
HAL Id: cea-04224612
https://cea.hal.science/cea-04224612

Submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A small-step approach to multi-trace checking against
interactions

Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault Lapitre,
Pascale Le Gall

To cite this version:
Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault Lapitre, Pascale Le Gall. A small-step
approach to multi-trace checking against interactions. SAC ’21: The 36th ACM/SIGAPP Symposium
on Applied Computing, ACM (SIGAPP), Mar 2021, Virtual Event, South Korea. pp.1815-1822,
�10.1145/3412841.3442054�. �cea-04224612�

https://cea.hal.science/cea-04224612
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A small-step approach to multi-trace checking against
interactions

Erwan Mahe

Université Paris-Saclay,

CentraleSupélec, MICS, Fr-91192

Gif-sur-Yvette Cedex

Boutheina Bannour

Université Paris-Saclay, CEA, List,

F-91120, Palaiseau, France

Christophe Gaston

Université Paris-Saclay, CEA, List,

F-91120, Palaiseau, France

Arnault Lapitre

Université Paris-Saclay, CEA, List,

F-91120, Palaiseau, France

Pascale Le Gall

Université Paris-Saclay,

CentraleSupélec, MICS, Fr-91192

Gif-sur-Yvette Cedex

ABSTRACT
Interaction models describe the exchange of messages between the

different components of distributed systems. This paper presents

an approach for checking the validity of multi-traces against inter-

action models. A multi-trace is a collection of traces (sequences of

emissions and receptions), each representing a local view of the

same global execution of the distributed system. We formally prove

our approach, study its complexity, and implement it in a prototype

tool.

KEYWORDS
interaction, small-step operational semantics, multi-trace analysis,

distributed system

ACM Reference Format:
Erwan Mahe , Boutheina Bannour , Christophe Gaston , Arnault

Lapitre , and Pascale Le Gall . 2021. A small-step approach to multi-

trace checking against interactions. In The 36th ACM/SIGAPP Symposium on
Applied Computing (SAC ’21), March 22–26, 2021, Virtual Event, Republic of
Korea. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3412841.

3442054

1 INTRODUCTION
Context. A distributed system (DS) can be viewed as a collection

of sub-systems, which are distributed over distinct physical lo-

cations and which communicate with each other by exchanging

messages [13]. Analyzing the executions of DSs is a key problem to

assess their correctness. However, the distributed nature of obser-

vations complicates this task. The absence of a global clock makes

the classical notion of trace often too strong to represent DS execu-

tions. Indeed, a trace fully orders all events occurring in it while

ordering events occurring on remote locations is often impossible.

Therefore, multi-traces are better suited to model executions of DSs.

A multi-trace is a collection of traces, one per sub-system, which

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00

https://doi.org/10.1145/3412841.3442054

represents the sequence of actions - emissions and receptions of

messages - that have been observed at its interface. Contrary to

traces, multi-traces do not strongly constrain orderings between

actions occurring on different sub-systems. Our work is related to

the general problem of the automatic analysis and debugging of

DSs based on local logging of traces [2, 5, 15, 17, 18]. We are posi-

tioned at the intersection of two main issues: (1) that of tracking

the causality of actions in traces [15, 17] based on the happened-

before relation of Lamport [13] and (2) that of checking multi-traces

against formal properties [2] or models [5, 18].

Contribution. In a model-based approach, we ground our analy-

sis on interaction models (interactions for short) as references of

intended DS executions. This kind of models - which include UML

Sequence Diagrams [20], Message Sequence Charts [11], BPMN

Choregraphies [19] among others - are widely used to specify DSs.

In such models, DS executions are thought of as coordinations of

message exchanges between multiple sub-systems. We consider

interactions where the execution units are actions (the same as

those constituting traces) and can be combined using operators of

sequencing, choice, repetition and parallelism. This paper presents

an approach to check the validity of multi-traces against interac-

tions. Validity refers to the notion of being an accepted multi-trace,

intuitively reflecting the fact of fully realizing one of the behaviours
prescribed by the reference interaction, taking into account that

interactions can be non-deterministic. We prove the correctness

and discuss the complexity class of our method for analyzing multi-

traces w.r.t. interaction semantics. Our present contribution extends

a previous paper [16], where we proposed a small-step operational

semantics for interactions, backed by an equivalent algebraic de-

notational semantics. As part of our contribution, we have also

developed a prototype tool implementing the semantics and the

algorithm for multi-trace analysis. This tool can render graphical

representations detailing the steps taken by the analysis. Images of

interactions in this paper have been adapted from its outputs.

Related work. Interactions have been extensively used to validate

DSs using Test Case generation [3, 7, 14]. Much effort is spent on

the generation of local test cases to mitigate the following problems:

(1) "observability", i.e. the difficulty in inferring global executions

from partial visions of message exchanges and (2) "controllability",

i.e. the difficulty in determining when to apply stimuli in order to

realize a targeted global execution. Our work falls within another

domain which is Passive Testing [2, 18] (in which testers are only

http://orcid.org/0000-0002-5322-4337
http://orcid.org/0000-0002-4943-7807
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0002-2185-4051
http://orcid.org/0000-0002-8955-6835
http://orcid.org/0000-0002-5322-4337
http://orcid.org/0000-0002-4943-7807
http://orcid.org/0000-0001-6865-5108
http://orcid.org/0000-0002-2185-4051
http://orcid.org/0000-0002-8955-6835
https://doi.org/10.1145/3412841.3442054
https://doi.org/10.1145/3412841.3442054
https://doi.org/10.1145/3412841.3442054

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

observers), and discusses problems such as the Test Oracle Prob-

lem [8] (determining expected outputs w.r.t. given stimuli). Such a

problem also falls into the domain of offline approaches to Runtime

Verification [4, 23]. Both works [2, 18] have proposed approaches

to check a set of local logs recorded in Service Oriented Systems.

Authors in [2] propose a methodology to verify the conservation

of invariants during the execution of the system. Both local and

global invariants can be checked, although the latter is more costly

in terms of computations. Our approach is different in that the

reference for the analysis is not a correctness property but a model

of interaction as in [8, 18]. Logics such as Linear Temporal Logic

(LTL), are widely used in runtime verification to specify and verify

requirements as logical properties. For DSs, either local properties

are considered for synthesizing verifiers (as in the centralized case)

in which case verification at a global level is difficult to reason

about, or a global property is considered. In the latter case, either

the property is transformed into decentralized verifiers and can

lose meaning in the process, or all verifiers use the same global

property, but they must be informed of other’s local states [23].

There remains the possibility of coming back to the centralized

case, but the accuracy of the global ordering of events using times-

tamping requires keeping the remote clocks synchronised [4]. In

this perspective, models of interactions are well-suited to be used

as a reference for correctness when analyzing DS executions. This

is all the more relevant in cases where the temporal ordering of

remote events is not feasible. [18] discusses passive testing against

models of interactions expressed in the Chor [21] language. It dif-

fers from our approach in so far as: (1) Chor is less expressive

than the interaction language we propose (particularly w.r.t. the

absence of weak sequencing and the nature of loops), (2) [18] only

handles synchronous communication between services, which can-

not always describe accurately concrete implementations and (3)

the local logs are not directly checked against the model but first

pass through a synthesis step in which a global log is reconsti-

tuted based on timestamp information, and then this global log is

checked. In [18], putting logs together is facilitated by assuming

synchronized clocks, which is not a prerequisite to applying our

analysis approach. Authors in [8] investigate the computational

cost of log analysis w.r.t. graphs of MSCs. This cost is compared

in different cases according to the quality of observations (local

or tester observability i.e. whether one has a set of independent

local logs or a globally ordered log) and the expressivity of the MSC

graphs (presence of choice, loop or parallelism). The work echoes

results for "MSC Membership" [1, 10] which state that this problem

is NP-complete. The main factor of the cost blow-up lies in the

fact that distributed actions can be equally re-ordered in multiple

ways. Our work relates to such research, but we consider richer

interactions (asynchronous communications, weak sequencing, no

enforced fork-join, ...). As such, the language used in this paper is

closer to the expressiveness of UML Sequence Diagrams. We there-

fore expect higher computational costs. Nevertheless, by applying a

small-step semantics guided by the reading of the multi-trace, only

pertinent parts of the search space are explored.

Plan. Sec.2 introduces our definition of multi-traces and recalls

the concrete syntax of interactions as introduced in [16]. Sec.3 re-

formulates definitions from [16] so as to introduce the rewriting of

interaction terms to define their semantics. We also extend [16] by

defining a small-step semantics in the form of accepted multi-traces.

Sec.4 is the core of our contribution. It presents our multi-trace

analysis and some theoretical properties (termination, characteri-

zation of membership, NP-hardness). Sec.5 briefly introduces our

prototype implementation HIBOU and Sec.6 concludes the paper.

2 MULTI-TRACES AND INTERACTIONS
Describing a DS requires distinguishing between its distinct inde-

pendent sub-systems and the different messages those sub-systems

can exchange. In this paper, those sub-systems are abstracted as

so-called lifelines (classical terminology of interaction-based lan-

guages). We will denote 𝐿 the set of all lifelines and𝑀 the set of all

messages. In the rest of the paper, 𝐿 and𝑀 will be left implicit.

The building blocks of both multi-traces and interactions are ac-

tions. An action is either the emission or the reception of a message

𝑚 from or towards a lifeline 𝑙 , denoted respectively 𝑙 !𝑚 and 𝑙?𝑚.

We denote 𝐴𝑐𝑡 = {𝑙Δ𝑚 | 𝑙 ∈ 𝐿, Δ ∈ {!, ?}, 𝑚 ∈ 𝑀} the set of all
actions. 𝐴𝑐𝑡 (𝑙) is the set of actions of the form 𝑙Δ𝑚. For an action

𝑎𝑐𝑡 of the form 𝑙 !𝑚 or 𝑙?𝑚, 𝑙 𝑓 (𝑎𝑐𝑡) will stand for the lifeline 𝑙 .

2.1 (Multi-)Traces
A trace characterizes an execution of a DS as a sequence

1
of actions,

appearing in the order in which they occurred globally. From now

on, the set 𝐿 of lifelines will be assumed to be finite, and provided

with a total order. By convention, when 𝐿 is defined as the set

{𝑙1, · · · , 𝑙𝑛}, the indexes from 1 to 𝑛 will be used to order the ele-

ments of 𝐿, i.e. 𝑙𝑖 < 𝑙 𝑗 iff 𝑖 < 𝑗 in N. Given 𝐿 = {𝑙1, · · · , 𝑙𝑛}, a multi-

trace is a tuple of traces ` = (𝜎1, · · · , 𝜎𝑛) where, for any 𝑗 ∈ [1, 𝑛],
𝜎 𝑗 ∈ 𝐴𝑐𝑡 (𝑙 𝑗)∗ and where traces are ordered in the tuple respecting

the order associated with the lifelines. A multi-trace describes the

execution of a DS as the collection of traces locally observed on

each sub-system. Multi-traces do not constrain orderings between

actions occurring on different lifelines.𝑀𝑢𝑙𝑡 =
∏

𝑙 ∈𝐿 𝐴𝑐𝑡 (𝑙)∗ is2 the
set of multi-traces. Def.2.1 introduces the projection operator 𝑝𝑟𝑜 𝑗

that projects any trace 𝜍 ∈ 𝐴𝑐𝑡∗ into a multi-trace 𝑝𝑟𝑜 𝑗 (𝜍) ∈ 𝑀𝑢𝑙𝑡 .

Definition 2.1 (Trace Projection). 𝑝𝑟𝑜 𝑗 : 𝐴𝑐𝑡∗ → 𝑀𝑢𝑙𝑡 is s.t.:

• 𝑝𝑟𝑜 𝑗 (𝜖) = (𝜖, · · · , 𝜖)
• given 𝑗 ∈ [1, 𝑛] and 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 (𝑙 𝑗) and 𝜍 ∈ 𝐴𝑐𝑡∗

if 𝑝𝑟𝑜 𝑗 (𝜍) = (𝜎1, · · · , 𝜎 𝑗 , · · · , 𝜎𝑛) then
𝑝𝑟𝑜 𝑗 (𝑎𝑐𝑡 .𝜍) = (𝜎1, · · · , 𝑎𝑐𝑡 .𝜎 𝑗 , · · · , 𝜎𝑛).

2.2 Interaction Language
Interactions synthesize possible executions of DSs by exhibiting the

actions that can be observed and the possible orderings between

them. As shown in Fig. 1 (left), interactions are binary trees whose

leaves are actions. Precedence relations between 2 actions at dif-

ferent leaf positions are determined by the operators found in the

inner nodes of the tree that separates those 2 positions.

Definition 2.2 (Interactions). The set 𝐼𝑛𝑡 of interactions is s.t.:

• ∅ ∈ 𝐼𝑛𝑡 and 𝐴𝑐𝑡 ⊂ 𝐼𝑛𝑡 ,

1
For a set𝑋 ,𝑋 ∗

denotes the set of sequences of elements of𝑋 with 𝜖 being the empty

sequence and the dot notation (.) being the concatenation operator.

2
∏

𝑙∈𝐿 𝐴𝑙 denotes the Cartesian product of sets𝐴𝑙𝑖
, i.e. the set of tuples (𝑎1, . . . , 𝑎𝑛)

with 𝑎𝑖 ∈ 𝐴𝑙𝑖
and with the indexes 𝑙𝑖 ordered accordingly to the ordered set 𝐿.

A small-step approach to multi-trace checking against interactions SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

𝑠𝑒𝑞

𝑙𝑜𝑜𝑝𝑠𝑒𝑞

𝑠𝑒𝑞

𝑠𝑡𝑟𝑖𝑐𝑡

𝑎!𝑚1 𝑏?𝑚1

𝑠𝑒𝑞

𝑎𝑙𝑡

𝑠𝑡𝑟𝑖𝑐𝑡

𝑏!𝑚2 𝑐?𝑚2

∅

𝑏!𝑚3

𝑝𝑎𝑟

𝑎!𝑚1 𝑠𝑡𝑟𝑖𝑐𝑡

𝑐!𝑚4 𝑎?𝑚4

interaction term diagram view

Figure 1: Example interaction

• for (𝑖1, 𝑖2) ∈ 𝐼𝑛𝑡2
and 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑎𝑙𝑡, 𝑝𝑎𝑟 },

𝑓 (𝑖1, 𝑖2) ∈ 𝐼𝑛𝑡 ,

• for 𝑖 ∈ 𝐼𝑛𝑡 and 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }, 𝑙𝑜𝑜𝑝 𝑓 (𝑖) ∈ 𝐼𝑛𝑡 .

The empty interaction ∅ and any action of 𝐴𝑐𝑡 are basic interac-

tions. 𝑠𝑒𝑞(𝑖1, 𝑖2) (weak sequencing) indicates that actions specified

by 𝑖1 must occur before those of 𝑖2 iff they occur on the same

lifeline. In contrast, 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖1, 𝑖2) (strict sequencing) imposes that

actions specified by 𝑖1 must occur before those of 𝑖2 in any case.

𝑝𝑎𝑟 (𝑖1, 𝑖2) allows actions from 𝑖1 and 𝑖2 to be fully interleaved while

𝑎𝑙𝑡 (𝑖1, 𝑖2) (exclusive alternative) specifies that either actions spec-
ified by 𝑖1 or by 𝑖2 occur. As for the loop operators, 𝑙𝑜𝑜𝑝 𝑓 with

𝑓 ∈ {𝑠𝑒𝑞, 𝑠𝑡𝑟𝑖𝑐𝑡, 𝑝𝑎𝑟 }, the index 𝑓 indicates with which binary oper-

ator loop unrollings have to be composed: in other words 𝑙𝑜𝑜𝑝 𝑓 (𝑖1)
is equivalent to the term 𝑎𝑙𝑡 (∅, 𝑓 (𝑖1, 𝑙𝑜𝑜𝑝 𝑓 (𝑖1)) (here we detailed
the choice between not unrolling (∅) and unrolling once).

Interactions can be illustrated by diagrams (cf. right part of

Fig. 1). Lifelines are depicted as vertical lines and actions 𝑙Δ𝑚 as

arrows carrying their specific message𝑚 and originating from or

pointing towards their specific lifeline 𝑙 . The passing of a message

from a lifeline to another is modelled using the 𝑠𝑡𝑟𝑖𝑐𝑡 operator (e.g.

𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎!𝑚,𝑏?𝑚) to denote the passing of𝑚 from 𝑎 to 𝑏). A message

passing is depicted as an arrow from source to target lifeline.

𝑠𝑒𝑞

𝑎𝑙𝑡

𝑠𝑡𝑟𝑖𝑐𝑡

𝑏!𝑚2 𝑐?𝑚2

∅

𝑏!𝑚3

Figure 2: Small example

Let us consider the example from Fig. 2 (subterm of the one

from Fig. 1). Firstly, 𝑏 can either send𝑚2 to 𝑐 or not send anything.

This choice is modelled by the 𝑎𝑙𝑡 alternative operator. Secondly,

𝑏 must send𝑚3 to the environment. The implicit sequencing that

we have described in natural language with the adverbs "firstly"

and "secondly" is modelled by the 𝑠𝑒𝑞 weak sequencing operator,

which, unlike the other operators that are drawn explicitly with

boxes, is implicitly represented by the top to bottom direction.

The semantics of an interaction 𝑖 is defined as a set of global

traces 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) or of multi-traces 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). Fig. 3 enumerates

𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) =
{

𝑏!𝑚2 .𝑐?𝑚2 .𝑏!𝑚3,

𝑏!𝑚2 .𝑏!𝑚3 .𝑐?𝑚2,

𝑏!𝑚3

}
𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) =

{
(𝑏!𝑚2 .𝑏!𝑚3, 𝑐?𝑚2),
(𝑏!𝑚3, 𝜖)

}
Figure 3: Semantics of example from Fig. 2

those semantics for the interaction from Fig. 2. An interleaving be-

tween𝑏!𝑚3 and 𝑐?𝑚2 is noticeable in𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) but not in𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖).

3 ACCEPTED (MULTI-)TRACES
To formally define the set of accepted (multi-)traces of an interaction

𝑖 , we reformulate semantic rules from [16] without relying on some

denotational counterpart (in particular, without using precedence

relations between actions, as in [12, 16]). To do this, in Sec.3.1, we

extract information from the term structure of interactions. This

information is used to define, in Sec.3.2, the small-step interaction

execution function 𝜒 grounding the operational approach. Finally,

in Sec.3.3, we give two interaction semantics: 𝐴𝑐𝑐𝑒𝑝𝑡 , based on

global traces, and 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 , obtained by projection of 𝐴𝑐𝑐𝑒𝑝𝑡 .

3.1 Static analysis of interactions
𝑠𝑒𝑞

𝑎𝑙𝑡

𝑠𝑡𝑟𝑖𝑐𝑡

𝑏!𝑚2 𝑐?𝑚2

∅

𝑏!𝑚3

𝜖

1

11

111 112

12

2

Figure 4: Positions

As an interaction 𝑖 can contain sev-

eral occurrences of the same action

𝑎𝑐𝑡 , small-steps do not correspond

to transformations of the form 𝑖
𝑎𝑐𝑡−−−→

𝑖 ′ but rather 𝑖 𝑎𝑐𝑡@𝑝
−−−−−−→ 𝑖 ′ where 𝑝 indi-

cates the position of a specific oc-

currence of 𝑎𝑐𝑡 within 𝑖 . To do so,

we use positions expressed in the

Dewey Decimal Notation [9]. As the arity of operators is at most

2, positions are defined as elements of {1, 2}∗. A sub-interaction

of an interaction 𝑖 at position 𝑝 is denoted 𝑖 |𝑝 . Fig. 4 illustrates

positions within the interaction from Fig. 2. For example, the sub-

term 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑏!𝑚2, 𝑐?𝑚2) is at position 11 of the whole interaction

term 𝑠𝑒𝑞(𝑎𝑙𝑡 (𝑠𝑡𝑟𝑖𝑐𝑡 (𝑏!𝑚2, 𝑐?𝑚2),∅), 𝑏!𝑚3). Moreover, for any set

𝑃 ∈ P({1, 2}∗) and 𝑥 ∈ {1, 2}, 𝑥 .𝑃 stands for the set {𝑥 .𝑝 | 𝑝 ∈ 𝑃}.
As a prerequisite to defining steps of the form 𝑖

𝑎𝑐𝑡@𝑝
−−−−−−→ 𝑖 ′, we need

to introduce several intermediate functions on interaction terms.

Function 𝑒𝑥𝑝𝜖 defined in Def.3.1 assesses statically whether or

not an interaction accepts/expresses the empty trace 𝜖 . Naturally

∅ only accepts 𝜖 , while interactions 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 do not (𝑎𝑐𝑡 must

be executed). Similarly, any loop accepts 𝜖 because it is possible

to repeat 0 times its content. The treatment of binary operators

differs according to their intuitive meaning: for 𝑎𝑙𝑡 , it is sufficient

that one of the two direct sub-interactions accepts 𝜖 , while for the

scheduling operators (𝑠𝑒𝑞, 𝑠𝑡𝑟𝑖𝑐𝑡 and 𝑝𝑎𝑟), both have to accept 𝜖 .

Function 𝑎𝑣𝑜𝑖𝑑𝑠 defined in Def.3.1 states, for an interaction 𝑖

and a lifeline 𝑙 , whether or not 𝑖 accepts an execution that involves

no actions occurring on 𝑙 . The empty interaction ∅ avoids every

lifeline since the only trace specified by ∅ is the empty trace. An

action 𝑙 ′Δ𝑚 avoids the lifeline 𝑙 iff it occurs on a different lifeline, i.e.

𝑙 ′ ≠ 𝑙 . Then, as for 𝑒𝑥𝑝𝜖 , 𝑎𝑣𝑜𝑖𝑑𝑠 is defined inductively accordingly

the top operator of the interaction term. Apart from the basic cases

(∅ and 𝑙Δ𝑚), the two functions are quite similar in their description.

Definition 3.1 (Emptiness & Avoiding). We define the functions

𝑒𝑥𝑝𝜖 : 𝐼𝑛𝑡 → 𝑏𝑜𝑜𝑙 and 𝑎𝑣𝑜𝑖𝑑𝑠 : 𝐼𝑛𝑡 × 𝐿 → 𝑏𝑜𝑜𝑙 s.t. for any 𝑙 ∈ 𝐿:

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

• 𝑒𝑥𝑝𝜖 (∅) = ⊤ and 𝑎𝑣𝑜𝑖𝑑𝑠 (∅, 𝑙) = ⊤
• for 𝑎𝑐𝑡 = 𝑙 ′Δ𝑚 ∈ 𝐴𝑐𝑡 , 𝑒𝑥𝑝𝜖 (𝑎𝑐𝑡) = ⊥
and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑎𝑐𝑡, 𝑙) = (𝑙 ′ ≠ 𝑙),

• for 𝑖 = 𝑓 (𝑖1, 𝑖2)with 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }, 𝑒𝑥𝑝𝜖 (𝑖) = 𝑒𝑥𝑝𝜖 (𝑖1)∧
𝑒𝑥𝑝𝜖 (𝑖2) and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖1, 𝑙) ∧ 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖2, 𝑙)

• for 𝑖 = 𝑎𝑙𝑡 (𝑖1, 𝑖2), 𝑒𝑥𝑝𝜖 (𝑖) = 𝑒𝑥𝑝𝜖 (𝑖1) ∨ 𝑒𝑥𝑝𝜖 (𝑖2)
and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖1, 𝑙) ∨ 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖2, 𝑙),

• for 𝑖 = 𝑙𝑜𝑜𝑝 𝑓 (𝑖 ′) with 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 },
𝑒𝑥𝑝𝜖 (𝑖) = ⊤ and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = ⊤.

Among all action leaves of 𝑖 , only some are immediately exe-

cutable, in the sense that they can be the first element of at least

one trace of 𝑖 . Function 𝑓 𝑟𝑜𝑛𝑡 (for frontier) in Def.3.2, determines

the positions of all such actions. The selection of those actions

depend on which operators are encountered within the tree struc-

ture of the interaction. Sequencing operators 𝑠𝑡𝑟𝑖𝑐𝑡 and 𝑠𝑒𝑞, by

enforcing precedence relations, may prevent some actions (from

the sub-interaction on the right of the term) from being in the

frontier.

Definition 3.2 (Frontier). 𝑓 𝑟𝑜𝑛𝑡 : 𝐼𝑛𝑡 → P({1, 2}∗) is the func-
tion s.t.:

• 𝑓 𝑟𝑜𝑛𝑡 (∅) = ∅ and for all 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 , 𝑓 𝑟𝑜𝑛𝑡 (𝑎𝑐𝑡) = {𝜖},
• for all (𝑖1, 𝑖2) ∈ 𝐼𝑛𝑡2

:

– 𝑓 𝑟𝑜𝑛𝑡 (𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖1, 𝑖2)) ={
1.𝑓 𝑟𝑜𝑛𝑡 (𝑖1) ∪ 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖2) if 𝑒𝑥𝑝𝜖 (𝑖1) = ⊤
1.𝑓 𝑟𝑜𝑛𝑡 (𝑖1) else

– 𝑓 𝑟𝑜𝑛𝑡 (𝑠𝑒𝑞(𝑖1, 𝑖2)) = 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖1) ∪ {𝑝 | 𝑝 ∈ 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖2)
and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖1, 𝑙 𝑓 (𝑖 |𝑝)},

– 𝑓 𝑟𝑜𝑛𝑡 (𝑓 (𝑖1, 𝑖2)) = 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖1)∪2.𝑓 𝑟𝑜𝑛𝑡 (𝑖2) for 𝑓 ∈ {𝑎𝑙𝑡, 𝑝𝑎𝑟 }
– 𝑓 𝑟𝑜𝑛𝑡 (𝑙𝑜𝑜𝑝 𝑓 (𝑖1)) = 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖1) for 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }.

For any 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖), 𝑖 |𝑝 is a called a frontier action.

The empty interaction has an empty frontier: 𝑓 𝑟𝑜𝑛𝑡 (∅) = ∅. For
any action 𝑎𝑐𝑡 , 𝑓 𝑟𝑜𝑛𝑡 (𝑎𝑐𝑡) = {𝜖} (𝜖 is the position of 𝑎𝑐𝑡 which

is immediately executable). For 𝑖 of the form 𝑓 (𝑖1, 𝑖2), 𝑓 𝑟𝑜𝑛𝑡 (𝑖)
is inferred from 𝑓 𝑟𝑜𝑛𝑡 (𝑖1) and 𝑓 𝑟𝑜𝑛𝑡 (𝑖2) in accordance with the

intuitive sense of 𝑓 operator 𝑓 . In all cases, actions occurring at

positions in 𝑓 𝑟𝑜𝑛𝑡 (𝑖1) are immediately executable in 𝑖 . Indeed, the

term being read from left to right, all operators, if they introduce

ordering constraints, will only do so on the right sub-interaction

𝑖2. Thus 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖1) is included in 𝑓 𝑟𝑜𝑛𝑡 (𝑖). If 𝑓 = 𝑎𝑙𝑡 or 𝑓 = 𝑝𝑎𝑟 ,

2.𝑓 𝑟𝑜𝑛𝑡 (𝑖2) is also included in 𝑓 𝑟𝑜𝑛𝑡 (𝑖) because no constraint may

prevent the execution of actions from 𝑖2. If 𝑓 = 𝑠𝑡𝑟𝑖𝑐𝑡 , any action

from 𝑖2 can only be executed if no action from 𝑖1 is (otherwise it

would violate the strict sequencing). Thus 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖2) is included in
𝑓 𝑟𝑜𝑛𝑡 (𝑖) iff 𝑖1 accepts the empty trace. If 𝑓 = 𝑠𝑒𝑞, elements 𝑝 from

2.𝑓 𝑟𝑜𝑛𝑡 (𝑖2) are included in 𝑓 𝑟𝑜𝑛𝑡 (𝑖) iff 𝑖1 accepts an execution that

does not involve the lifeline on which the action 𝑖 |𝑝 occurs.

Fig. 5 illustrates the definition of 𝑓 𝑟𝑜𝑛𝑡 on the example from

Fig. 1. Given the 8 different actions on leaves, we have 𝑓 𝑟𝑜𝑛𝑡 (𝑖) ⊆
{1111, 1112, 112111, 112112, 1122, 21, 221, 222}. Actions on the right

of every 𝑠𝑡𝑟𝑖𝑐𝑡 operators are prevented from being executed by

those on their left and as such are not in the frontier. This elimi-

nates {1112, 112112, 222}. 𝑏!𝑚2 and 𝑏!𝑚3 are prevented from being

executed by 𝑏?𝑚1 which is a cousin on their left w.r.t the 𝑠𝑒𝑞 op-

erator at position 11. This eliminates {1112, 1122}. Then, by elim-

ination, 𝑓 𝑟𝑜𝑛𝑡 (𝑖) = {1111, 21, 221} so that the 3 actions placed at

𝑠𝑒𝑞

𝑙𝑜𝑜𝑝𝑠𝑒𝑞

𝑠𝑒𝑞

𝑠𝑡𝑟𝑖𝑐𝑡

𝑎!𝑚1 𝑏?𝑚1

𝑠𝑒𝑞

𝑎𝑙𝑡

𝑠𝑡𝑟𝑖𝑐𝑡

𝑏!𝑚2 𝑐?𝑚2

∅

𝑏!𝑚3

𝑝𝑎𝑟

𝑎!𝑚1 𝑠𝑡𝑟𝑖𝑐𝑡

𝑐!𝑚4 𝑎?𝑚4

Figure 5: Frontier actions (highlighted)

these positions are the only actions that can start a trace accepted

by interaction 𝑖 .

3.2 Interaction Execution
Small-steps of the operational semantics consist in transforming

an interaction 𝑖 having position 𝑝 in its frontier into an interaction

𝑖 ′ s.t. 𝑖 ′ characterizes in intentions all the possible futures of the

execution of the action 𝑖 |𝑝 according to 𝑖 .

We define a function 𝑝𝑟𝑢𝑛𝑒 , that associates to any interaction

𝑖 that may avoid 𝑙 (i.e. 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = ⊤), a new interaction, which

characterizes exactly all the executions of 𝑖 that do not involve

lifeline 𝑙 . In other words, 𝑝𝑟𝑢𝑛𝑒 (𝑖, 𝑙) computes an interaction whose

accepted traces are exactly those of 𝑖 that have no actions occurring

on lifeline 𝑙 .

Definition 3.3 (Pruning). The function 𝑝𝑟𝑢𝑛𝑒 : 𝐼𝑛𝑡 × 𝐿 → 𝐼𝑛𝑡 is

defined for couples (𝑖, 𝑙) in 𝐼𝑛𝑡 × 𝐿 verifying 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) by:
• 𝑝𝑟𝑢𝑛𝑒 (∅, 𝑙) = ∅ and for any 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 , 𝑝𝑟𝑢𝑛𝑒 (𝑎𝑐𝑡, 𝑙) = 𝑎𝑐𝑡

• for any (𝑖1, 𝑖2) ∈ 𝐼𝑛𝑡2
, 𝑝𝑟𝑢𝑛𝑒 (𝑎𝑙𝑡 (𝑖1, 𝑖2), 𝑙) is:

– 𝑝𝑟𝑢𝑛𝑒 (𝑖1, 𝑙) if 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖1, 𝑙) ∧ ¬𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖2, 𝑙)
– 𝑝𝑟𝑢𝑛𝑒 (𝑖2, 𝑙) if ¬𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖1, 𝑙) ∧ 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖2, 𝑙)
– 𝑎𝑙𝑡 (𝑝𝑟𝑢𝑛𝑒 (𝑖1, 𝑙), 𝑝𝑟𝑢𝑛𝑒 (𝑖2, 𝑙)) if 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖1, 𝑙) ∧𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖2, 𝑙)

• for any (𝑖1, 𝑖2) ∈ 𝐼𝑛𝑡2
and any 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 },

we have 𝑝𝑟𝑢𝑛𝑒 (𝑓 (𝑖1, 𝑖2), 𝑙) = 𝑓 (𝑝𝑟𝑢𝑛𝑒 (𝑖1, 𝑙), 𝑝𝑟𝑢𝑛𝑒 (𝑖2, 𝑙))
• for any 𝑖 ∈ 𝐼𝑛𝑡 and any 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }:
– 𝑝𝑟𝑢𝑛𝑒 (𝑙𝑜𝑜𝑝 𝑓 (𝑖), 𝑙) = 𝑙𝑜𝑜𝑝 𝑓 (𝑝𝑟𝑢𝑛𝑒 (𝑖, 𝑙)) if 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙)
– 𝑝𝑟𝑢𝑛𝑒 (𝑙𝑜𝑜𝑝 𝑓 (𝑖), 𝑙) = ∅ if ¬𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙)

The use of 𝑝𝑟𝑢𝑛𝑒 is illustrated on the sub-interaction 𝑖 |1 high-

lighted in blue on Fig.6. 𝑖 |1 is such that 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖 |1, 𝑐) is true, hence
𝑝𝑟𝑢𝑛𝑒 (𝑖 |1, 𝑐) can be applied. The blue lines represent the rewrit-

ing orchestrated in 𝑝𝑟𝑢𝑛𝑒 (𝑖 |1, 𝑐). We have to eliminate 𝑐?𝑚2 the

only action occurring in 𝑖 |1 on 𝑐 . As its parent is a scheduling

operator (𝑠𝑡𝑟𝑖𝑐𝑡), it must also be eliminated. The grand-parent

node is an 𝑎𝑙𝑡 operator. The right cousin underneath this 𝑎𝑙𝑡 is

∅, which "avoids" 𝑐 . Thus, the choice of the right branch of this

𝑎𝑙𝑡 can be forced to solve the pruning. The remaining interaction

𝑝𝑟𝑢𝑛𝑒 (𝑖 |1, 𝑐) is 𝑙𝑜𝑜𝑝𝑠𝑒𝑞 (𝑠𝑒𝑞(𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎!𝑚1, 𝑏?𝑚1), 𝑏!𝑚3)) (where we
simplified 𝑠𝑒𝑞(∅, 𝑏!𝑚3) into 𝑏!𝑚3). It does not contain any action

occurring on 𝑐 .

The next definition introduces the "e𝜒ecution" function 𝜒 . For

an interaction 𝑖 and a position 𝑝 in 𝑓 𝑟𝑜𝑛𝑡 (𝑖), 𝜒 (𝑖, 𝑝) returns a pair
(𝑖 ′, 𝑖 |𝑝). Here, interaction 𝑖 ′ is such that all traces accepted by 𝑖

and which start by 𝑖 |𝑝 (the action specifically at position 𝑝 , and not

A small-step approach to multi-trace checking against interactions SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

𝑠𝑒𝑞

𝑙𝑜𝑜𝑝𝑠𝑒𝑞

𝑠𝑒𝑞

𝑠𝑡𝑟𝑖𝑐𝑡

𝑎!𝑚1 𝑏?𝑚1

𝑠𝑒𝑞

𝑎𝑙𝑡

𝑠𝑡𝑟𝑖𝑐𝑡

𝑏!𝑚2 𝑐?𝑚2

∅

𝑏!𝑚3

𝑝𝑎𝑟

𝑎!𝑚1 𝑠𝑡𝑟𝑖𝑐𝑡

𝑐!𝑚4 𝑎?𝑚4

■ pruning

■ e𝜒ecution

Figure 6: Illustration of a small-step

another identical action somewhere else in 𝑖) i.e. of the form 𝑖 |𝑝 .𝜍
are such that 𝜍 is accepted by 𝑖 ′; and, reciprocally, for any 𝜍 accepted
by 𝑖 ′ then 𝑖 |𝑝 .𝜍 is accepted by 𝑖 . 𝑖 ′ is therefore the "continuation" of
𝑖 after the occurrence of 𝑖 |𝑝 . 𝜒 (𝑖, 𝑝) is defined by induction on the

term structure of 𝑖 , and by case depending on whether position 𝑝

starts by 1 or 2, (i.e. whether 𝑝 belongs to the left or right subterm

of 𝑖) or is 𝑝 = 𝜖 (then 𝑖 is the action to execute).

Definition 3.4 (Interaction Execution). The function 𝜒 : 𝐼𝑛𝑡 ×
{1, 2}∗ → 𝐼𝑛𝑡 ×𝐴𝑐𝑡 , defined for pairs (𝑖, 𝑝) verifying 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖)
is s.t.:

• for any 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 , 𝜒 (𝑎𝑐𝑡, 𝜖) = (∅, 𝑎𝑐𝑡)
• for any (𝑖1, 𝑖2) ∈ 𝐼𝑛𝑡2

, 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 } and 𝑝1 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖1),
let us denote 𝜒 (𝑖1, 𝑝1) = (𝑖 ′

1
, 𝑎𝑐𝑡), then:

– 𝜒 (𝑎𝑙𝑡 (𝑖1, 𝑖2), 1.𝑝1) = (𝑖 ′
1
, 𝑎𝑐𝑡),

– 𝜒 (𝑓 (𝑖1, 𝑖2), 1.𝑝1) = (𝑓 (𝑖 ′
1
, 𝑖2), 𝑎𝑐𝑡),

– 𝜒 (𝑙𝑜𝑜𝑝 𝑓 (𝑖1), 1.𝑝1) = (𝑓 (𝑖 ′
1
, 𝑙𝑜𝑜𝑝 𝑓 (𝑖1)), 𝑎𝑐𝑡),

• for any (𝑖1, 𝑖2) ∈ 𝐼𝑛𝑡2
and 𝑝2 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖2), let us denote

𝜒 (𝑖2, 𝑝2) = (𝑖 ′
2
, 𝑎𝑐𝑡), then:

– 𝜒 (𝑎𝑙𝑡 (𝑖1, 𝑖2), 2.𝑝2) = (𝑖 ′
2
, 𝑎𝑐𝑡),

– 𝜒 (𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖1, 𝑖2), 2.𝑝2) = (𝑖 ′
2
, 𝑎𝑐𝑡),

– 𝜒 (𝑠𝑒𝑞(𝑖1, 𝑖2), 2.𝑝2) = (𝑠𝑒𝑞(𝑝𝑟𝑢𝑛𝑒 (𝑖1, 𝑙 𝑓 (𝑎𝑐𝑡)), 𝑖 ′
2
), 𝑎𝑐𝑡),

– 𝜒 (𝑝𝑎𝑟 (𝑖1, 𝑖2), 2.𝑝2) = (𝑝𝑎𝑟 (𝑖1, 𝑖 ′
2
), 𝑎𝑐𝑡).

𝜒 is defined on the cases authorized by its precondition 𝑝 ∈
𝑓 𝑟𝑜𝑛𝑡 (𝑖). If 𝑖 ∈ 𝐴𝑐𝑡 , 𝑝 can only be 𝜖 (and vice-versa). In this case

𝜒 (𝑖, 𝜖) = (∅, 𝑖) since the action 𝑖 is executed and nothing remains

to be executed. In any other case, 𝑝 is either of the form 1.𝑝1 or

2.𝑝2, meaning that the action to be executed is resp. in the left or

right sub-interaction. Then the result of 𝜒 (𝑖, 𝑝) is a reconstruction
of the interaction term from resp. the result of 𝜒 (𝑖1, 𝑝1) and 𝑖2 or
the result of 𝜒 (𝑖2, 𝑝2) and 𝑖1. The most subtle case occurs when

𝑝 = 2.𝑝2 and 𝑖 = 𝑠𝑒𝑞(𝑖1, 𝑖2). The precondition 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) implies

that 𝑖 |𝑝 ∈ 𝐴𝑐𝑡 and that the left child 𝑖1 avoids 𝑙 𝑓 (𝑖 |𝑝). In this case, to

construct 𝜒 (𝑖, 2.𝑝2), 𝜒 does not use 𝑖1 but rather 𝑝𝑟𝑢𝑛𝑒 (𝑖1, 𝑙 𝑓 (𝑖 |𝑝)),
where all traces involving 𝑙 𝑓 (𝑖 |𝑝) have been eliminated while pre-

serving all others. Fig. 6 depicts the execution process applied to

𝑐!𝑚4 (at position 221) in the interaction 𝑖 of Fig. 1: 𝜒 (𝑖, 221) is
(𝑠𝑒𝑞(𝑖 ′, 𝑝𝑎𝑟 (𝑎!𝑚1, 𝑎?𝑚4)), 𝑐!𝑚4) with 𝑖 ′ = 𝑝𝑟𝑢𝑛𝑒 (𝑖 |1, 𝑐), previously
computed as 𝑙𝑜𝑜𝑝𝑠𝑒𝑞 (𝑠𝑒𝑞(𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎!𝑚1, 𝑏?𝑚1), 𝑏!𝑚3)). The compu-

tation of 𝜒 (𝑖, 221) is also visualized as the first step of the right

branch of Fig. 7.

To conclude, the 𝜒 function fulfills our objectives of defining

the semantics of interactions using elementary steps of the form

𝑖
𝑎𝑐𝑡@𝑝
−−−−−−→𝑖 ′, which is a readable and graphic reformulation of the equal-

ity 𝜒 (𝑖, 𝑝) = (𝑖 ′, 𝑎𝑐𝑡).

Figure 7: Execution tree illustration
3.3 Definition of accepted (multi-)traces
The small-step approach to compute semantics consists in explor-

ing an execution tree representing all possible successions of trans-

formations 𝑖
𝑎𝑐𝑡@𝑝
−−−−−−→ 𝑖 ′, starting from an initial interaction 𝑖0. An ac-

cepted trace then corresponds to a sequence 𝑎𝑐𝑡1 . · · · .𝑎𝑐𝑡𝑛 obtained

from a path 𝑖0
𝑎𝑐𝑡1@𝑝1−−−−−−−→ 𝑖1 · · · 𝑎𝑐𝑡𝑛@𝑝𝑛−−−−−−−−→ 𝑖𝑛 with 𝑖𝑛 a terminal interaction,

i.e. accepting 𝜖 . By grouping all such paths together, we obtain a

tree whose nodes are interactions and arcs are labelled by couples

(𝑝, 𝑎𝑐𝑡) denoted 𝑎𝑐𝑡@𝑝 . For a node 𝑖 , child nodes are interactions

𝑖 ′ obtained via the execution of any frontier action 𝑎𝑐𝑡 = 𝑖 |𝑝 with

𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖). Any such child node 𝑖 ′ corresponds to an interaction

accepting traces that are suffixes of traces accepted by 𝑖 and which

start with 𝑎𝑐𝑡 . Fig. 7 illustrates this process on the interaction from

Fig.1 (a partially drawn execution tree is represented). As already

mentioned, this interaction has three frontier actions (immediately

executable), at positions 1111, 21 and 221 respectively, which gives

rise to 3 direct successor nodes. The path leading to the empty

interaction (white square □) yields the trace 𝑎!𝑚1 .𝑐!𝑚4 .𝑎?𝑚4.

Let us note that, when an interaction contains a loop operator,

sequences of consecutive executions of actions can be arbitrarily

long (as suggested by the use of • • • in Fig.7). Indeed, a given exe-

cution can involve an arbitrarily large number of loop unfoldings,

depending on whether small-steps occurring during the execution

are obtained by unfolding, ignoring or pruning-out a loop. In a

given small step 𝑖
𝑎𝑐𝑡@𝑝
−−−−−−→ 𝑖 ′, if action 𝑎𝑐𝑡 at position 𝑝 is within a

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

loop operator in 𝑖 , then this loop is unfolded in 𝑖 ′. If not, then this

loop might have been ignored (left unchanged) or might have been

eliminated (pruned) in 𝑖 ′. In this aspect, our treatment of loops

is similar to the small-step unfolding of the Binary Kleene Star

operator introduced in [6] (in a process algebra). We do not need

to explicit the fact of not taking a loop with some form of a "skip"

action and a semantical rule as in [21]. If an action that is supposed

to occur "after" a certain loop is executed then the loop is eliminated

(or its content pruned) during the rewriting of the interaction term

by a call of the 𝑝𝑟𝑢𝑛𝑒 function. Loops making possible arbitrarily

long executions, we consider in Def.3.5 semantics consisting of sets

of arbitrary long (multi-)traces.

Definition 3.5 (Semantics). 𝐴𝑐𝑐𝑒𝑝𝑡 : 𝐼𝑛𝑡 → P(𝐴𝑐𝑡∗) and𝐴𝑐𝑐𝑀𝑢𝑙𝑡 :

𝐼𝑛𝑡 → P(𝑀𝑢𝑙𝑡) are s.t. for any 𝑖 ∈ 𝐼𝑛𝑡 :

𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) = 𝑒𝑚𝑝𝑡𝑦 (𝑖) ∪
{
𝑎𝑐𝑡 .𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′)

���� ∃ 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖),
𝜒 (𝑖, 𝑝) = (𝑖 ′, 𝑎𝑐𝑡)

}
𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) = {𝑝𝑟𝑜 𝑗 (𝜍) | 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖)}

with: 𝑒𝑚𝑝𝑡𝑦 (𝑖) = {𝜖} if 𝑒𝑥𝑝𝜖 (𝑖) and 𝑒𝑚𝑝𝑡𝑦 (𝑖) = ∅ otherwise.

4 MULTI-TRACE MEMBERSHIP ANALYSIS
4.1 Principle
We define a process able to decide whether or not a multi-trace ` is

accepted by an interaction 𝑖 . Its key principle is to construct traces

accepted by 𝑖 that project on `. Constructing those traces is based

on elementary steps (𝑖, `) { (𝑖 ′, ` ′) s.t. 𝜒 (𝑖, 𝑝) = (𝑖 ′, 𝑎𝑐𝑡 𝑗) for some

𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) with𝑎𝑐𝑡 𝑗 ∈ 𝐴𝑐𝑡 (𝑙 𝑗), ` = (𝜎1, · · · , 𝑎𝑐𝑡 𝑗 .𝜎 𝑗 , · · · , 𝜎𝑛) and
` ′ = (𝜎1, · · · , 𝜎 𝑗 , · · · , 𝜎𝑛). By considering all possible 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖),
and by iterating those steps of computation, the process builds a

tree whose paths are of the form (𝑖0, `0) { · · · { (𝑖𝑝 , `𝑝) · · · {
(𝑖𝑞, `𝑞), denoted as (𝑖0, `0) ∗

{ (𝑖𝑞, `𝑞).
At each step (𝑖, `) { (𝑖 ′, ` ′), the size of themulti-trace decreases

by one. Hence, any path eventually reaches a point where it is no

longer possible to find a next step. This halting of the process can

occur in 2 cases.

(1) Either the process reaches a state (𝑖𝑞, `𝑞) where `𝑞 is not

empty and no frontier action of 𝑖𝑞 matches some first elements in

`𝑞 . In that case the sequence of actions that leads to (𝑖𝑞, `𝑞) is not
a trace accepted by 𝑖 and a local verdict 𝑈𝑛𝐶𝑜𝑣 (for "multi-trace

not covered") is associated to (𝑖0, `0) ∗
{ (𝑖𝑞, `𝑞).

(2) Or the process reaches a state (𝑖𝑞, (𝜖, · · · , 𝜖)). Here, all actions
of ` have been consumed to form a given global trace 𝜍 . The process

then checks if 𝜍 is accepted by 𝑖 (which happens iff 𝑖𝑞 accepts the

empty trace). If the answer is yes then (𝑖0, `0) ∗
{ (𝑖𝑞, (Y, · · · , Y)) is

associated with a coverage verdict 𝐶𝑜𝑣 (for "multi-trace covered").

Otherwise, the verdict𝑈𝑛𝐶𝑜𝑣 is associated to the path.

If there exists a path leading to 𝐶𝑜𝑣 , the global verdict is 𝑃𝑎𝑠𝑠 . If

no such path exists, the global verdict is 𝐹𝑎𝑖𝑙 .

4.2 Definition of analysis process
Multi-trace analysis relies on 4 rules, denoted 𝑅1, 𝑅2, 𝑅3 and 𝑅4 and

given in Def.4.1. Those rules define a directed graph G in which

vertices are either a tuple (𝑖, `) ∈ 𝐼𝑛𝑡 ×𝑀𝑢𝑙𝑡 or a coverage verdict

𝑣 ∈ {𝐶𝑜𝑣,𝑈𝑛𝐶𝑜𝑣}. We note V = {𝐶𝑜𝑣,𝑈𝑛𝐶𝑜𝑣} ∪ (𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡)
the set of vertices. For 𝑥 in {1, 2, 3, 4}, the rule (𝑅𝑥) 𝑣

𝑣′ 𝑐𝑜𝑛𝑑 , with

𝑣 ∈ 𝐼𝑛𝑡 ×𝑀𝑢𝑙𝑡 and 𝑣 ′ ∈ V specifies edges of the form 𝑣 { 𝑣 ′ of
that graph, provided that 𝑣 satisfies condition 𝑐𝑜𝑛𝑑 .

Definition 4.1 (Rules of Multi-Trace Analysis). The analysis rela-
tion{⊆ V × V is defined as:

𝑖 (𝜖, · · · , 𝜖)
(R1) 𝑒𝑥𝑝𝜖 (𝑖)

𝐶𝑜𝑣

𝑖 (𝜖, · · · , 𝜖)
(R2) ¬𝑒𝑥𝑝𝜖 (𝑖)

𝑈𝑛𝐶𝑜𝑣

𝑖 (𝜎1, · · · , 𝑎𝑐𝑡 .𝜎𝑘 , · · · , 𝜎𝑛)
(R3)

∃ 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) s.t.
𝜒 (𝑖, 𝑝) = (𝑖 ′, 𝑎𝑐𝑡)𝑖 ′ (𝜎1, · · · , 𝜎𝑘 , · · · , 𝜎𝑛)

𝑖 (𝜎1, · · · , 𝜎𝑛)
(R4)

(𝜎1, · · · , 𝜎𝑛) ≠ (𝜖, · · · , 𝜖)

∧
(
∀ 𝑗 ∈ [1, 𝑛], ∀ 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖),
(𝜎 𝑗 ≠ 𝜖) ⇒ (𝑓 𝑠𝑡 (𝜎 𝑗) ≠ 𝑖 |𝑝)

)
𝑈𝑛𝐶𝑜𝑣

where 𝑓 𝑠𝑡 (𝜎) denotes the first element of a non empty sequence 𝜎 .

Let us comment Def.4.1. Vertices of the form (𝑖, `) are not sinks.
If ` is the empty multi-trace, given that 𝑒𝑥𝑝𝜖 (𝑖) can either be 𝑡𝑟𝑢𝑒 or
𝑓 𝑎𝑙𝑠𝑒 , either 𝑅1 or 𝑅2 applies and so there exists an outgoing edge

from any (𝑖, (𝜖, . . . , 𝜖)). If ` ≠ (𝜖, . . . , 𝜖), one can either have or not

have matches between frontier actions and multi-trace component

heads. Hence, an outgoing edge exists accordingly to 𝑅3 or 𝑅4. So,

coverage verdicts {𝐶𝑜𝑣,𝑈𝑛𝐶𝑜𝑣} are the 2 only sinks of G.
Rules 𝑅1, 𝑅2 and 𝑅4 specify edges from vertices of the form

(𝑖, `) to coverage verdicts. The rule 𝑅3 specifies edges (𝑖, `) {
(𝑖 ′, ` ′) such that (1) there exists an action 𝑎𝑐𝑡 occurring in 𝑖 at

position 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) matching a head action 𝑎𝑐𝑡 𝑗 of `, i.e. ` =

(𝜎1, · · · , 𝑎𝑐𝑡 𝑗 .𝜎 ′
𝑗
, · · · , 𝜎𝑛), (2) 𝑖 ′ is defined by 𝜒 (𝑖, 𝑝) = (𝑖 ′, 𝑎𝑐𝑡 𝑗),

and (3) ` ′ is the multi-trace ` in which we have removed 𝑎𝑐𝑡 𝑗 , i.e.

` ′ = (𝜎1, · · · , 𝜎 ′
𝑗
, · · · , 𝜎𝑛). Let us note that for a vertex (𝑖, `), there

are at most |𝑓 𝑟𝑜𝑛𝑡 (𝑖) | possible applications of the rule 𝑅3 with

|𝑓 𝑟𝑜𝑛𝑡 (𝑖) | bounded by the number of occurrences of actions in 𝑖 .

Let us consider |` | the number of actions occurring in a multi-

trace `, i.e. the sum of lengths of its component traces. Let us extend

this notation to vertices, that is, | (𝑖, `) | defined as |` |, and |𝐶𝑜𝑣 |
and |𝑈𝑛𝐶𝑜𝑣 | defined as −1. For any edge 𝑣 { 𝑣 ′ of G, we have
|𝑣 ′ | < |𝑣 | with |𝑣 ′ | ≥ −1. Consequently, the successive application

of the rules strictly decrements the size of nodes and from any

vertex (𝑖, `), any maximal outgoing path is finite, and terminates in

a coverage verdict in {𝐶𝑜𝑣,𝑈𝑛𝐶𝑜𝑣} (since (𝑖, `) are not sinks of G).
Thus, G is an acyclic graph. With the notation 𝑣

∗
{ 𝑣 ′ to indicate

that there is a path from 𝑣 to 𝑣 ′ in G, we define multi-trace analysis.

Definition 4.2 (Multi-Trace Analysis). We define𝜔 : 𝐼𝑛𝑡×𝑀𝑢𝑙𝑡 →
{𝑃𝑎𝑠𝑠, 𝐹𝑎𝑖𝑙} such that for any 𝑖 ∈ 𝐼𝑛𝑡 and ` ∈ 𝑀𝑢𝑙𝑡 we have:

• 𝜔 (𝑖, `) = 𝑃𝑎𝑠𝑠 iff there exists a path (𝑖, `) ∗
{ 𝐶𝑜𝑣

• 𝜔 (𝑖, `) = 𝐹𝑎𝑖𝑙 otherwise; i.e. for all path (𝑖, `) ∗
{ 𝑣 with

𝑣 ∈ {𝐶𝑜𝑣,𝑈𝑛𝐶𝑜𝑣}, then 𝑣 = 𝑈𝑛𝐶𝑜𝑣

The function 𝜔 is well-defined. Indeed, we established that all

maximal paths from a vertex (𝑖0, `0) have a maximum length of

|` | + 1 and end on a coverage verdict (𝐶𝑜𝑣 or𝑈𝑛𝐶𝑜𝑣). As besides,

each intermediate vertex (𝑖, `) between (𝑖0, `0) and a coverage

verdict has a number of children bounded by the number of actions

of 𝑖 , then the set of vertices reachable from (𝑖0, `0) is finite.

4.3 Correctness w.r.t the semantics
We now prove that the function 𝜔 in charge of analysing multi-

traces w.r.t. an interaction captures exactly its semantics defined

A small-step approach to multi-trace checking against interactions SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

by the step-by-step execution function 𝜒 given in Sec.3. More pre-

cisely, we will prove that for any (𝑖, `) in 𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡 , 𝜔 (𝑖, `) =

𝑃𝑎𝑠𝑠 iff ` ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) (and by extension, 𝜔 (𝑖, `) = 𝐹𝑎𝑖𝑙 iff ` ∉

𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖)). Given that 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) is the set of projected global

traces of 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖), it then suffices to prove that for any trace

𝜍 ∈ 𝐴𝑐𝑡∗ we have 𝜔 (𝑖, 𝑝𝑟𝑜 𝑗 (𝜍)) = 𝑃𝑎𝑠𝑠 iff 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). Below,
Th.4.3 and Th.4.4 resp. correspond to the⇐ and⇒ implication of

this "iff ".

Theorem 4.3 (𝐴𝑐𝑐𝑒𝑝𝑡 implies 𝑃𝑎𝑠𝑠). For any (𝑖, 𝜍) ∈ 𝐼𝑛𝑡 ×𝐴𝑐𝑡∗:

(𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖)) ⇒ (𝜔 (𝑖, 𝑝𝑟𝑜 𝑗 (𝜍)) = 𝑃𝑎𝑠𝑠)

Proof. Let us reason by induction on the trace 𝜍 .

• 𝜍 = 𝜖 . Let us consider an interaction 𝑖 s.t. 𝜖 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). We have

𝑝𝑟𝑜 𝑗 (𝜖) = (𝜖, · · · , 𝜖). As 𝜖 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖), then 𝑒𝑥𝑝𝜖 (𝑖) = ⊤ and 𝑅1 is

applicable from (𝑖, (𝜖, · · · , 𝜖)). We obtain 𝜔 (𝑖, (𝜖, · · · , 𝜖)) = 𝑃𝑎𝑠𝑠 .

• 𝜍 = 𝑎𝑐𝑡 .𝜍 ′. Let us consider 𝑖 s.t. 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). The induction hy-

pothesis on 𝜍 ′ is: "∀ 𝑖 ′ ∈ 𝐼𝑛𝑡, (𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′)) ⇒ (𝜔 (𝑖 ′, 𝑝𝑟𝑜 𝑗 (𝜍 ′)) =
𝑃𝑎𝑠𝑠)". As 𝑎𝑐𝑡 .𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖), then there exists 𝑖 ′ in 𝐼𝑛𝑡 and 𝑝 ∈
𝑓 𝑟𝑜𝑛𝑡 (𝑖) s.t. 𝜒 (𝑖, 𝑝) = (𝑖 ′, 𝑎𝑐𝑡) and 𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′). Let us con-
sider the index 𝑗 such that 𝑝𝑟𝑜 𝑗 (𝑎𝑐𝑡 .𝜍 ′) = (𝜎1, · · · , 𝑎𝑐𝑡 .𝜎 𝑗 , · · · , 𝜎𝑛).
Given that 𝜒 (𝑖, 𝑝) = (𝑖 ′, 𝑎𝑐𝑡), 𝑅3 can be applied so that,

(𝑖, (𝜎1, · · · , 𝑎𝑐𝑡 .𝜎 𝑗 , · · · , 𝜎𝑛)) { (𝑖 ′, (𝜎1, · · · , 𝜎 𝑗 , · · · , 𝜎𝑛))
with (𝜎1, · · · , 𝜎 𝑗 , · · · , 𝜎𝑛) = 𝑝𝑟𝑜 𝑗 (𝜍 ′). We have (𝜔 (𝑖 ′, 𝑝𝑟𝑜 𝑗 (𝜍 ′)) =
𝑃𝑎𝑠𝑠) by induction, i.e. there exists a path (𝑖 ′, 𝑝𝑟𝑜 𝑗 (𝜍 ′)) ∗

{ 𝐶𝑜𝑣 . By

preceding this path with (𝑖, 𝑝𝑟𝑜 𝑗 (𝑎𝑐𝑡 .𝜍 ′)) { (𝑖 ′, 𝑝𝑟𝑜 𝑗 (𝜍 ′)), we get
(𝑖, (𝜎1, · · · , 𝑎𝑐𝑡 .𝜎 𝑗 , · · · , 𝜎𝑛)) ∗

{ 𝐶𝑜𝑣 and 𝜔 (𝑖, 𝑝𝑟𝑜 𝑗 (𝜍)) = 𝑃𝑎𝑠𝑠 . □

Theorem 4.4 (𝑃𝑎𝑠𝑠 implies 𝐴𝑐𝑐𝑒𝑝𝑡). For any (𝑖, `) ∈ 𝐼𝑛𝑡 ×𝑀𝑢𝑙𝑡 :

(𝜔 (𝑖, `) = 𝑃𝑎𝑠𝑠) ⇒
(
∃ 𝜍 ∈ 𝐴𝑐𝑡∗ s.t. 𝑝𝑟𝑜 𝑗 (𝜍) = ` and 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖)

)
Proof. Let us reason by induction on the size of `, i.e. on |` |.

• |` | = 0. Let us consider 𝑖 s.t. 𝜔 (𝑖, `) = 𝑃𝑎𝑠𝑠 . By |` | = 0, ` =

(𝜖, · · · , 𝜖). Since 𝜔 (𝑖, (𝜖, · · · , 𝜖)) = 𝑃𝑎𝑠𝑠 , 𝑅1 must apply and this im-

plies that 𝑒𝑥𝑝𝜖 (𝑖) = ⊤ and consequently 𝜖 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). Therefore
the property holds at length 0.

• |` | = 𝑧 + 1 with 𝑧 ≥ 0. Let us consider 𝑖 s.t. 𝜔 (𝑖, `) = 𝑃𝑎𝑠𝑠 .

The induction hypothesis states that "for all (𝑖 ′, ` ′) ∈ 𝐼𝑛𝑡 ×𝑀𝑢𝑙𝑡

with |` ′ | = 𝑧, (𝜔 (𝑖 ′, ` ′) = 𝑃𝑎𝑠𝑠) ⇒ (∃ 𝜍 ′ ∈ 𝐴𝑐𝑡∗ s.t. 𝑝𝑟𝑜 𝑗 (𝜍 ′) =

` ′ and 𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′))". Since 𝜔 (𝑖, `) = 𝑃𝑎𝑠𝑠 , there exists a path

(𝑖, `) ∗
{ 𝐶𝑜𝑣 . As noticed in Sec. 4.2, each edge of a maximal path

exactly consumes one action, with the exception of the last edge

leading to the coverage verdict. Thus the path starts with an edge

of form (𝑖, `) { (𝑖 ′, ` ′) with |` ′ | = 𝑧 and we have then (𝑖 ′, ` ′)
∗
{ 𝐶𝑜𝑣 . By definition, 𝜔 (𝑖 ′, ` ′) = 𝑃𝑎𝑠𝑠 . By induction, there exists

a trace 𝜍 ′ s.t. 𝑝𝑟𝑜 𝑗 (𝜍 ′) = ` ′ and 𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′). (𝑖, `) { (𝑖 ′, ` ′)
corresponds to the consumption of an action 𝑎𝑐𝑡 which matches

a frontier action 𝑖 |𝑝 of 𝑖 . By definition, the trace 𝜍 = 𝑎𝑐𝑡 .𝜍 ′ verifies
𝑝𝑟𝑜 𝑗 (𝜍) = ` and 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). □

The two theorems demonstrate that 𝜔 (𝑖, `) = 𝑃𝑎𝑠𝑠 character-

izes the membership of a multi-trace ` to 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). A Coq proof,

formalizing our approach and which includes the 2 previous demon-

strations is available online
4
.

The computational cost of 𝜔 varies greatly depending on the

initial (𝑖, `) couple. We demonstrate the NP-hardness of this mem-

bership problem through a reduction of the 1-in-3-SAT problem

[22] that is inspired by [1, 8, 10] but requires the construction of a

different reduction of which we discuss in the following.

4.4 Discussion on Complexity
1-in-3-SAT [22] is a particular Boolean satisifiability problem. Let

us consider a set of 𝑝 ≥ 1 boolean variables 𝑉 = {𝑣1, · · · , 𝑣𝑝 }
and a set of 𝑞 ≥ 1 clauses {𝐶1, · · · ,𝐶𝑞} in 3-CNF form i.e. s.t. for

any 𝑗 ∈ [1, 𝑞], 𝐶 𝑗 = 𝛼 𝑗 ∨ 𝛽 𝑗 ∨ 𝛾 𝑗 with 𝛼 𝑗 , 𝛽 𝑗 , 𝛾 𝑗 in 𝑉 ∪ 𝑉 , ¯ being

the usual negation operator. The 1-in-3-SAT problem on formula

𝜙 = 𝐶1 ∧ · · · ∧ 𝐶𝑞 then consists in finding 𝜌 : 𝑉 → {⊤,⊥} s.t.3
𝜌 |= 𝜙 and s.t. for any clause 𝐶 𝑗 , only one in the three literals 𝛼 𝑗 ,

𝛽 𝑗 , or 𝛾 𝑗 is set to ⊤. In the following, we sketch a reduction proof

which states that any 1-in-3-SAT problem can be reduced to the

multi-trace membership problem for a given (𝑖, `) ∈ 𝐼𝑛𝑡 ×𝑀𝑢𝑙𝑡 (i.e.

whether or not ` ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖)).
Let us consider the reduction of 1-in-3-SAT in the simple case

where 𝑝 = 4 and 𝑞 = 2. This approach can then be extended to

include any other case.

𝑖𝑣1

𝑖𝑣1

𝑖𝑣2

𝑖𝑣2

𝑖𝑣3

𝑖𝑣3

𝑖𝑣4

𝑖𝑣4

∅

∅

∅

Figure 8

From formula 𝜙 = 𝐶1 ∧𝐶2, we define

an interaction 𝑖 via a 1-on-1 transforma-

tion. This 𝑖 is of the form exemplified on

Fig.8 i.e. a parallelization of 4 alternatives

𝑎𝑙𝑡 (𝑖𝑣, 𝑖𝑣) s.t. for any 𝑥 ∈ 𝑉 ∪𝑉 , 𝑖𝑥 is s.t.

if 𝑥 occurs:

• in 𝐶1 and 𝐶2 then 𝑖𝑥 = 𝑠𝑒𝑞(𝑙1!𝑚, 𝑙2!𝑚)
• in 𝐶1 but not in 𝐶2 then 𝑖𝑥 = 𝑙1!𝑚

• in 𝐶2 but not in 𝐶1 then 𝑖𝑥 = 𝑙2!𝑚

• neither in 𝐶1 nor in 𝐶2 then 𝑖𝑥 = ∅
For instance, with 𝐶1 = (𝑣1 ∨ 𝑣2 ∨ 𝑣4)

and 𝐶2 = (𝑣1 ∨ 𝑣3 ∨ 𝑣4), Fig.8 gives the
corresponding interaction.

This 1-in-3-SAT problem 𝜙 is equiva-

lent to the multi-trace membership prob-

lem ` = (𝑙1!𝑚, 𝑙2!𝑚) ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). In-
deed, in a given execution of 𝑖 , compo-

nent 𝜎1 = 𝑙1!𝑚 of ` is expressed ex-

actly once iff exactly one of the sub-

interactions 𝑖𝛼1
, 𝑖𝛽1

or 𝑖𝛾1
is "chosen"

during the execution of 𝑖 . Given that

the parent interaction (within 𝑖) of sub-

interaction 𝑖𝛼1
(same reasoning for 𝑖𝛽1

and 𝑖𝛾1
) is of the form 𝑎𝑙𝑡 (𝑖𝛼1

, 𝑖𝛼1

) (or

with the order of branches inverted), "chosen" means that the ex-

clusive branch that hosts 𝑖𝛼1
is chosen over that which hosts 𝑖𝛼1

.

The expression of component 𝜎1 on lifeline 𝑙1 is therefore equiv-

alent to the satisfaction of clause 𝐶1 in 1-in-3-SAT. In our example,

with 𝐶1 = (𝑣1 ∨ 𝑣2 ∨ 𝑣4), the fact that 𝜌 |= 𝐶1 with 𝜌 : [𝑣1 →
⊥, 𝑣2 → ⊤, 𝑣3 → ⊤, 𝑣4 → ⊤] is equivalent to the fact that 𝑙1!𝑚 is

expressed exactly once during the execution of 𝑖 when 𝑖𝑣1

is chosen

over 𝑖𝑣1
, 𝑖𝑣2

over 𝑖𝑣2

, 𝑖𝑣3
over 𝑖𝑣3

, and 𝑖𝑣4
over 𝑖𝑣4

.

The same reasoning applies for the relationship between 𝐶2 and

𝜎2 = 𝑙2!𝑚. In other words, during the execution of 𝑖 , given the

use of exclusive alternative operators in 𝑎𝑙𝑡 (𝑖𝑣, 𝑖𝑣) sub-terms, the

choice of either one of the 𝑎𝑙𝑡 branch constitutes an assignment of

Boolean variable 𝑣 . The overall parallel composition then simulates

3
"𝜌 |= 𝜙" is the usual satisfaction relation in propositional logic.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea E. Mahe, B. Bannour, C. Gaston, A. Lapitre, P. Le Gall

all possible variable assignments (i.e. the search space for 𝜌). Then,

the satisfaction of 𝜙 as the conjunction of clauses 𝐶1 and 𝐶2 in 1-

in-3-SAT is equivalent to that of ` = (𝜎1, 𝜎2) ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). Indeed,
the same 𝜌 must be used to solve both𝐶1 and𝐶2 and the same global

execution of 𝑖 must be used to consume both 𝜎1 and 𝜎2 exactly.

In our example, 𝜙 = (𝑣1 ∨ 𝑣2 ∨ 𝑣4) ∧ (𝑣1 ∨ 𝑣3 ∨ 𝑣4) is solvable
in 1-in-3-SAT by 𝜌 : [𝑣1 → ⊥, 𝑣2 → ⊤, 𝑣3 → ⊤, 𝑣4 → ⊤]. This
is equivalent to the fact that ` = (𝑙1!𝑚, 𝑙2!𝑚) is consumed exactly

by the execution of 𝑖 from Fig.8 when 𝑖𝑣1

is chosen over 𝑖𝑣1
, 𝑖𝑣2

over 𝑖𝑣2

, 𝑖𝑣3
over 𝑖𝑣3

, and 𝑖𝑣4
over 𝑖𝑣4

. For any such 3-CNF formula

𝜙 = 𝐶1 ∧𝐶2 defined over𝑉 = {𝑣1, · · · , 𝑣4}, the 1-in-3-SAT problem

can therefore be reduced to that of the membership of (𝑙1!𝑚, 𝑙2!𝑚)
w.r.t. the interaction 𝑖 constructed from 𝜙 as above.

As explained earlier, this sketch of proof can be extended to

include any numbers 𝑝 and𝑞 of resp. variables and clauses. It suffices

to consider𝑞 lifelines 𝑙1, · · · , 𝑙𝑞 , themulti-trace ` = (𝑙1!𝑚, · · · , 𝑙𝑞 !𝑚)
and 𝑝 parallelized sub-interactions 𝑎𝑙𝑡 (𝑖𝑣1

, 𝑖𝑣1

), · · · , 𝑎𝑙𝑡 (𝑖𝑣𝑝 , 𝑖𝑣𝑝).
Given that we have identified a case of multi-trace membership

equivalent to an NP-complete problem, by reduction, multi-trace

membership is NP-hard.

5 TOOL SUPPORT
Our prototype tool, called HIBOU is available online

4
. The inductive

structure of definitions from Sec.3 facilitated their transcription into

executable code (Rust language) for implementing HIBOU. The 𝜔

function is also implemented by building on-the-fly the sub-graph

originating from the application of rule 𝑅3. As a result, HIBOU pro-

vides two main functionalities (1) multi-trace membership analysis

and (2) interaction model exploration.

HIBOU can analyze multi-traces against interaction models and

return a verdict. In addition to the 𝑃𝑎𝑠𝑠 and 𝐹𝑎𝑖𝑙 verdicts defined

in Sec.4.2 (which state whether or not a multi-trace is accepted),

HIBOU can also return a𝑊𝑒𝑎𝑘𝑃𝑎𝑠𝑠 verdict for identifying prefixes

of accepted multi-traces. Moreover, HIBOU expands the analysis

to multi-traces defined over co-localizations that are not reduced

to singletons. One can analyze ` = ({𝑎, 𝑏} → 𝑎!𝑚.𝑏!𝑚, {𝑐} →
𝑐?𝑚) defined over a co-localized sub-system composed of lifelines

𝑎 and 𝑏, and another sub-system composed of lifeline 𝑐 . In case

where all lifelines form a single co-localization, our approach then

corresponds to global trace analysis from [16].

Multi-trace analysis relies on the traversal of a tree constituted

by nodes (𝑖, `). In practice, this traversal is interrupted when a

𝐶𝑜𝑣 verdict (or 𝑇𝑜𝑜𝑆ℎ𝑜𝑟𝑡 , if the goal of the analysis is𝑊𝑒𝑎𝑘𝑃𝑎𝑠𝑠)

is reached. Various heuristics can be configured to quicken the

process. HIBOU allows the use of Depth First Search (DFS) and

Breadth First Search (BFS) as well as a way to set priority levels for

the evaluation of certain types of actions.

Interaction model exploration uses 𝜒 to explore the semantics

of interactions by unfolding paths 𝑖
∗
{ 𝑖 ′. The computation of those

paths can be stopped by setting filters on the size of the exploration

tree (maximum depth, maximum number of nodes, etc.).

In HIBOU, traceability for end-users is facilitated given that we

have access to the successions of nodes and can therefore draw

analysis / exploration trees as illustrated in Fig.7.

4
https://github.com/erwanM974/hibou_label

6 CONCLUSION
We have proposed an approach to decide on the membership of

multi-traces w.r.t. a semantics defined on interaction models. The

analysis consists in applying non-deterministic reading of the multi-

trace using small-steps of the operational semantics. This approach

has been validatedwith a formal proof of correctness using Coq, and

a study on complexity. Moreover, a prototype tool that implements

this analysis method has been developed in line with theoretical

claims. Finally, as future work, we plan to exploit membership

analysis to test distributed systems where logging of multi-traces

is performed under observability limitations.

REFERENCES
[1] R. Alur, K. Etessami, and M. Yannakakis. 2001. Realizability and Verification

of MSC Graphs. In Automata, Languages and Programming, 28th International
Colloquium, ICALP, Vol. 2076. Springer, 797–808.

[2] C. Andrés, M. Cambronero, andM. Núñez. 2010. Formal Passive Testing of Service-

Oriented Systems. In IEEE International Conference on Services Computing, SCC.
IEEE, 610–613.

[3] B. Bannour, C. Gaston, and D. Servat. 2011. Eliciting Unitary Constraints from

Timed Sequence Diagram with Symbolic Techniques: Application to Testing. In

18th Asia Pacific Software Engineering Conference, APSEC. IEEE, 219–226.
[4] A. Bauer and Y. Falcone. 2016. Decentralised LTL monitoring. Formal Methods

Syst. Des. (2016), 46–93.
[5] N. Benharrat, C. Gaston, R. M. Hierons, A. Lapitre, and P. Le Gall. 2017. Constraint-

Based Oracles for Timed Distributed Systems. In Testing Software and Systems -
29th IFIP WG 6.1 International Conference, ICTSS, Vol. 10533. Springer, 276–292.

[6] J. A. Bergstra, I. Bethke, and A. Ponse. 1994. Process Algebra with Iteration and

Nesting. Comput. J. 37, 4 (1994), 243–258.
[7] H. Dan and R. M. Hierons. 2011. Conformance Testing from Message Sequence

Charts. In Fourth IEEE International Conference on Software Testing, Verification
and Validation, ICST. IEEE, 279–288.

[8] H. Dan and R. M. Hierons. 2014. The Oracle Problem When Testing from MSCs.

Comput. J. 57, 7 (2014), 987–1001.
[9] N. Dershowitz and J. P. Jouannaud. 1990. Handbook of Theoretical Computer

Science (Vol. B). MIT Press, Chapter Rewrite Systems, 243–320.

[10] B. Genest and A. Muscholl. 2008. Pattern Matching and Membership for Hierar-

chical Message Sequence Charts. Theory Comput. Syst. 42, 4 (2008), 536–567.
[11] ITU. [n. d.]. Message Sequence Chart (MSC). http//www.itu.int/rec/T-REC-Z.120

[12] A. Knapp and T. Mossakowski. 2017. UML Interactions Meet State Machines - An

Institutional Approach. In 7th Conference on Algebra and Coalgebra in Computer
Science, CALCO (LIPIcs), Vol. 72. Schloss Dagstuhl, 15:1–15:15.

[13] L. Lamport. 2019. Time, clocks, and the ordering of events in a distributed system.

In Concurrency: the Works of Leslie Lamport, D. Malkhi (Ed.). ACM, 179–196.

[14] D. Longuet. 2012. Global and local testing from Message Sequence Charts. In

Proceedings of the ACM Symposium on Applied Computing, SAC. ACM, 1332–1338.

[15] J. Mace, R. Roelke, and R. Fonseca. 2015. Pivot tracing: dynamic causal monitoring

for distributed systems. In Proceedings of the 25th Symposium onOperating Systems
Principles, SOSP. ACM, 378–393.

[16] E. Mahe, C. Gaston, and P. Le Gall. 2020. Revisiting Semantics of Interactions

for Trace Validity Analysis. In Fundamental Approaches to Software Engineering -
23rd International Conference, FASE, Vol. 12076. Springer, 482–501.

[17] F. Neves, N. Machado, and J. Pereira. 2018. Falcon: A Practical Log-Based Analysis

Tool for Distributed Systems. In 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN. IEEE, 534–541.

[18] H. N. Nguyen, P. Poizat, and F. Zaïdi. 2012. Passive conformance testing of service

choreographies. In Proceedings of the ACM Symposium on Applied Computing,
SAC. ACM, 1528–1535.

[19] OMG. [n. d.]. Business Process Model and Notation (BPMN). http://www.bpmn.

org

[20] OMG. [n. d.]. Unified Modeling Language. http://www.uml.org

[21] Z. Qiu, X. Zhao, C. Cai, and H. Yang. 2007. Towards the theoretical foundation of

choreography. In Proceedings of the 16th International Conference on World Wide
Web, WWW. ACM, 973–982.

[22] T. J. Schaefer. 1978. The Complexity of Satisfiability Problems. In Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, R. J. Lipton, W. A.

Burkhard, W. J. Savitch, E. P. Friedman, and A. V. Aho (Eds.). ACM, 216–226.

[23] K. Sen, A. Vardhan, G. Agha, and G. Rosu. 2004. Efficient Decentralized Monitor-

ing of Safety in Distributed Systems. In 26th International Conference on Software
Engineering, ICSE. IEEE, 418–427.

https://github.com/erwanM974/hibou_label
http//www.itu.int/rec/T-REC-Z.120
http://www.bpmn.org
http://www.bpmn.org
http://www.uml.org

	Abstract
	1 Introduction
	2 Multi-Traces and Interactions
	2.1 (Multi-)Traces
	2.2 Interaction Language

	3 Accepted (multi-)traces
	3.1 Static analysis of interactions
	3.2 Interaction Execution
	3.3 Definition of accepted (multi-)traces

	4 Multi-trace membership analysis
	4.1 Principle
	4.2 Definition of analysis process
	4.3 Correctness w.r.t the semantics
	4.4 Discussion on Complexity

	5 Tool support
	6 Conclusion
	References

