	702.62 871.09	97.9 (20) 99.9 (1)	NDS 44 & 66 - 1999[3]
⁹⁵ Nb	34.991 (6) d	765.80	99.808 (7)	DDEP – INEL 2002[4]
^{95m} Nb	3.61 (3) d	235.69	25.1 (3)	DDEP – LPRI-INEL 202[4]
¹⁸² Ta	114.61 (13) d	1 121.29 1 221.39	35.17 (33) 27.27 (27)	DDEP – LNHB 2011[4]
¹⁸³ Ta	5.1 (1) d	246.06	27.2	NDS [3]

Monte Carlo simulation (GEANT4 – PENELOPE)

Simulated spectrum following the decay of $^{\rm 182}{\rm Ta}$ in a niobium dosimeter

Cez

Correction factors for fluorescence induced by gamma-emitting impurities

 $C_N(\mathbf{E}) = \frac{1}{\varepsilon(E)} \cdot \frac{N_P}{N_T}$

 N_p : net peak area (K α or K β) N_p : total nomber of simulated $\varepsilon(E)$: detection efficiency

Radio- nuclide	Corrective factor for Kα (s ⁻¹ ·Bq ⁻¹)	Corrective factor for Kβ (s ⁻¹ ·Bq ⁻¹)	
^{92m} Nb	1.49·10 ⁻⁴	2.20·10 ⁻⁵	
⁹⁴ Nb	1.00-10 ⁻²	1.85-10 ⁻³	
⁹⁵ Nb	2.55·10 ⁻³	5.5.10-4	
^{95m} Nb	0.364	0.071	
¹⁸² Ta	5.42-10 ⁻²	1.05-10 ⁻²	
¹⁸³ Ta	8.21·10 ⁻²	1.48-10 ⁻²	

Part of the European Working Group on Reactor Dosimetry Round Robin on ^{93m}Nb*

3 levels of Ta impurities (0.3 ppm, 4 ppm and 19.6 ppm) – other impurities: Mo, W, Zr, Fe,Ni, Cr, Co

^{93m}Nb activity of 9 dosimeters (3 strips, 6 discs) followed during 1 year

Typical dimensions :

- Strips : thickness 20 µm, length 7 mm, width 1 mm, mass 1 mg,
- Discs : thickness 20 µm, length 8 mm, mass 8.6 mg,

Gamma-ray spectrometry : quantification of impurities

X-ray spectrometry : ^{93m}Nb activity

* D. Thorton et al., The Second EWGRD Round Robin:Inter-Comparison of ^{93m}Nb Measurements, EPJ Web of Conferences 278, 05002 (2023) https://doi.org/10.1051/epjconf/202327805002

^{93m}Nb activity of 9 dosimeters (3 strips, 6 discs) followed during 1 year Gamma-ray spectrometry : quantification of impurities X-ray spectrometry : ^{93m}Nb activity

Gamma : GeHP – sample at 10 or 20 cm Dead time < 5 %

X: GeHP – sample at 8 cm Counting time : 9000 s to 63 000 s Dead time < 1 % (strips) < 5% (discs)

Typical gamma-ray spectrum with 0.3 ppm Ta Main peaks from: ^{92m}Nb: 933 keV ⁹⁴Nb: 703 keV and 870 keV ⁹⁵Nb: 766 keV ^{95m}Nb: 236 keV ¹⁸²Ta: 1121 keV and 1221 keV

Typical gamma-ray spectrum with 19.6 ppm Ta Additional peaks from ¹⁸²Ta (152 keV – 156 keV 179 keV - 229 keV - 264 keV)

Cez

For each dosimeter, the net areas of the X-ray peaks of Nb (X-ray spectrometry) are corrected for the fluorescence induced by the quantified impurities

Strips 0.3 ppm

4 ppm

19.6 ppm

		Raw re	esults	With correction		2% to 8%
Dosimeter number	Proportion Ta (ppm)	Mean activity (Bq)	Relative standard deviation (%)	Mean activity (Bq)	Relative standard deviation (%)	relative
Nb8	0.3	23 280	1.11	22 860	1.98	between the two
Nb17	4	34 840	2.22	33 880	1.23	sorios
Nb26	19.6	27 480	5.67	25 390	1.90	361163

		Raw r	esults	With correction		1.2% to 8%
Dosimeter number	Proportion Ta (ppm)	Mean activity (Bq)	Relative standard deviation (%)	Mean activity (Bq)	Relative standard deviation (%)	relative
Nb49	0.3	232 230	0.54	229 350	1.17	between the two
Nb53	4	255 300	2.32	247 880	0.30	series
Nb57	19.6	255 770	5.68	234 330	0.56	50105

Conclusion

> Experimental approach to validate fluorescence corrective factors for activity measurement of Nb dosimeters.

> 2-step procedure:

- Gamma-ray to quantify impurities,
- > X-ray spectrometry with corrective factors.
- > Typical relative uncertainty on the activity about 2 %.

- > **Direct** measurement of the activity Nb dosimeters using X-ray spectrometry.
- > Possibility of obtaining results shortly after the end of the irradiation.

Thank your for your attention

Cea

