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Interaction models describe the exchange of messages between the different components of distributed systems. This paper presents an approach for checking the validity of multi-traces against interaction models. A multi-trace is a collection of traces (sequences of emissions and receptions), each representing a local view of the same global execution of the distributed system. We formally prove our approach, study its complexity, and implement it in a prototype tool.

INTRODUCTION

Context. A distributed system (DS) can be viewed as a collection of sub-systems, which are distributed over distinct physical locations and which communicate with each other by exchanging messages [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF]. Analyzing the executions of DSs is a key problem to assess their correctness. However, the distributed nature of observations complicates this task. The absence of a global clock makes the classical notion of trace often too strong to represent DS executions. Indeed, a trace fully orders all events occurring in it while ordering events occurring on remote locations is often impossible. Therefore, multi-traces are better suited to model executions of DSs. A multi-trace is a collection of traces, one per sub-system, which represents the sequence of actions -emissions and receptions of messages -that have been observed at its interface. Contrary to traces, multi-traces do not strongly constrain orderings between actions occurring on different sub-systems. Our work is related to the general problem of the automatic analysis and debugging of DSs based on local logging of traces [START_REF] Andrés | Formal Passive Testing of Service-Oriented Systems[END_REF][START_REF] Benharrat | Constraint-Based Oracles for Timed Distributed Systems[END_REF][START_REF] Mace | Pivot tracing: dynamic causal monitoring for distributed systems[END_REF][START_REF] Neves | Falcon: A Practical Log-Based Analysis Tool for Distributed Systems[END_REF][START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF]. We are positioned at the intersection of two main issues: (1) that of tracking the causality of actions in traces [START_REF] Mace | Pivot tracing: dynamic causal monitoring for distributed systems[END_REF][START_REF] Neves | Falcon: A Practical Log-Based Analysis Tool for Distributed Systems[END_REF] based on the happenedbefore relation of Lamport [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] and (2) that of checking multi-traces against formal properties [START_REF] Andrés | Formal Passive Testing of Service-Oriented Systems[END_REF] or models [START_REF] Benharrat | Constraint-Based Oracles for Timed Distributed Systems[END_REF][START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF].

Contribution. In a model-based approach, we ground our analysis on interaction models (interactions for short) as references of intended DS executions. This kind of models -which include UML Sequence Diagrams [START_REF] Omg | Unified Modeling Language[END_REF], Message Sequence Charts [START_REF]Message Sequence Chart (MSC)[END_REF], BPMN Choregraphies [START_REF] Omg | Business Process Model and Notation (BPMN)[END_REF] among others -are widely used to specify DSs. In such models, DS executions are thought of as coordinations of message exchanges between multiple sub-systems. We consider interactions where the execution units are actions (the same as those constituting traces) and can be combined using operators of sequencing, choice, repetition and parallelism. This paper presents an approach to check the validity of multi-traces against interactions. Validity refers to the notion of being an accepted multi-trace, intuitively reflecting the fact of fully realizing one of the behaviours prescribed by the reference interaction, taking into account that interactions can be non-deterministic. We prove the correctness and discuss the complexity class of our method for analyzing multitraces w.r.t. interaction semantics. Our present contribution extends a previous paper [START_REF] Mahe | Revisiting Semantics of Interactions for Trace Validity Analysis[END_REF], where we proposed a small-step operational semantics for interactions, backed by an equivalent algebraic denotational semantics. As part of our contribution, we have also developed a prototype tool implementing the semantics and the algorithm for multi-trace analysis. This tool can render graphical representations detailing the steps taken by the analysis. Images of interactions in this paper have been adapted from its outputs.

Related work. Interactions have been extensively used to validate DSs using Test Case generation [START_REF] Bannour | Eliciting Unitary Constraints from Timed Sequence Diagram with Symbolic Techniques: Application to Testing[END_REF][START_REF] Dan | Conformance Testing from Message Sequence Charts[END_REF][START_REF] Longuet | Global and local testing from Message Sequence Charts[END_REF]. Much effort is spent on the generation of local test cases to mitigate the following problems: (1) "observability", i.e. the difficulty in inferring global executions from partial visions of message exchanges and (2) "controllability", i.e. the difficulty in determining when to apply stimuli in order to realize a targeted global execution. Our work falls within another domain which is Passive Testing [START_REF] Andrés | Formal Passive Testing of Service-Oriented Systems[END_REF][START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF] (in which testers are only observers), and discusses problems such as the Test Oracle Problem [START_REF] Dan | The Oracle Problem When Testing from MSCs[END_REF] (determining expected outputs w.r.t. given stimuli). Such a problem also falls into the domain of offline approaches to Runtime Verification [START_REF] Bauer | Decentralised LTL monitoring[END_REF][START_REF] Sen | Efficient Decentralized Monitoring of Safety in Distributed Systems[END_REF]. Both works [START_REF] Andrés | Formal Passive Testing of Service-Oriented Systems[END_REF][START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF] have proposed approaches to check a set of local logs recorded in Service Oriented Systems. Authors in [START_REF] Andrés | Formal Passive Testing of Service-Oriented Systems[END_REF] propose a methodology to verify the conservation of invariants during the execution of the system. Both local and global invariants can be checked, although the latter is more costly in terms of computations. Our approach is different in that the reference for the analysis is not a correctness property but a model of interaction as in [START_REF] Dan | The Oracle Problem When Testing from MSCs[END_REF][START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF]. Logics such as Linear Temporal Logic (LTL), are widely used in runtime verification to specify and verify requirements as logical properties. For DSs, either local properties are considered for synthesizing verifiers (as in the centralized case) in which case verification at a global level is difficult to reason about, or a global property is considered. In the latter case, either the property is transformed into decentralized verifiers and can lose meaning in the process, or all verifiers use the same global property, but they must be informed of other's local states [START_REF] Sen | Efficient Decentralized Monitoring of Safety in Distributed Systems[END_REF]. There remains the possibility of coming back to the centralized case, but the accuracy of the global ordering of events using timestamping requires keeping the remote clocks synchronised [START_REF] Bauer | Decentralised LTL monitoring[END_REF]. In this perspective, models of interactions are well-suited to be used as a reference for correctness when analyzing DS executions. This is all the more relevant in cases where the temporal ordering of remote events is not feasible. [START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF] discusses passive testing against models of interactions expressed in the Chor [START_REF] Qiu | Towards the theoretical foundation of choreography[END_REF] language. It differs from our approach in so far as: [START_REF] Alur | Realizability and Verification of MSC Graphs[END_REF] Chor is less expressive than the interaction language we propose (particularly w.r.t. the absence of weak sequencing and the nature of loops), (2) [START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF] only handles synchronous communication between services, which cannot always describe accurately concrete implementations and (3) the local logs are not directly checked against the model but first pass through a synthesis step in which a global log is reconstituted based on timestamp information, and then this global log is checked. In [START_REF] Nguyen | Passive conformance testing of service choreographies[END_REF], putting logs together is facilitated by assuming synchronized clocks, which is not a prerequisite to applying our analysis approach. Authors in [START_REF] Dan | The Oracle Problem When Testing from MSCs[END_REF] investigate the computational cost of log analysis w.r.t. graphs of MSCs. This cost is compared in different cases according to the quality of observations (local or tester observability i.e. whether one has a set of independent local logs or a globally ordered log) and the expressivity of the MSC graphs (presence of choice, loop or parallelism). The work echoes results for "MSC Membership" [START_REF] Alur | Realizability and Verification of MSC Graphs[END_REF][START_REF] Genest | Pattern Matching and Membership for Hierarchical Message Sequence Charts[END_REF] which state that this problem is NP-complete. The main factor of the cost blow-up lies in the fact that distributed actions can be equally re-ordered in multiple ways. Our work relates to such research, but we consider richer interactions (asynchronous communications, weak sequencing, no enforced fork-join, ...). As such, the language used in this paper is closer to the expressiveness of UML Sequence Diagrams. We therefore expect higher computational costs. Nevertheless, by applying a small-step semantics guided by the reading of the multi-trace, only pertinent parts of the search space are explored.

Plan. Sec.2 introduces our definition of multi-traces and recalls the concrete syntax of interactions as introduced in [START_REF] Mahe | Revisiting Semantics of Interactions for Trace Validity Analysis[END_REF]. Sec.3 reformulates definitions from [START_REF] Mahe | Revisiting Semantics of Interactions for Trace Validity Analysis[END_REF] so as to introduce the rewriting of interaction terms to define their semantics. We also extend [START_REF] Mahe | Revisiting Semantics of Interactions for Trace Validity Analysis[END_REF] by defining a small-step semantics in the form of accepted multi-traces. Sec.4 is the core of our contribution. It presents our multi-trace analysis and some theoretical properties (termination, characterization of membership, NP-hardness). Sec.5 briefly introduces our prototype implementation HIBOU and Sec.6 concludes the paper.

MULTI-TRACES AND INTERACTIONS

Describing a DS requires distinguishing between its distinct independent sub-systems and the different messages those sub-systems can exchange. In this paper, those sub-systems are abstracted as so-called lifelines (classical terminology of interaction-based languages). We will denote 𝐿 the set of all lifelines and 𝑀 the set of all messages. In the rest of the paper, 𝐿 and 𝑀 will be left implicit.

The building blocks of both multi-traces and interactions are actions. An action is either the emission or the reception of a message 𝑚 from or towards a lifeline 𝑙, denoted respectively 𝑙!𝑚 and 𝑙?𝑚. We denote 𝐴𝑐𝑡 = {𝑙Δ𝑚 | 𝑙 ∈ 𝐿, Δ ∈ {!, ?}, 𝑚 ∈ 𝑀 } the set of all actions. 𝐴𝑐𝑡 (𝑙) is the set of actions of the form 𝑙Δ𝑚. For an action 𝑎𝑐𝑡 of the form 𝑙!𝑚 or 𝑙?𝑚, 𝑙 𝑓 (𝑎𝑐𝑡) will stand for the lifeline 𝑙.

(Multi-)Traces

A trace characterizes an execution of a DS as a sequence 1 of actions, appearing in the order in which they occurred globally. From now on, the set 𝐿 of lifelines will be assumed to be finite, and provided with a total order. By convention, when 𝐿 is defined as the set {𝑙 1 , • • • , 𝑙 𝑛 }, the indexes from 1 to 𝑛 will be used to order the elements of 𝐿, i.e.

𝑙 𝑖 < 𝑙 𝑗 iff 𝑖 < 𝑗 in N. Given 𝐿 = {𝑙 1 , • • • , 𝑙 𝑛 }, a multi- trace is a tuple of traces 𝜇 = (𝜎 1 , • • • , 𝜎 𝑛 )
where, for any 𝑗 ∈ [1, 𝑛], 𝜎 𝑗 ∈ 𝐴𝑐𝑡 (𝑙 𝑗 ) * and where traces are ordered in the tuple respecting the order associated with the lifelines. A multi-trace describes the execution of a DS as the collection of traces locally observed on each sub-system. Multi-traces do not constrain orderings between actions occurring on different lifelines. 𝑀𝑢𝑙𝑡 = 𝑙 ∈𝐿 𝐴𝑐𝑡 (𝑙) * is 2 the set of multi-traces. Def.2.1 introduces the projection operator 𝑝𝑟𝑜 𝑗 that projects any trace 𝜍 ∈ 𝐴𝑐𝑡 * into a multi-trace 𝑝𝑟𝑜 𝑗 (𝜍) ∈ 𝑀𝑢𝑙𝑡. Definition 2.1 (Trace Projection). 𝑝𝑟𝑜 𝑗 : 𝐴𝑐𝑡 * → 𝑀𝑢𝑙𝑡 is s.t.:

• 𝑝𝑟𝑜 𝑗 (𝜖) = (𝜖, • • • , 𝜖) • given 𝑗 ∈ [1, 𝑛] and 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 (𝑙 𝑗 ) and 𝜍 ∈ 𝐴𝑐𝑡 * if 𝑝𝑟𝑜 𝑗 (𝜍) = (𝜎 1 , • • • , 𝜎 𝑗 , • • • , 𝜎 𝑛 ) then 𝑝𝑟𝑜 𝑗 (𝑎𝑐𝑡 .𝜍) = (𝜎 1 , • • • , 𝑎𝑐𝑡 .𝜎 𝑗 , • • • , 𝜎 𝑛 ).

Interaction Language

Interactions synthesize possible executions of DSs by exhibiting the actions that can be observed and the possible orderings between them. As shown in Fig. 1 (left), interactions are binary trees whose leaves are actions. Precedence relations between 2 actions at different leaf positions are determined by the operators found in the inner nodes of the tree that separates those 2 positions.

Definition 2.2 (Interactions). The set 𝐼𝑛𝑡 of interactions is s.t.:

• ∅ ∈ 𝐼𝑛𝑡 and 𝐴𝑐𝑡 ⊂ 𝐼𝑛𝑡, 1 For a set 𝑋 , 𝑋 * denotes the set of sequences of elements of 𝑋 with 𝜖 being the empty sequence and the dot notation (.) being the concatenation operator. The empty interaction ∅ and any action of 𝐴𝑐𝑡 are basic interactions. 𝑠𝑒𝑞(𝑖 1 , 𝑖 2 ) (weak sequencing) indicates that actions specified by 𝑖 1 must occur before those of 𝑖 2 iff they occur on the same lifeline. In contrast, 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖 1 , 𝑖 2 ) (strict sequencing) imposes that actions specified by 𝑖 1 must occur before those of 𝑖 2 in any case. 𝑝𝑎𝑟 (𝑖 1 , 𝑖 2 ) allows actions from 𝑖 1 and 𝑖 2 to be fully interleaved while 𝑎𝑙𝑡 (𝑖 1 , 𝑖 2 ) (exclusive alternative) specifies that either actions specified by 𝑖 1 or by 𝑖 2 occur. As for the loop operators, 𝑙𝑜𝑜𝑝 𝑓 with 𝑓 ∈ {𝑠𝑒𝑞, 𝑠𝑡𝑟𝑖𝑐𝑡, 𝑝𝑎𝑟 }, the index 𝑓 indicates with which binary operator loop unrollings have to be composed: in other words 𝑙𝑜𝑜𝑝 𝑓 (𝑖 1 ) is equivalent to the term 𝑎𝑙𝑡 (∅, 𝑓 (𝑖 1 , 𝑙𝑜𝑜𝑝 𝑓 (𝑖 1 )) (here we detailed the choice between not unrolling (∅) and unrolling once).

Interactions can be illustrated by diagrams (cf. right part of Fig. 1). Lifelines are depicted as vertical lines and actions 𝑙Δ𝑚 as arrows carrying their specific message 𝑚 and originating from or pointing towards their specific lifeline 𝑙. The passing of a message from a lifeline to another is modelled using the 𝑠𝑡𝑟𝑖𝑐𝑡 operator (e.g. 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎!𝑚, 𝑏?𝑚) to denote the passing of 𝑚 from 𝑎 to 𝑏). A message passing is depicted as an arrow from source to target lifeline. 1). Firstly, 𝑏 can either send 𝑚 2 to 𝑐 or not send anything. This choice is modelled by the 𝑎𝑙𝑡 alternative operator. Secondly, 𝑏 must send 𝑚 3 to the environment. The implicit sequencing that we have described in natural language with the adverbs "firstly" and "secondly" is modelled by the 𝑠𝑒𝑞 weak sequencing operator, which, unlike the other operators that are drawn explicitly with boxes, is implicitly represented by the top to bottom direction.

𝑠𝑒𝑞 𝑎𝑙𝑡 𝑠𝑡𝑟𝑖𝑐𝑡 𝑏!𝑚 2 𝑐?𝑚 2 ∅ 𝑏!𝑚 3
The semantics of an interaction 𝑖 is defined as a set of global traces 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) or of multi-traces 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). Fig. 3 enumerates those semantics for the interaction from Fig. 2. An interleaving between 𝑏!𝑚 3 and 𝑐?𝑚 2 is noticeable in 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) but not in 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖).

𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) = 𝑏!𝑚 2 .𝑐?𝑚 2 .𝑏!𝑚 3 , 𝑏!𝑚 2 .𝑏!𝑚 3 .𝑐?𝑚 2 , 𝑏!𝑚 3 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) = (𝑏!𝑚 2 .𝑏!𝑚 3 , 𝑐?𝑚 2 ), (𝑏!𝑚 3 , 𝜖)

ACCEPTED (MULTI-)TRACES

To formally define the set of accepted (multi-)traces of an interaction 𝑖, we reformulate semantic rules from [START_REF] Mahe | Revisiting Semantics of Interactions for Trace Validity Analysis[END_REF] without relying on some denotational counterpart (in particular, without using precedence relations between actions, as in [START_REF] Knapp | UML Interactions Meet State Machines -An Institutional Approach[END_REF][START_REF] Mahe | Revisiting Semantics of Interactions for Trace Validity Analysis[END_REF]). To do this, in Sec.3.1, we extract information from the term structure of interactions. This information is used to define, in Sec.3.2, the small-step interaction execution function 𝜒 grounding the operational approach. Finally, in Sec.3.3, we give two interaction semantics: 𝐴𝑐𝑐𝑒𝑝𝑡, based on global traces, and 𝐴𝑐𝑐𝑀𝑢𝑙𝑡, obtained by projection of 𝐴𝑐𝑐𝑒𝑝𝑡. As an interaction 𝑖 can contain several occurrences of the same action 𝑎𝑐𝑡, small-steps do not correspond to transformations of the form 𝑖 𝑎𝑐𝑡 ---→ 𝑖 ′ but rather 𝑖 𝑎𝑐𝑡 @𝑝 ------→ 𝑖 ′ where 𝑝 indicates the position of a specific occurrence of 𝑎𝑐𝑡 within 𝑖. To do so, we use positions expressed in the Dewey Decimal Notation [START_REF] Dershowitz | Handbook of Theoretical Computer Science[END_REF]. As the arity of operators is at most 2, positions are defined as elements of {1, 2} * . A sub-interaction of an interaction 𝑖 at position 𝑝 is denoted 𝑖 |𝑝 . Fig. 4 illustrates positions within the interaction from Fig. 2. For example, the subterm 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑏!𝑚 2 , 𝑐?𝑚 2 ) is at position 11 of the whole interaction term 𝑠𝑒𝑞(𝑎𝑙𝑡 (𝑠𝑡𝑟𝑖𝑐𝑡 (𝑏!𝑚 2 , 𝑐?𝑚 2 ), ∅), 𝑏!𝑚 3 ). Moreover, for any set 𝑃 ∈ P ({1, 2} * ) and 𝑥 ∈ {1, 2}, 𝑥 .𝑃 stands for the set {𝑥 .𝑝 | 𝑝 ∈ 𝑃 }.

Static analysis of interactions

As a prerequisite to defining steps of the form 𝑖 𝑎𝑐𝑡 @𝑝 ------→ 𝑖 ′ , we need to introduce several intermediate functions on interaction terms.

Function 𝑒𝑥𝑝 𝜖 defined in Def.3.1 assesses statically whether or not an interaction accepts/expresses the empty trace 𝜖. Naturally ∅ only accepts 𝜖, while interactions 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 do not (𝑎𝑐𝑡 must be executed). Similarly, any loop accepts 𝜖 because it is possible to repeat 0 times its content. The treatment of binary operators differs according to their intuitive meaning: for 𝑎𝑙𝑡, it is sufficient that one of the two direct sub-interactions accepts 𝜖, while for the scheduling operators (𝑠𝑒𝑞, 𝑠𝑡𝑟𝑖𝑐𝑡 and 𝑝𝑎𝑟 ), both have to accept 𝜖.

Function 𝑎𝑣𝑜𝑖𝑑𝑠 defined in Def.3.1 states, for an interaction 𝑖 and a lifeline 𝑙, whether or not 𝑖 accepts an execution that involves no actions occurring on 𝑙. The empty interaction ∅ avoids every lifeline since the only trace specified by ∅ is the empty trace. An action 𝑙 ′ Δ𝑚 avoids the lifeline 𝑙 iff it occurs on a different lifeline, i.e. 𝑙 ′ ≠ 𝑙. Then, as for 𝑒𝑥𝑝 𝜖 , 𝑎𝑣𝑜𝑖𝑑𝑠 is defined inductively accordingly the top operator of the interaction term. Apart from the basic cases (∅ and 𝑙Δ𝑚), the two functions are quite similar in their description. Definition 3.1 (Emptiness & Avoiding). We define the functions 𝑒𝑥𝑝 𝜖 : 𝐼𝑛𝑡 → 𝑏𝑜𝑜𝑙 and 𝑎𝑣𝑜𝑖𝑑𝑠 : 𝐼𝑛𝑡 × 𝐿 → 𝑏𝑜𝑜𝑙 s.t. for any 𝑙 ∈ 𝐿:

• 𝑒𝑥𝑝 𝜖 (∅) = ⊤ and 𝑎𝑣𝑜𝑖𝑑𝑠 (∅, 𝑙) = ⊤ • for 𝑎𝑐𝑡 = 𝑙 ′ Δ𝑚 ∈ 𝐴𝑐𝑡, 𝑒𝑥𝑝 𝜖 (𝑎𝑐𝑡) = ⊥ and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑎𝑐𝑡, 𝑙) = (𝑙 ′ ≠ 𝑙), • for 𝑖 = 𝑓 (𝑖 1 , 𝑖 2 ) with 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }, 𝑒𝑥𝑝 𝜖 (𝑖) = 𝑒𝑥𝑝 𝜖 (𝑖 1 )∧ 𝑒𝑥𝑝 𝜖 (𝑖 2 ) and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖 1 , 𝑙) ∧ 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖 2 , 𝑙) • for 𝑖 = 𝑎𝑙𝑡 (𝑖 1 , 𝑖 2 ), 𝑒𝑥𝑝 𝜖 (𝑖) = 𝑒𝑥𝑝 𝜖 (𝑖 1 ) ∨ 𝑒𝑥𝑝 𝜖 (𝑖 2 )
and

𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖 1 , 𝑙) ∨ 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖 2 , 𝑙), • for 𝑖 = 𝑙𝑜𝑜𝑝 𝑓 (𝑖 ′ ) with 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }, 𝑒𝑥𝑝 𝜖 (𝑖) = ⊤ and 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = ⊤.
Among all action leaves of 𝑖, only some are immediately executable, in the sense that they can be the first element of at least one trace of 𝑖. Function 𝑓 𝑟𝑜𝑛𝑡 (for frontier) in Def.3.2, determines the positions of all such actions. The selection of those actions depend on which operators are encountered within the tree structure of the interaction. Sequencing operators 𝑠𝑡𝑟𝑖𝑐𝑡 and 𝑠𝑒𝑞, by enforcing precedence relations, may prevent some actions (from the sub-interaction on the right of the term) from being in the frontier. Definition 3.2 (Frontier). 𝑓 𝑟𝑜𝑛𝑡 : 𝐼𝑛𝑡 → P ({1, 2} * ) is the function s.t.:

• 𝑓 𝑟𝑜𝑛𝑡 (∅) = ∅ and for all 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡, 𝑓 𝑟𝑜𝑛𝑡

(𝑎𝑐𝑡) = {𝜖}, • for all (𝑖 1 , 𝑖 2 ) ∈ 𝐼𝑛𝑡 2 : -𝑓 𝑟𝑜𝑛𝑡 (𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖 1 , 𝑖 2 )) = 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ) ∪ 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 ) if 𝑒𝑥𝑝 𝜖 (𝑖 1 ) = ⊤ 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ) else -𝑓 𝑟𝑜𝑛𝑡 (𝑠𝑒𝑞(𝑖 1 , 𝑖 2 )) = 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ) ∪ {𝑝 | 𝑝 ∈ 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 )
and

𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖 1 , 𝑙 𝑓 (𝑖 |𝑝 )}, -𝑓 𝑟𝑜𝑛𝑡 (𝑓 (𝑖 1 , 𝑖 2 )) = 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 )∪2.𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 ) for 𝑓 ∈ {𝑎𝑙𝑡, 𝑝𝑎𝑟 } -𝑓 𝑟𝑜𝑛𝑡 (𝑙𝑜𝑜𝑝 𝑓 (𝑖 1 )) = 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ) for 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }.
For any 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖), 𝑖 |𝑝 is a called a frontier action.

The empty interaction has an empty frontier: 𝑓 𝑟𝑜𝑛𝑡 (∅) = ∅. For any action 𝑎𝑐𝑡, 𝑓 𝑟𝑜𝑛𝑡 (𝑎𝑐𝑡) = {𝜖} (𝜖 is the position of 𝑎𝑐𝑡 which is immediately executable). For 𝑖 of the form 𝑓 (𝑖 1 , 𝑖 2 ), 𝑓 𝑟𝑜𝑛𝑡 (𝑖) is inferred from 𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ) and 𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 ) in accordance with the intuitive sense of 𝑓 operator 𝑓 . In all cases, actions occurring at positions in 𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ) are immediately executable in 𝑖. Indeed, the term being read from left to right, all operators, if they introduce ordering constraints, will only do so on the right sub-interaction 𝑖 2 . Thus 1.𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ) is included in 𝑓 𝑟𝑜𝑛𝑡 (𝑖). If 𝑓 = 𝑎𝑙𝑡 or 𝑓 = 𝑝𝑎𝑟 , 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 ) is also included in 𝑓 𝑟𝑜𝑛𝑡 (𝑖) because no constraint may prevent the execution of actions from 𝑖 2 . If 𝑓 = 𝑠𝑡𝑟𝑖𝑐𝑡, any action from 𝑖 2 can only be executed if no action from 𝑖 1 is (otherwise it would violate the strict sequencing). Thus 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 ) is included in 𝑓 𝑟𝑜𝑛𝑡 (𝑖) iff 𝑖 1 accepts the empty trace. If 𝑓 = 𝑠𝑒𝑞, elements 𝑝 from 2.𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 ) are included in 𝑓 𝑟𝑜𝑛𝑡 (𝑖) iff 𝑖 1 accepts an execution that does not involve the lifeline on which the action 𝑖 |𝑝 occurs. 

Interaction Execution

Small-steps of the operational semantics consist in transforming an interaction 𝑖 having position 𝑝 in its frontier into an interaction 𝑖 ′ s.t. 𝑖 ′ characterizes in intentions all the possible futures of the execution of the action 𝑖 |𝑝 according to 𝑖.

We define a function 𝑝𝑟𝑢𝑛𝑒, that associates to any interaction 𝑖 that may avoid 𝑙 (i.e. 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) = ⊤), a new interaction, which characterizes exactly all the executions of 𝑖 that do not involve lifeline 𝑙. In other words, 𝑝𝑟𝑢𝑛𝑒 (𝑖, 𝑙) computes an interaction whose accepted traces are exactly those of 𝑖 that have no actions occurring on lifeline 𝑙. -

𝑝𝑟𝑢𝑛𝑒 (𝑙𝑜𝑜𝑝 𝑓 (𝑖), 𝑙) = 𝑙𝑜𝑜𝑝 𝑓 (𝑝𝑟𝑢𝑛𝑒 (𝑖, 𝑙)) if 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) -𝑝𝑟𝑢𝑛𝑒 (𝑙𝑜𝑜𝑝 𝑓 (𝑖), 𝑙) = ∅ if ¬𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙)
The use of 𝑝𝑟𝑢𝑛𝑒 is illustrated on the sub-interaction 𝑖 |1 highlighted in blue on Fig. 6. 𝑖 |1 is such that 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖 |1 , 𝑐) is true, hence 𝑝𝑟𝑢𝑛𝑒 (𝑖 |1 , 𝑐) can be applied. The blue lines represent the rewriting orchestrated in 𝑝𝑟𝑢𝑛𝑒 (𝑖 |1 , 𝑐). We have to eliminate 𝑐?𝑚 2 the only action occurring in 𝑖 |1 on 𝑐. As its parent is a scheduling operator (𝑠𝑡𝑟𝑖𝑐𝑡), it must also be eliminated. The grand-parent node is an 𝑎𝑙𝑡 operator. The right cousin underneath this 𝑎𝑙𝑡 is ∅, which "avoids" 𝑐. Thus, the choice of the right branch of this 𝑎𝑙𝑡 can be forced to solve the pruning. The remaining interaction 𝑝𝑟𝑢𝑛𝑒 (𝑖 |1 , 𝑐) is 𝑙𝑜𝑜𝑝 𝑠𝑒𝑞 (𝑠𝑒𝑞(𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎!𝑚 1 , 𝑏?𝑚 1 ), 𝑏!𝑚 3 )) (where we simplified 𝑠𝑒𝑞(∅, 𝑏!𝑚 3 ) into 𝑏!𝑚 3 ). It does not contain any action occurring on 𝑐.

The next definition introduces the "e𝜒ecution" function 𝜒. For an interaction 𝑖 and a position 𝑝 in 𝑓 𝑟𝑜𝑛𝑡 (𝑖), 𝜒 (𝑖, 𝑝) returns a pair (𝑖 ′ , 𝑖 |𝑝 ). Here, interaction 𝑖 ′ is such that all traces accepted by 𝑖 and which start by 𝑖 |𝑝 (the action specifically at position 𝑝, and not another identical action somewhere else in 𝑖) i.e. of the form 𝑖 |𝑝 .𝜍 are such that 𝜍 is accepted by 𝑖 ′ ; and, reciprocally, for any 𝜍 accepted by 𝑖 ′ then 𝑖 |𝑝 .𝜍 is accepted by 𝑖. 𝑖 ′ is therefore the "continuation" of 𝑖 after the occurrence of 𝑖 |𝑝 . 𝜒 (𝑖, 𝑝) is defined by induction on the term structure of 𝑖, and by case depending on whether position 𝑝 starts by 1 or 2, (i.e. whether 𝑝 belongs to the left or right subterm of 𝑖) or is 𝑝 = 𝜖 (then 𝑖 is the action to execute). 2 ), 𝑎𝑐𝑡). 𝜒 is defined on the cases authorized by its precondition 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖). If 𝑖 ∈ 𝐴𝑐𝑡, 𝑝 can only be 𝜖 (and vice-versa). In this case 𝜒 (𝑖, 𝜖) = (∅, 𝑖) since the action 𝑖 is executed and nothing remains to be executed. In any other case, 𝑝 is either of the form 1.𝑝 1 or 2.𝑝 2 , meaning that the action to be executed is resp. in the left or right sub-interaction. Then the result of 𝜒 (𝑖, 𝑝) is a reconstruction of the interaction term from resp. the result of 𝜒 (𝑖 1 , 𝑝 1 ) and 𝑖 2 or the result of 𝜒 (𝑖 2 , 𝑝 2 ) and 𝑖 1 . The most subtle case occurs when 𝑝 = 2.𝑝 2 and 𝑖 = 𝑠𝑒𝑞(𝑖 1 , 𝑖 2 ). The precondition 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) implies that 𝑖 |𝑝 ∈ 𝐴𝑐𝑡 and that the left child 𝑖 1 avoids 𝑙 𝑓 (𝑖 |𝑝 ). In this case, to construct 𝜒 (𝑖, 2.𝑝 2 ), 𝜒 does not use 𝑖 1 but rather 𝑝𝑟𝑢𝑛𝑒 (𝑖 1 , 𝑙 𝑓 (𝑖 |𝑝 )), where all traces involving 𝑙 𝑓 (𝑖 |𝑝 ) have been eliminated while preserving all others. Fig. 6 depicts the execution process applied to 𝑐!𝑚 4 (at position 221) in the interaction 𝑖 of Fig. 1: 𝜒 (𝑖, 221) is (𝑠𝑒𝑞(𝑖 ′ , 𝑝𝑎𝑟 (𝑎!𝑚 1 , 𝑎?𝑚 4 )), 𝑐!𝑚 4 ) with 𝑖 ′ = 𝑝𝑟𝑢𝑛𝑒 (𝑖 |1 , 𝑐), previously computed as 𝑙𝑜𝑜𝑝 𝑠𝑒𝑞 (𝑠𝑒𝑞(𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎!𝑚 1 , 𝑏?𝑚 1 ), 𝑏!𝑚 3 )). The computation of 𝜒 (𝑖, 221) is also visualized as the first step of the right branch of Fig. 7.

To conclude, the 𝜒 function fulfills our objectives of defining the semantics of interactions using elementary steps of the form 𝑖 𝑎𝑐𝑡 @𝑝 ------→𝑖 ′ , which is a readable and graphic reformulation of the equality 𝜒 (𝑖, 𝑝) = (𝑖 ′ , 𝑎𝑐𝑡). 

Definition of accepted (multi-)traces

The small-step approach to compute semantics consists in exploring an execution tree representing all possible successions of transformations 𝑖 𝑎𝑐𝑡 @𝑝 ------→ 𝑖 ′ , starting from an initial interaction 𝑖 0 . An accepted trace then corresponds to a sequence 𝑎𝑐𝑡 1 .

• • • .𝑎𝑐𝑡 𝑛 obtained from a path 𝑖 0 𝑎𝑐𝑡1@𝑝1 -------→ 𝑖 1 • • • 𝑎𝑐𝑡𝑛@𝑝𝑛
--------→ 𝑖 𝑛 with 𝑖 𝑛 a terminal interaction, i.e. accepting 𝜖. By grouping all such paths together, we obtain a tree whose nodes are interactions and arcs are labelled by couples (𝑝, 𝑎𝑐𝑡) denoted 𝑎𝑐𝑡@𝑝. For a node 𝑖, child nodes are interactions 𝑖 ′ obtained via the execution of any frontier action 𝑎𝑐𝑡 = 𝑖 |𝑝 with 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖). Any such child node 𝑖 ′ corresponds to an interaction accepting traces that are suffixes of traces accepted by 𝑖 and which start with 𝑎𝑐𝑡. Fig. 7 illustrates this process on the interaction from Fig. 1 (a partially drawn execution tree is represented). As already mentioned, this interaction has three frontier actions (immediately executable), at positions 1111, 21 and 221 respectively, which gives rise to 3 direct successor nodes. The path leading to the empty interaction (white square □) yields the trace 𝑎!𝑚 1 .𝑐!𝑚 4 .𝑎?𝑚 4 .

Let us note that, when an interaction contains a loop operator, sequences of consecutive executions of actions can be arbitrarily long (as suggested by the use of • • • in Fig. 7). Indeed, a given execution can involve an arbitrarily large number of loop unfoldings, depending on whether small-steps occurring during the execution are obtained by unfolding, ignoring or pruning-out a loop. In a given small step 𝑖 𝑎𝑐𝑡 @𝑝 ------→ 𝑖 ′ , if action 𝑎𝑐𝑡 at position 𝑝 is within a loop operator in 𝑖, then this loop is unfolded in 𝑖 ′ . If not, then this loop might have been ignored (left unchanged) or might have been eliminated (pruned) in 𝑖 ′ . In this aspect, our treatment of loops is similar to the small-step unfolding of the Binary Kleene Star operator introduced in [START_REF] Bergstra | Process Algebra with Iteration and Nesting[END_REF] (in a process algebra). We do not need to explicit the fact of not taking a loop with some form of a "skip" action and a semantical rule as in [START_REF] Qiu | Towards the theoretical foundation of choreography[END_REF]. If an action that is supposed to occur "after" a certain loop is executed then the loop is eliminated (or its content pruned) during the rewriting of the interaction term by a call of the 𝑝𝑟𝑢𝑛𝑒 function. Loops making possible arbitrarily long executions, we consider in Def.3.5 semantics consisting of sets of arbitrary long (multi-)traces. 

MULTI-TRACE MEMBERSHIP ANALYSIS 4.1 Principle

We define a process able to decide whether or not a multi-trace 𝜇 is accepted by an interaction 𝑖. Its key principle is to construct traces accepted by 𝑖 that project on 𝜇. Constructing those traces is based on elementary steps (𝑖, 𝜇)

(𝑖 ′ , 𝜇 ′ ) s.t. 𝜒 (𝑖, 𝑝) = (𝑖 ′ , 𝑎𝑐𝑡 𝑗 ) for some 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) with 𝑎𝑐𝑡 𝑗 ∈ 𝐴𝑐𝑡 (𝑙 𝑗 ), 𝜇 = (𝜎 1 , • • • , 𝑎𝑐𝑡 𝑗 .𝜎 𝑗 , • • • , 𝜎 𝑛 ) and 𝜇 ′ = (𝜎 1 , • • • , 𝜎 𝑗 , • • • , 𝜎 𝑛 )
. By considering all possible 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖), and by iterating those steps of computation, the process builds a tree whose paths are of the form (𝑖 0 , 𝜇 0 )

• • • (𝑖 𝑝 , 𝜇 𝑝 ) • • • (𝑖 𝑞 , 𝜇 𝑞 ), denoted as (𝑖 0 , 𝜇 0 ) * (𝑖 𝑞 , 𝜇 𝑞 ).

At each step (𝑖, 𝜇) (𝑖 ′ , 𝜇 ′ ), the size of the multi-trace decreases by one. Hence, any path eventually reaches a point where it is no longer possible to find a next step. This halting of the process can occur in 2 cases.

(1) Either the process reaches a state (𝑖 𝑞 , 𝜇 𝑞 ) where 𝜇 𝑞 is not empty and no frontier action of 𝑖 𝑞 matches some first elements in 𝜇 𝑞 . In that case the sequence of actions that leads to (𝑖 𝑞 , 𝜇 𝑞 ) is not a trace accepted by 𝑖 and a local verdict 𝑈 𝑛𝐶𝑜𝑣 (for "multi-trace not covered") is associated to (𝑖 0 , 𝜇 0 ) * (𝑖 𝑞 , 𝜇 𝑞 ).

(2) Or the process reaches a state (𝑖 𝑞 , (𝜖, • • • , 𝜖)). Here, all actions of 𝜇 have been consumed to form a given global trace 𝜍. The process then checks if 𝜍 is accepted by 𝑖 (which happens iff 𝑖 𝑞 accepts the empty trace). If the answer is yes then

(𝑖 0 , 𝜇 0 ) * (𝑖 𝑞 , (𝜀, • • • , 𝜀)) is
associated with a coverage verdict 𝐶𝑜𝑣 (for "multi-trace covered"). Otherwise, the verdict 𝑈 𝑛𝐶𝑜𝑣 is associated to the path. If there exists a path leading to 𝐶𝑜𝑣, the global verdict is 𝑃𝑎𝑠𝑠. If no such path exists, the global verdict is 𝐹𝑎𝑖𝑙.

Definition of analysis process

Multi-trace analysis relies on 4 rules, denoted 𝑅1, 𝑅2, 𝑅3 and 𝑅4 and given in Def.4.1. Those rules define a directed graph G in which vertices are either a tuple (𝑖, 𝜇) ∈ 𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡 or a coverage verdict 𝑣 ∈ {𝐶𝑜𝑣, 𝑈 𝑛𝐶𝑜𝑣 }. We note V = {𝐶𝑜𝑣, 𝑈 𝑛𝐶𝑜𝑣 } ∪ (𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡) the set of vertices. For 𝑥 in {1, 2, 3, 4}, the rule (𝑅𝑥) 𝑣 𝑣 ′ 𝑐𝑜𝑛𝑑, with 𝑣 ∈ 𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡 and 𝑣 ′ ∈ V specifies edges of the form 𝑣 𝑣 ′ of that graph, provided that 𝑣 satisfies condition 𝑐𝑜𝑛𝑑.

Definition 4.1 (Rules of Multi-Trace Analysis). The analysis relation

⊆ V × V is defined as: 𝑖 (𝜖, • • • , 𝜖) (R1) 𝑒𝑥𝑝 𝜖 (𝑖) 𝐶𝑜𝑣 𝑖 (𝜖, • • • , 𝜖) (R2) ¬𝑒𝑥𝑝 𝜖 (𝑖) 𝑈 𝑛𝐶𝑜𝑣 𝑖 (𝜎 1 , • • • , 𝑎𝑐𝑡 .𝜎 𝑘 , • • • , 𝜎 𝑛 ) (R3) ∃ 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) s.t. 𝜒 (𝑖, 𝑝) = (𝑖 ′ , 𝑎𝑐𝑡) 𝑖 ′ (𝜎 1 , • • • , 𝜎 𝑘 , • • • , 𝜎 𝑛 ) 𝑖 (𝜎 1 , • • • , 𝜎 𝑛 ) (R4)        (𝜎 1 , • • • , 𝜎 𝑛 ) ≠ (𝜖, • • • , 𝜖) ∧ ∀ 𝑗 ∈ [1, 𝑛], ∀ 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖), (𝜎 𝑗 ≠ 𝜖) ⇒ (𝑓 𝑠𝑡 (𝜎 𝑗 ) ≠ 𝑖 |𝑝 ) 𝑈 𝑛𝐶𝑜𝑣
where 𝑓 𝑠𝑡 (𝜎) denotes the first element of a non empty sequence 𝜎.

Let us comment Def.4.1. Vertices of the form (𝑖, 𝜇) are not sinks. If 𝜇 is the empty multi-trace, given that 𝑒𝑥𝑝 𝜖 (𝑖) can either be 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒, either 𝑅1 or 𝑅2 applies and so there exists an outgoing edge from any (𝑖, (𝜖, . . . , 𝜖)). If 𝜇 ≠ (𝜖, . . . , 𝜖), one can either have or not have matches between frontier actions and multi-trace component heads. Hence, an outgoing edge exists accordingly to 𝑅3 or 𝑅4. So, coverage verdicts {𝐶𝑜𝑣, 𝑈 𝑛𝐶𝑜𝑣 } are the 2 only sinks of G.

Rules 𝑅1, 𝑅2 and 𝑅4 specify edges from vertices of the form (𝑖, 𝜇) to coverage verdicts. The rule 𝑅3 specifies edges (𝑖, 𝜇) (𝑖 ′ , 𝜇 ′ ) such that (1) there exists an action 𝑎𝑐𝑡 occurring in 𝑖 at position 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) matching a head action

𝑎𝑐𝑡 𝑗 of 𝜇, i.e. 𝜇 = (𝜎 1 , • • • , 𝑎𝑐𝑡 𝑗 .𝜎 ′ 𝑗 , • • • , 𝜎 𝑛 ), (2) 
𝑖 ′ is defined by 𝜒 (𝑖, 𝑝) = (𝑖 ′ , 𝑎𝑐𝑡 𝑗 ), and (3) 𝜇 ′ is the multi-trace 𝜇 in which we have removed 𝑎𝑐𝑡 𝑗 , i.e. Consequently, the successive application of the rules strictly decrements the size of nodes and from any vertex (𝑖, 𝜇), any maximal outgoing path is finite, and terminates in a coverage verdict in {𝐶𝑜𝑣, 𝑈 𝑛𝐶𝑜𝑣 } (since (𝑖, 𝜇) are not sinks of G). Thus, G is an acyclic graph. With the notation 𝑣 * 𝑣 ′ to indicate that there is a path from 𝑣 to 𝑣 ′ in G, we define multi-trace analysis. The function 𝜔 is well-defined. Indeed, we established that all maximal paths from a vertex (𝑖 0 , 𝜇 0 ) have a maximum length of |𝜇| + 1 and end on a coverage verdict (𝐶𝑜𝑣 or 𝑈 𝑛𝐶𝑜𝑣). As besides, each intermediate vertex (𝑖, 𝜇) between (𝑖 0 , 𝜇 0 ) and a coverage verdict has a number of children bounded by the number of actions of 𝑖, then the set of vertices reachable from (𝑖 0 , 𝜇 0 ) is finite.

𝜇 ′ = (𝜎 1 , • • • , 𝜎 ′ 𝑗 , • • • , 𝜎 𝑛 ).

Correctness w.r.t the semantics

We now prove that the function 𝜔 in charge of analysing multitraces w.r.t. an interaction captures exactly its semantics defined by the step-by-step execution function 𝜒 given in Sec.3. More precisely, we will prove that for any (𝑖, 𝜇) in 𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡, 𝜔 (𝑖, 𝜇) = 𝑃𝑎𝑠𝑠 iff 𝜇 ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) (and by extension, 𝜔 (𝑖, 𝜇) = 𝐹𝑎𝑖𝑙 iff 𝜇 ∉ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖)). Given that 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) is the set of projected global traces of 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖), it then suffices to prove that for any trace 𝜍 ∈ 𝐴𝑐𝑡 * we have 𝜔 (𝑖, 𝑝𝑟𝑜 𝑗 (𝜍)) = 𝑃𝑎𝑠𝑠 iff 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). Below, Th.4.3 and Th.4.4 resp. correspond to the ⇐ and ⇒ implication of this "iff ". Given that 𝜒 (𝑖, 𝑝) = (𝑖 ′ , 𝑎𝑐𝑡), 𝑅3 can be applied so that, (𝑖, (𝜎 □

1 , • • • , 𝑎𝑐𝑡 .𝜎 𝑗 , • • • , 𝜎 𝑛 )) (𝑖 ′ , (𝜎 1 , • • • , 𝜎 𝑗 , • • • , 𝜎 𝑛 )) with (𝜎 1 , • • • , 𝜎 𝑗 , • • • , 𝜎 𝑛 ) = 𝑝𝑟𝑜 𝑗 (𝜍 ′ ).
The two theorems demonstrate that 𝜔 (𝑖, 𝜇) = 𝑃𝑎𝑠𝑠 characterizes the membership of a multi-trace 𝜇 to 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). A Coq proof, formalizing our approach and which includes the 2 previous demonstrations is available online 4 .

The computational cost of 𝜔 varies greatly depending on the initial (𝑖, 𝜇) couple. We demonstrate the NP-hardness of this membership problem through a reduction of the 1-in-3-SAT problem [START_REF] Schaefer | The Complexity of Satisfiability Problems[END_REF] that is inspired by [START_REF] Alur | Realizability and Verification of MSC Graphs[END_REF][START_REF] Dan | The Oracle Problem When Testing from MSCs[END_REF][START_REF] Genest | Pattern Matching and Membership for Hierarchical Message Sequence Charts[END_REF] but requires the construction of a different reduction of which we discuss in the following. Let us consider the reduction of 1-in-3-SAT in the simple case where 𝑝 = 4 and 𝑞 = 2. This approach can then be extended to include any other case.

Discussion on Complexity

𝑖 𝑣 1 𝑖 𝑣 1 𝑖 𝑣 2 𝑖 𝑣 2 𝑖 𝑣 3 𝑖 𝑣 3 𝑖 𝑣 4 𝑖 𝑣 4 ∅ ∅ ∅ Figure 8
From formula 𝜙 = 𝐶 1 ∧ 𝐶 2 , we define an interaction 𝑖 via a 1-on-1 transformation. This 𝑖 is of the form exemplified on Fig. 8 

= 𝑠𝑒𝑞(𝑙 1 !𝑚, 𝑙 2 !𝑚) • in 𝐶 1 but not in 𝐶 2 then 𝑖 𝑥 = 𝑙 1 !𝑚 • in 𝐶 2 but not in 𝐶 1 then 𝑖 𝑥 = 𝑙 2 !𝑚 • neither in 𝐶 1 nor in 𝐶 2 then 𝑖 𝑥 = ∅
For instance, with 𝐶 1 = (𝑣 1 ∨ 𝑣 2 ∨ 𝑣 4 ) and 𝐶 2 = (𝑣 1 ∨ 𝑣 3 ∨ 𝑣 4 ), Fig. 8 gives the corresponding interaction. This 1-in-3-SAT problem 𝜙 is equivalent to the multi-trace membership problem 𝜇 = (𝑙 1 !𝑚, 𝑙 2 !𝑚) ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). Indeed, in a given execution of 𝑖, component 𝜎 1 = 𝑙 1 !𝑚 of 𝜇 is expressed exactly once iff exactly one of the subinteractions 𝑖 𝛼 1 , 𝑖 𝛽 1 or 𝑖 𝛾 1 is "chosen" during the execution of 𝑖. Given that the parent interaction (within 𝑖) of subinteraction 𝑖 𝛼 1 (same reasoning for 𝑖 𝛽 1 and 𝑖 𝛾 1 ) is of the form 𝑎𝑙𝑡 (𝑖 𝛼 1 , 𝑖 𝛼 1 ) (or with the order of branches inverted), "chosen" means that the exclusive branch that hosts 𝑖 𝛼 1 is chosen over that which hosts 𝑖 𝛼 1 .

The expression of component 𝜎 1 on lifeline 𝑙 1 is therefore equivalent to the satisfaction of clause 𝐶 1 in 1-in-3-SAT. In our example, with 𝐶 1 = (𝑣 1 ∨ 𝑣 2 ∨ 𝑣 4 ), the fact that 𝜌 |= 𝐶 1 with 𝜌 : [𝑣 1 → ⊥, 𝑣 2 → ⊤, 𝑣 3 → ⊤, 𝑣 4 → ⊤] is equivalent to the fact that 𝑙 1 !𝑚 is expressed exactly once during the execution of 𝑖 when 𝑖 𝑣 1 is chosen over 𝑖 𝑣 1 , 𝑖 𝑣 2 over 𝑖 𝑣 2 , 𝑖 𝑣 3 over 𝑖 𝑣 3 , and 𝑖 𝑣 4 over 𝑖 𝑣 4 .

The same reasoning applies for the relationship between 𝐶 2 and 𝜎 2 = 𝑙 2 !𝑚. In other words, during the execution of 𝑖, given the use of exclusive alternative operators in 𝑎𝑙𝑡 (𝑖 𝑣 , 𝑖 v ) sub-terms, the choice of either one of the 𝑎𝑙𝑡 branch constitutes an assignment of Boolean variable 𝑣. The overall parallel composition then simulates all possible variable assignments (i.e. the search space for 𝜌). Then, the satisfaction of 𝜙 as the conjunction of clauses 𝐶 1 and 𝐶 2 in 1in-3-SAT is equivalent to that of 𝜇 = (𝜎 1 , 𝜎 2 ) ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). Indeed, the same 𝜌 must be used to solve both 𝐶 1 and 𝐶 2 and the same global execution of 𝑖 must be used to consume both 𝜎 1 and 𝜎 2 exactly.

In our example, 𝜙 = (𝑣 1 ∨ 𝑣 2 ∨ 𝑣 4 ) ∧ (𝑣 1 ∨ 𝑣 3 ∨ 𝑣 4 ) is solvable in 1-in-3-SAT by 𝜌 : [𝑣 1 → ⊥, 𝑣 2 → ⊤, 𝑣 3 → ⊤, 𝑣 4 → ⊤]. This is equivalent to the fact that 𝜇 = (𝑙 1 !𝑚, 𝑙 2 !𝑚) is consumed exactly by the execution of 𝑖 from Fig. 8 when 𝑖 𝑣 1 is chosen over 𝑖 𝑣 1 , 𝑖 𝑣 2 over 𝑖 𝑣 2 , 𝑖 𝑣 3 over 𝑖 𝑣 3 , and 𝑖 𝑣 4 over 𝑖 𝑣 4 . For any such 3-CNF formula 𝜙 = 𝐶 1 ∧ 𝐶 2 defined over 𝑉 = {𝑣 1 , • • • , 𝑣 4 }, the 1-in-3-SAT problem can therefore be reduced to that of the membership of (𝑙 1 !𝑚, 𝑙 2 !𝑚) w.r.t. the interaction 𝑖 constructed from 𝜙 as above.

As explained earlier, this sketch of proof can be extended to include any numbers 𝑝 and 𝑞 of resp. variables and clauses. It suffices to consider 𝑞 lifelines 𝑙 1 , • • • , 𝑙 𝑞 , the multi-trace 𝜇 = (𝑙 1 !𝑚, • • • , 𝑙 𝑞 !𝑚) and 𝑝 parallelized sub-interactions 𝑎𝑙𝑡 (𝑖 𝑣 1 , 𝑖 𝑣 1 ), • • • , 𝑎𝑙𝑡 (𝑖 𝑣 𝑝 , 𝑖 𝑣 𝑝 ).

Given that we have identified a case of multi-trace membership equivalent to an NP-complete problem, by reduction, multi-trace membership is NP-hard.

TOOL SUPPORT

Our prototype tool, called HIBOU is available online 4 . The inductive structure of definitions from Sec.3 facilitated their transcription into executable code (Rust language) for implementing HIBOU. The 𝜔 function is also implemented by building on-the-fly the sub-graph originating from the application of rule 𝑅3. As a result, HIBOU provides two main functionalities (1) multi-trace membership analysis and (2) interaction model exploration.

HIBOU can analyze multi-traces against interaction models and return a verdict. In addition to the 𝑃𝑎𝑠𝑠 and 𝐹𝑎𝑖𝑙 verdicts defined in Sec.4.2 (which state whether or not a multi-trace is accepted), HIBOU can also return a 𝑊 𝑒𝑎𝑘𝑃𝑎𝑠𝑠 verdict for identifying prefixes of accepted multi-traces. Moreover, HIBOU expands the analysis to multi-traces defined over co-localizations that are not reduced to singletons. One can analyze 𝜇 = ({𝑎, 𝑏} → 𝑎!𝑚.𝑏!𝑚, {𝑐} → 𝑐?𝑚) defined over a co-localized sub-system composed of lifelines 𝑎 and 𝑏, and another sub-system composed of lifeline 𝑐. In case where all lifelines form a single co-localization, our approach then corresponds to global trace analysis from [START_REF] Mahe | Revisiting Semantics of Interactions for Trace Validity Analysis[END_REF].

Multi-trace analysis relies on the traversal of a tree constituted by nodes (𝑖, 𝜇). In practice, this traversal is interrupted when a 𝐶𝑜𝑣 verdict (or 𝑇𝑜𝑜𝑆ℎ𝑜𝑟𝑡, if the goal of the analysis is 𝑊 𝑒𝑎𝑘𝑃𝑎𝑠𝑠) is reached. Various heuristics can be configured to quicken the process. HIBOU allows the use of Depth First Search (DFS) and Breadth First Search (BFS) as well as a way to set priority levels for the evaluation of certain types of actions.

Interaction model exploration uses 𝜒 to explore the semantics of interactions by unfolding paths 𝑖 * 𝑖 ′ . The computation of those paths can be stopped by setting filters on the size of the exploration tree (maximum depth, maximum number of nodes, etc.).

In HIBOU, traceability for end-users is facilitated given that we have access to the successions of nodes and can therefore draw analysis / exploration trees as illustrated in Fig. 7.
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 1 Figure 1: Example interaction • for (𝑖 1 , 𝑖 2 ) ∈ 𝐼𝑛𝑡 2 and 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑎𝑙𝑡, 𝑝𝑎𝑟 }, 𝑓 (𝑖 1 , 𝑖 2 ) ∈ 𝐼𝑛𝑡, • for 𝑖 ∈ 𝐼𝑛𝑡 and 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 }, 𝑙𝑜𝑜𝑝 𝑓 (𝑖) ∈ 𝐼𝑛𝑡.

Figure 2 :

 2 Figure 2: Small example Let us consider the example from Fig.2(subterm of the one from Fig.1). Firstly, 𝑏 can either send 𝑚 2 to 𝑐 or not send anything. This choice is modelled by the 𝑎𝑙𝑡 alternative operator. Secondly, 𝑏 must send 𝑚 3 to the environment. The implicit sequencing that we have described in natural language with the adverbs "firstly" and "secondly" is modelled by the 𝑠𝑒𝑞 weak sequencing operator, which, unlike the other operators that are drawn explicitly with boxes, is implicitly represented by the top to bottom direction.The semantics of an interaction 𝑖 is defined as a set of global traces 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) or of multi-traces 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖). Fig.3 enumerates
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 3 Figure 3: Semantics of example from Fig. 2

  Figure 4: Positions

Fig. 5 4 Figure 5 :

 545 Figure 5: Frontier actions (highlighted) these positions are the only actions that can start a trace accepted by interaction 𝑖.
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 33 Pruning). The function 𝑝𝑟𝑢𝑛𝑒 : 𝐼𝑛𝑡 × 𝐿 → 𝐼𝑛𝑡 is defined for couples (𝑖, 𝑙) in 𝐼𝑛𝑡 × 𝐿 verifying 𝑎𝑣𝑜𝑖𝑑𝑠 (𝑖, 𝑙) by:• 𝑝𝑟𝑢𝑛𝑒 (∅, 𝑙) = ∅ and for any 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡, 𝑝𝑟𝑢𝑛𝑒 (𝑎𝑐𝑡, 𝑙) = 𝑎𝑐𝑡 • for any (𝑖

Figure 6 :

 6 Figure 6: Illustration of a small-step
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 34 Interaction Execution). The function 𝜒 : 𝐼𝑛𝑡 × {1, 2} * → 𝐼𝑛𝑡 × 𝐴𝑐𝑡 , defined for pairs (𝑖, 𝑝) verifying 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) is s.t.: • for any 𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡, 𝜒 (𝑎𝑐𝑡, 𝜖) = (∅, 𝑎𝑐𝑡) • for any (𝑖 1 , 𝑖 2 ) ∈ 𝐼𝑛𝑡 2 , 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑠𝑒𝑞, 𝑝𝑎𝑟 } and 𝑝 1 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖 1 ), let us denote 𝜒 (𝑖 1 , 𝑝 1 ) = (𝑖 ′ 1 , 𝑎𝑐𝑡), then: -𝜒 (𝑎𝑙𝑡 (𝑖 1 , 𝑖 2 ), 1.𝑝 1 ) = (𝑖 ′ 1 , 𝑎𝑐𝑡), -𝜒 (𝑓 (𝑖 1 , 𝑖 2 ), 1.𝑝 1 ) = (𝑓 (𝑖 ′ 1 , 𝑖 2 ), 𝑎𝑐𝑡), -𝜒 (𝑙𝑜𝑜𝑝 𝑓 (𝑖 1 ), 1.𝑝 1 ) = (𝑓 (𝑖 ′ 1 , 𝑙𝑜𝑜𝑝 𝑓 (𝑖 1 )), 𝑎𝑐𝑡), • for any (𝑖 1 , 𝑖 2 ) ∈ 𝐼𝑛𝑡 2 and 𝑝 2 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖 2 ), let us denote 𝜒 (𝑖 2 , 𝑝 2 ) = (𝑖 ′ 2 , 𝑎𝑐𝑡), then: -𝜒 (𝑎𝑙𝑡 (𝑖 1 , 𝑖 2 ), 2.𝑝 2 ) = (𝑖 ′ 2 , 𝑎𝑐𝑡), -𝜒 (𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖 1 , 𝑖 2 ), 2.𝑝 2 ) = (𝑖 ′ 2 , 𝑎𝑐𝑡), -𝜒 (𝑠𝑒𝑞(𝑖 1 , 𝑖 2 ), 2.𝑝 2 ) = (𝑠𝑒𝑞(𝑝𝑟𝑢𝑛𝑒 (𝑖 1 , 𝑙 𝑓 (𝑎𝑐𝑡)), 𝑖 ′ 2 ), 𝑎𝑐𝑡), -𝜒 (𝑝𝑎𝑟 (𝑖 1 , 𝑖 2 ), 2.𝑝 2 ) = (𝑝𝑎𝑟 (𝑖 1 , 𝑖 ′
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 7 Figure 7: Execution tree illustration

Definition 3 . 5 (

 35 Semantics). 𝐴𝑐𝑐𝑒𝑝𝑡 : 𝐼𝑛𝑡 → P (𝐴𝑐𝑡 * ) and 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 : 𝐼𝑛𝑡 → P (𝑀𝑢𝑙𝑡) are s.t. for any 𝑖 ∈ 𝐼𝑛𝑡: 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) = 𝑒𝑚𝑝𝑡𝑦 (𝑖) ∪ 𝑎𝑐𝑡 .𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′ ) ∃ 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖), 𝜒 (𝑖, 𝑝) = (𝑖 ′ , 𝑎𝑐𝑡) 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖) = {𝑝𝑟𝑜 𝑗 (𝜍) | 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖)} with: 𝑒𝑚𝑝𝑡𝑦 (𝑖) = {𝜖} if 𝑒𝑥𝑝 𝜖 (𝑖) and 𝑒𝑚𝑝𝑡𝑦 (𝑖) = ∅ otherwise.

  Let us note that for a vertex (𝑖, 𝜇), there are at most |𝑓 𝑟𝑜𝑛𝑡 (𝑖)| possible applications of the rule 𝑅3 with |𝑓 𝑟𝑜𝑛𝑡 (𝑖)| bounded by the number of occurrences of actions in 𝑖. Let us consider |𝜇| the number of actions occurring in a multitrace 𝜇, i.e. the sum of lengths of its component traces. Let us extend this notation to vertices, that is, |(𝑖, 𝜇)| defined as |𝜇|, and |𝐶𝑜𝑣 | and |𝑈 𝑛𝐶𝑜𝑣 | defined as -1. For any edge 𝑣 𝑣 ′ of G, we have |𝑣 ′ | < |𝑣 | with |𝑣 ′ | ≥ -1.

Definition 4 . 2 (

 42 Multi-Trace Analysis). We define 𝜔 : 𝐼𝑛𝑡 ×𝑀𝑢𝑙𝑡 → {𝑃𝑎𝑠𝑠, 𝐹𝑎𝑖𝑙 } such that for any 𝑖 ∈ 𝐼𝑛𝑡 and 𝜇 ∈ 𝑀𝑢𝑙𝑡 we have:• 𝜔 (𝑖, 𝜇) = 𝑃𝑎𝑠𝑠 iff there exists a path (𝑖, 𝜇) * 𝐶𝑜𝑣 • 𝜔 (𝑖, 𝜇) = 𝐹𝑎𝑖𝑙 otherwise; i.e. for all path (𝑖, 𝜇) * 𝑣 with 𝑣 ∈ {𝐶𝑜𝑣, 𝑈 𝑛𝐶𝑜𝑣 }, then 𝑣 = 𝑈 𝑛𝐶𝑜𝑣

Theorem 4 . 3 (

 43 𝐴𝑐𝑐𝑒𝑝𝑡 implies 𝑃𝑎𝑠𝑠). For any (𝑖, 𝜍) ∈ 𝐼𝑛𝑡 × 𝐴𝑐𝑡 * : (𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖)) ⇒ (𝜔 (𝑖, 𝑝𝑟𝑜 𝑗 (𝜍)) = 𝑃𝑎𝑠𝑠) Proof. Let us reason by induction on the trace 𝜍. • 𝜍 = 𝜖. Let us consider an interaction 𝑖 s.t. 𝜖 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). We have 𝑝𝑟𝑜 𝑗 (𝜖) = (𝜖, • • • , 𝜖). As 𝜖 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖), then 𝑒𝑥𝑝 𝜖 (𝑖) = ⊤ and 𝑅 1 is applicable from (𝑖, (𝜖, • • • , 𝜖)). We obtain 𝜔 (𝑖, (𝜖, • • • , 𝜖)) = 𝑃𝑎𝑠𝑠. • 𝜍 = 𝑎𝑐𝑡 .𝜍 ′ . Let us consider 𝑖 s.t. 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). The induction hypothesis on 𝜍 ′ is: "∀ 𝑖 ′ ∈ 𝐼𝑛𝑡, (𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′ )) ⇒ (𝜔 (𝑖 ′ , 𝑝𝑟𝑜 𝑗 (𝜍 ′ )) = 𝑃𝑎𝑠𝑠)". As 𝑎𝑐𝑡 .𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖), then there exists 𝑖 ′ in 𝐼𝑛𝑡 and 𝑝 ∈ 𝑓 𝑟𝑜𝑛𝑡 (𝑖) s.t. 𝜒 (𝑖, 𝑝) = (𝑖 ′ , 𝑎𝑐𝑡) and 𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′ ). Let us consider the index 𝑗 such that 𝑝𝑟𝑜 𝑗 (𝑎𝑐𝑡 .𝜍 ′ ) = (𝜎 1 , • • • , 𝑎𝑐𝑡 .𝜎 𝑗 , • • • , 𝜎 𝑛 ).

  We have (𝜔 (𝑖 ′ , 𝑝𝑟𝑜 𝑗 (𝜍 ′ )) = 𝑃𝑎𝑠𝑠) by induction, i.e. there exists a path (𝑖 ′ , 𝑝𝑟𝑜 𝑗 (𝜍 ′ )) * 𝐶𝑜𝑣. By preceding this path with (𝑖, 𝑝𝑟𝑜 𝑗 (𝑎𝑐𝑡 .𝜍 ′ )) (𝑖 ′ , 𝑝𝑟𝑜 𝑗 (𝜍 ′ )), we get (𝑖, (𝜎 1 , • • • , 𝑎𝑐𝑡 .𝜎 𝑗 , • • • , 𝜎 𝑛 )) * 𝐶𝑜𝑣 and 𝜔 (𝑖, 𝑝𝑟𝑜 𝑗 (𝜍)) = 𝑃𝑎𝑠𝑠. □ Theorem 4.4 (𝑃𝑎𝑠𝑠 implies 𝐴𝑐𝑐𝑒𝑝𝑡). For any (𝑖, 𝜇) ∈ 𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡: (𝜔 (𝑖, 𝜇) = 𝑃𝑎𝑠𝑠) ⇒ ∃ 𝜍 ∈ 𝐴𝑐𝑡 * s.t. 𝑝𝑟𝑜 𝑗 (𝜍) = 𝜇 and 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖) Proof. Let us reason by induction on the size of 𝜇, i.e. on |𝜇|. • |𝜇| = 0. Let us consider 𝑖 s.t. 𝜔 (𝑖, 𝜇) = 𝑃𝑎𝑠𝑠. By |𝜇| = 0, 𝜇 = (𝜖, • • • , 𝜖). Since 𝜔 (𝑖, (𝜖, • • • , 𝜖)) = 𝑃𝑎𝑠𝑠, 𝑅1 must apply and this implies that 𝑒𝑥𝑝 𝜖 (𝑖) = ⊤ and consequently 𝜖 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖). Therefore the property holds at length 0. • |𝜇| = 𝑧 + 1 with 𝑧 ≥ 0. Let us consider 𝑖 s.t. 𝜔 (𝑖, 𝜇) = 𝑃𝑎𝑠𝑠. The induction hypothesis states that "for all (𝑖 ′ , 𝜇 ′ ) ∈ 𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡 with |𝜇 ′ | = 𝑧, (𝜔 (𝑖 ′ , 𝜇 ′ ) = 𝑃𝑎𝑠𝑠) ⇒ (∃ 𝜍 ′ ∈ 𝐴𝑐𝑡 * s.t. 𝑝𝑟𝑜 𝑗 (𝜍 ′ ) = 𝜇 ′ and 𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′ ))". Since 𝜔 (𝑖, 𝜇) = 𝑃𝑎𝑠𝑠, there exists a path (𝑖, 𝜇) * 𝐶𝑜𝑣. As noticed in Sec. 4.2, each edge of a maximal path exactly consumes one action, with the exception of the last edge leading to the coverage verdict. Thus the path starts with an edge of form (𝑖, 𝜇) (𝑖 ′ , 𝜇 ′ ) with |𝜇 ′ | = 𝑧 and we have then (𝑖 ′ , 𝜇 ′ ) * 𝐶𝑜𝑣. By definition, 𝜔 (𝑖 ′ , 𝜇 ′ ) = 𝑃𝑎𝑠𝑠. By induction, there exists a trace 𝜍 ′ s.t. 𝑝𝑟𝑜 𝑗 (𝜍 ′ ) = 𝜇 ′ and 𝜍 ′ ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖 ′ ). (𝑖, 𝜇) (𝑖 ′ , 𝜇 ′ ) corresponds to the consumption of an action 𝑎𝑐𝑡 which matches a frontier action 𝑖 |𝑝 of 𝑖. By definition, the trace 𝜍 = 𝑎𝑐𝑡 .𝜍 ′ verifies 𝑝𝑟𝑜 𝑗 (𝜍) = 𝜇 and 𝜍 ∈ 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑖).

1 -

 1 in-3-SAT[START_REF] Schaefer | The Complexity of Satisfiability Problems[END_REF] is a particular Boolean satisifiability problem. Let us consider a set of 𝑝 ≥ 1 boolean variables 𝑉 = {𝑣 1 , • • • , 𝑣 𝑝 } and a set of 𝑞 ≥ 1 clauses {𝐶 1 , • • • , 𝐶 𝑞 } in 3-CNF form i.e. s.t. for any 𝑗 ∈ [1, 𝑞], 𝐶 𝑗 = 𝛼 𝑗 ∨ 𝛽 𝑗 ∨ 𝛾 𝑗 with 𝛼 𝑗 , 𝛽 𝑗 , 𝛾 𝑗 in 𝑉 ∪ 𝑉 , ¯being the usual negation operator. The 1-in-3-SAT problem on formula 𝜙 = 𝐶 1 ∧ • • • ∧ 𝐶 𝑞 then consists in finding 𝜌 : 𝑉 → {⊤, ⊥} s.t. 3 𝜌 |= 𝜙 and s.t. for any clause 𝐶 𝑗 , only one in the three literals 𝛼 𝑗 , 𝛽 𝑗 , or 𝛾 𝑗 is set to ⊤. In the following, we sketch a reduction proof which states that any 1-in-3-SAT problem can be reduced to the multi-trace membership problem for a given (𝑖, 𝜇) ∈ 𝐼𝑛𝑡 × 𝑀𝑢𝑙𝑡 (i.e. whether or not 𝜇 ∈ 𝐴𝑐𝑐𝑀𝑢𝑙𝑡 (𝑖)).
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  𝑙 ∈𝐿 𝐴 𝑙 denotes the Cartesian product of sets 𝐴 𝑙 𝑖 , i.e. the set of tuples (𝑎 1 , . . . , 𝑎 𝑛 ) with 𝑎 𝑖 ∈ 𝐴 𝑙 𝑖 and with the indexes 𝑙 𝑖 ordered accordingly to the ordered set 𝐿.

  i.e. a parallelization of 4 alternatives 𝑎𝑙𝑡 (𝑖 𝑣 , 𝑖 𝑣 ) s.t. for any 𝑥 ∈ 𝑉 ∪ 𝑉 , 𝑖 𝑥 is s.t. if 𝑥 occurs: • in 𝐶 1 and 𝐶 2 then 𝑖 𝑥

"𝜌 |= 𝜙" is the usual satisfaction relation in propositional logic.

https://github.com/erwanM974/hibou_label6 CONCLUSIONWe have proposed an approach to decide on the membership of multi-traces w.r.t. a semantics defined on interaction models. The analysis consists in applying non-deterministic reading of the multitrace using small-steps of the operational semantics. This approach has been validated with a formal proof of correctness using Coq, and a study on complexity. Moreover, a prototype tool that implements this analysis method has been developed in line with theoretical claims. Finally, as future work, we plan to exploit membership analysis to test distributed systems where logging of multi-traces is performed under observability limitations.