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Abstract. Interaction languages such as MSC are often associated with
formal semantics by means of translations into distinct behavioral for-
malisms such as automatas or Petri nets. In contrast to translational
approaches we propose an operational approach. Its principle is to iden-
tify which elementary communication actions can be immediately exe-
cuted, and then to compute, for every such action, a new interaction
representing the possible continuations to its execution. We also define
an algorithm for checking the validity of execution traces (i.e. whether or
not they belong to an interaction’s semantics). Algorithms for semantic
computation and trace validity are analyzed by means of experiments.

Keywords: Interaction Language · Scenario · Sequence Diagram · Se-
mantics · Causal Order · Trace Analysis

1 Introduction

(a) Default sequencing

i = seq(a!m1, a!m2)

(b) Uncorrelated instants

i = seq(a!m, b?m)

(c) Message passing

i = strict(a!m, b?m)

Fig. 1: UML-SD style

Interaction Languages (IL) are powerful mechanisms to
express behavioral requirements in the form of scenarios
called interactions. ILs include several recognized stan-
dards such as MSC and LSC [6], HMSC [25], MSD
[13], UML-Sequence Diagrams [21] (UML-SD), etc. These
graphical languages represent parts involved in a commu-
nication scheme as vertical lines, called lifelines. Each one
highlights a succession of instants where actions (emissions
or receptions of messages) may occur. These instants are
conventionally ordered from top to bottom as illustrated
(in the style of UML-SD) in Fig.1-a, where the emission
of m1 occurs before that of m2. However, this sequencing
does not order actions occurring on different lifelines; in
Fig.1-b, even though the reception ofm occurs graphically
below the emission ofm, no order is enforced. As such, this
specificity is called ’weak sequencing’. In order to enforce
a causality relation between such uncorrelated actions, we
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use a different ’strict sequencing’ operator. In Fig.1-c, it is used to express a
message m passing between lifelines a and b. Here, m cannot be received before
being emitted; the origin of the arrow denoting an instant preceding the one
depicted by its target. Additional operators (e.g. UML-SD combined fragments)
enable the expression of various concepts to order actions such as parallelisation,
repetition, alternatives (illustrated in Fig.2), etc. They structure interactions and
specify relative scheduling for subscenarii.

seq

alt

a!m1 b?m2

a!m3

whole interaction i = i|ε

subinteraction i|1 in blue

Fig. 2: Syntax and Positions

When ILs are fitted with formal se-
mantics, requirements can be processed
using formal techniques, such as model-
checking [1] or model-based testing [19].
As pointed out earlier, the key seman-
tic concept here is the causality rela-
tion between actions that the interac-
tion’s structure induce. Valid traces are
those respecting the subsequent partial
order [27,19]. The authors of [17] define
a simple IL as a set of terms built above
basic actions and provide it with a deno-
tational semantics which associates each

interaction term with a set of traces. This kind of formal framework can serve
as a reference for stating theorems about interactions (e.g. the ’satisfaction con-
dition’ proven in [17]).

In this paper, we consider an IL which includes several distinct loop operators
and provide it with a denotational semantics, directly comparable to that given
by [17]. The semantics of an interaction with loops is defined by considering any
finite number of loop unfolding combinations. Then, we introduce a second se-
mantics, which can be qualified as operational, as we aim at presenting it in the
style advocated in [24]. Here, accepted traces of an interaction i are defined by
identifying its initial actions act, and for each of those the subsequent interaction
i′ that will express the remainder of the trace. This operational semantics can
therefore be thought of as a set of rules of the form i

act−−→ i′. Doing so is how-
ever challenging as we need to keep track of possible conflicts between actions
occurring on the same lifeline. While the operational semantics is particularly
suitable to be adapted into concrete trace analysis algorithms, the denotational
semantics serves as a mathematical foundation, revealing interesting algebraic
properties. Both semantics have been implemented for semantic computation
and conducted experiments indicate identical results. A trace analysis tool has
also been adapted from the operational semantics and experimented on for cor-
rectness and performances.

The paper is organized as follows: Sec.2 introduces the IL and the denota-
tional semantics. Sec.3 and Sec.5 resp. introduce the operational semantics and
the subsequent trace analysis algorithm while Sec.4 reports experimental results
about the consistency of both semantics w.r.t. one another. Finally, Sec.6 and
Sec.7 resp. discuss related works and provide concluding remarks.
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2 Interaction language and denotational semantics

2.1 Base syntax

This section provides a textual denotation of our basic IL (i.e. without loops).
Interactions are defined up to a given signature (L,M) where L and M resp.
are sets of lifelines and messages. Their base building blocks are a set of com-
munication actions (actions) over L and M : Act(L,M) = {l∆m|l ∈ L,∆ ∈
{!, ?},m ∈ M} where l!m (resp. l?m) designates the emission (resp. reception)
of the message m from (resp. on) the lifeline l. For any action act in Act(L,M)
of the form l∆m, θ(act) denotes the lifeline l. Actions can be composed using
different binary operators that introduce an order of execution between them
(weak or strict sequentiality, parallelism, mutual exclusivity).

Definition 1 (Basic Interactions). The set B(L,M) of basic interactions
over L and M is inductively defined as follows:

– ∅ ∈ B(L,M) and Act(L,M) ⊂ B(L,M),
– ∀(i1, i2) ∈ B(L,M)2 and ∀f ∈ {strict, seq, alt, par}, f(i1, i2) ∈ B(L,M).

The empty interaction ∅ and actions of Act(L,M) are elementary interac-
tions. The strict and seq operators are sequential operators: in strict(i1, i2),
all the actions in i1 must take place before any action in i2 while in seq(i1, i2)
sequentiality is only enforced between actions that share the same lifeline. In
Fig.1-b, b?m may precede3 a!m (because a 6= b) while in Fig.1-c b?m cannot
precedes a!m. Hence we use strict to encode the emission and reception of the
same message object e.g. strict(a!m, b?m) on Fig.1-c4. In alt(i1, i2), the behav-
iors specified by i1 and i2 are both acceptable albeit mutually exclusive5. In
Fig.2 if a!m1 happens then b?m2 cannot happen and vice-versa. In par(i1, i2),
the executions of i1 and i2 are interleaved. For instance, in par(a!m1, a!m2),
actions a!m1 and a!m2 can happen in any order.

Interactions being defined as usual terms, we use positions expressed in
Dewey decimal notation to refer to subinteractions [7]. A position p of i is a
sequence of positive integers denoting a path leading from the root node of i to
the subterm of i at position p. Interactions are defined with operations whose
arity is at most 2. Hence, positions are words of {1, 2}∗ i.e. words built over the
empty word ε, the words 1 and 2 and the concatenation law ".". In the following,
we will use simplified notations without dots, e.g. "11" for the position "1.1".

In Def.2, the functions ST and pos resp. associate to any interaction the set
of all its subinteractions and the set of its positions. Moreover, we use the usual
notation i|p [7] to designate unambiguously the subinteraction of i at position p
for p ∈ pos(i) (cf. example in Fig.2).

3 Note that we omit depicting seq on diagrams as is classically done in UML-SD.
4 drawn by convention as a plain arrow between a and b
5 note that we handle the UML-SD opt operator as opt(i) = alt(i,∅) = alt(∅, i)
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Definition 2 (Positions and subinteractions of a basic interaction). We
define ST : B(L,M) → P(B(L,M)), pos : B(L,M) → P({1, 2}∗) and6 _|_ :
B(L,M)× {1, 2}∗ → B(L,M) such that ∀i ∈ B(L,M):

– if i = ∅ or i ∈ Act(L,M) then ST (i) = {i}, pos(i) = {ε} and i|ε = i
– if i = f(i1, i2) with f ∈ {strict, seq, par, alt} then:
• ST (i) = {i} ∪ ST (i1) ∪ ST (i2)
• pos(i) = {ε} ∪ 1.pos(i1) ∪ 2.pos(i2)
• i|ε = i and for p = 1.p′ (resp. 2.p′) in pos(i), i|p = i1|p′ (resp. i2|p′).

2.2 Denotational semantics for basic interactions

As explained in Sec.2.1, operators occurring in an interaction induce relations
of precedence between the actions of the interaction. In the example of Fig.2,
if the left branch of the alt is chosen (i.e. a!m1 at position 11) then the action
a!m3 at position 2 must occur after it. However if the other branch were chosen
(i.e. b?m2 at position 12), there would be no precedence order between actions
b?m2 and a!m3 as their common ancestor is a seq operator which only orders
actions sharing the same lifeline. As a result, several orderings can be defined,
depending, among others, on the choice of alt branches. These possible orderings
can be encoded as a set ord(i) (defined in Def.4) which contains elements of
the form (e, o) where e is the set of positions of the involved actions and o
reflects the precedence relations between those. In the example of Fig.2, we have
ord(i) = {({11, 2}, {(11, 2)}), ({12, 2}, ∅)}. Indeed, as explained earlier, if the
11 branch is chosen then the only two actions to be considered are a!m1 and
a!m3 on resp. positions 11 and 2 (therefore e = {11, 2}) and they are ordered
because of both the seq operator and their common lifeline, so that the associated
precedence relation is modelled by o = {(11, 2)} meaning that a!m1 at position
11 should occur before a!m3 at position 2. The only other possible ordering
occurs when branch 12 is chosen and likewise we would have e = {12, 2} with
o = ∅ because the seq does not constrain the order of actions b?m2 and a!m3

with different lifelines.

Definition 3 (Ordering type). Given i in B(L,M). The set O(i) of candidate
orderings of i contains all couples (e, o) such that (1) e ⊆ pos(i), (2) for any p
in e, i|p ∈ Act(L,M) and (3) o ⊆ e× e. O is then the set

⋃
i∈B(L,M) O(i).

In Def.4, for a given interaction i, ord(i) precisely defines which order-
ings are to be considered among the candidate orderings O(i). For an order-
ing (e, o) in O and p ∈ {1, 2}, we use the notation p.e = {p.p′|p′ ∈ e}, p.o =
{(p.p1, p.p2)|(p1, p2) ∈ o} and p.(e, o) = (p.e, p.o). The notation is canonically
extended to any set O of orderings, by p.O = {p.(e, o)|(e, o) ∈ O}.

For the interaction ∅, there is no associated action and therefore we have a
single (e, o) = (∅, ∅). For a ∈ Act(L,M), there is a single action a (at position
ε) and as a result, ord(a) contains a single (e, o) = ({ε}, ∅). For i = alt(i1, i2),
6 _|_ is a partial function so that i|p is only defined for positions occurring in pos(i).
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either i1 or i2 is executed. Thus any ordering in ord(i) is simply an ordering
from ord(i1) or from ord(i2) but correctly prefixed. Concretely, for any orderings
(e1, o1) ∈ ord(i1) and (e2, o2) ∈ ord(i2), ord(i) contains both 1.(e1, o1) and
2.(e2, o2). For i = par(i1, i2), both i1 and i2 have to be executed but no order is
enforced between actions of either child branch. Thus, for any ordering (e1, o1) ∈
ord(i1) and (e2, o2) ∈ ord(i2), ord(i) contains (1.e1 ∪ 2.e2, 1.o1 ∪ 2.o2). For i =
strict(i1, i2) both i1 and i2 have to be executed and all actions from i1 must occur
before actions from i2. Thus for any orderings (e1, o1) ∈ ord(i1) and (e2, o2) ∈
ord(i2), ord(i) contains an ordering (e, o) that concerns all actions from both
children i.e. e = 1.e1 ∪ 2.e2 and such that o keeps track of all initial precedence
relations while incorporating those induced by the strict operator i.e. o = 1.o1∪
2.o2 ∪ {(p1, p2)|p1 ∈ 1.e1, p2 ∈ 2.e2}. For i = seq(i1, i2) the same reasoning can
be applied, with the exception that additional precedence relations only concern
actions that share the same lifelines. Using the same notations, e = 1.e1 ∪ 2.e2
and o = 1.o1 ∪ 2.o2 ∪ {(p1, p2)|p1 ∈ 1.e1, p2 ∈ 2.e2, θ(i|p1) = θ(i|p2)}.

Definition 4 (Orderings of a basic interaction). We define the function
ord : B(L,M)→ P(O) as follows:

ord(∅) = {(∅, ∅)} and ∀ act ∈ Act(L,M), ord(act) = {({ε}, ∅)}

For any i1 and i2 in B(L,M):

ord(alt(i1, i2)) = 1.ord(i1) ∪ 2.ord(i2)

ord(par(i1, i2)) =
⋃

(e1,o1)∈ord(i1)
(e2,o2)∈ord(i2)

{(1.e1 ∪ 2.e2, 1.o1 ∪ 2.o2)}

ord(strict(i1, i2)) =
⋃

(e1,o1)∈ord(i1)
(e2,o2)∈ord(i2)

{
(e, o)

∣∣∣∣ e = (1.e1 ∪ 2.e2) , o = 1.o1 ∪ 2.o2 ∪ o′
o′ = {(p1, p2) | p1 ∈ 1.e1 , p2 ∈ 2.e2}

}

ord(seq(i1, i2)) =
⋃

(e1,o1)∈ord(i1)
(e2,o2)∈ord(i2)

(e, o)

∣∣∣∣∣∣
e = (1.e1 ∪ 2.e2) , o = 1.o1 ∪ 2.o2 ∪ o′

o′ =

{
(p1, p2)

∣∣∣∣p1 ∈ 1.e1 , p2 ∈ 2.e2
θ(i|p1) = θ(i|p2)

} 
A given ordering (e, o) with e = {e1, ..., en} characterizes a set of behaviors

that expresses every action whose position belongs to e exactly once. Such a
behavior is thus given under the form of an execution trace i|eα(1)

...i|eα(n)
where α

is a permutation of [1, n]. Obviously, not all of those permutations are acceptable
as they must not contradict the partial order specified by o. If we note pj = eα(j)
for j in [1, n], we have ∀j, k ∈ [1, n]2 j > k ⇒ (pj , pk) 6∈ o.

The semantics σ(i) of an interaction i then comes naturally as the union
of all sets sem(i, e, o) of execution traces of i compatible with (e, o) ∈ ord(i).
When considering the example from Fig.2, we have sem(i, {11, 2}, {(11, 2)}) =
{a!m1.a!m3} and sem(i, {12, 2}, ∅) = {b?m2.a!m3, a!m3.b?m2}.
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Definition 5 (Denotational semantics for basic interactions). For i ∈
B(L,M) and (e, o) ∈ ord(i) with n ∈ N being the cardinal of e, we note:

sem(i, e, o) =
{
i|p1 ...i|pn

∣∣∀(pj , pk) ∈ e2, j > k ⇒ pj 6= pk ∧ (pj , pk) 6∈ o
}

σ : B(L,M)→ P(Act(L,M)∗) is s. t. ∀i ∈ B(L,M), σ(i) =
⋃

(e,o)∈ord(i)
sem(i, e, o)

2.3 Extension of the language with loops

A loop is a repetition operator. Its content can be instantiated any finite number
of times i.e multiple copies of it are inserted into the interaction. For UML-SD,
the norm [23] states that "the loop construct represents a recursive application
of the seq operator where the loop operand is sequenced after the result of earlier
iterations". The UML-SD loop is hence associated with the seq operator. When
instantiated, the loop content is ordered using seq this means for example that
loop(a!m) becomes seq(a!m, loop(a!m)) then seq(a!m, seq(a!m, loop(a!m))) and
so on. In line with this explanation, let’s consider the 4 types of loops that
can be characterized according to the operator ordering the instantiated content
(seq, strict, par or alt). We can discard alt as instantiating loop(i) would lead
to alt(i, loop(i)) meaning that the content can be read at most once and is
therefore equivalent to opt(i) (i.e. alt(i,∅)). We will here consider 3 operators
denoted loopseq (the classical loop), loopstrict and looppar.

(a-i) ia (a-ii) ia after a!m (b-i) ib (b-ii) ib after a!m1

Fig. 3: Examples showcasing the pertinence of loopstrict and looppar
In Fig.3-a-i, ia|11 = a!m is the only immediately executable action and its ex-

ecution leads to the interaction i′a = strict(b?m, ia) drawn on Fig.3-a-ii. Because
of the strict operator, i′a|211 = a!m is not immediately executable (preceded by
i′a|1 = b?m). As a result ta = a!m.a!m.b?m.b?m is not an accepted trace for
ia. However, if there was a seq operator instead of the strict, i′a|211 would be
immediately executable and ta an accepted trace.

Similarly, in Fig.3-b-i, ib|11 = a!m1 is the only immediately executable action
and its execution leads to i′b = par(a!m2, ib) drawn on Fig.3-b-ii. Because of
the par operator, i′b|211 = a!m1 is immediately executable. As a result tb =
a!m1.a!m1.a!m2.a!m2 is an accepted trace for ib. However, if there was a seq
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instead of the par, i′b|211 would not be immediately executable and tb not an
accepted trace.

Consequently, considering looppar and loopstrict in addition to the classic
loopseq improves expressiveness. In rough terms, looppar always allows new in-
stantiations as each instance is executed in parallel w.r.t each others and the
loop itself. loopstrict on the contrary does not allow new instantiations as long as
the previous instance has not been entirely executed. The behavior of loopseq is
somewhat in the middle, instantiations being allowed depending on the current
structure of actions preceding and within the loop.

In the following, we’ll extend our IL to loops and adapt previous definitions
(from B(L,M) to I(L,M)). As in Def.6, any time we do so, we will only define
the missing cases concerning loop terms.

Definition 6 (Interactions). The set I(L,M) of interactions over L and M
is inductively defined as follows:

– ∅ ∈ I(L,M) and Act(L,M) ⊂ I(L,M),
– ∀(i1, i2) ∈ I(L,M)2 and ∀f ∈ {strict, seq, alt, par}, f(i1, i2) ∈ I(L,M),
– ∀i ∈ I(L,M) and ∀f ∈ {strict, seq, par}, loopf (i) ∈ I(L,M).

The functions ST : I(L,M)→ P(I(L,M)), pos : I(L,M)→ P({1, 2}∗)
and _|_ : I(L,M) × {1, 2}∗ → I(L,M) are defined by extending to loop terms
the corresponding functions of Def.2:
For all i in I(L,M) of the form loopf (i

′) with f ∈ {strict, seq, par}:

– ST (i) = {i} ∪ ST (i′)
– pos(i) = {ε} ∪ 1.pos(i′),
– i|ε = i and for p = 1.p′ in pos(i), i|p = i′|p′ .

(a) i = loopseq(i|1)

with i|1 = strict(a!m, b?m)

(b) i′ = seq(i|1, i)

Fig. 4: Unfolding

In order to define the semantics of interactions, we
use the notion of term replacement [7]: the notation t[s]p
denotes the term t where its subterm at position p is re-
placed by the term s. For instance with i = seq(a!m, b?m),
we have i[c?m]2 = seq(a!m, c?m). This notation is con-
venient to represent terms obtained by loop unfolding.
For example let us consider an interaction i ∈ I(L,M)
with a loopseq at a position p ∈ pos(i), that is, such that
i|p = loopseq(i|p.1). The interaction is then obtained from i
by unfolding once the loop at position p is i[seq(i|p.1, i|p)]p.
In Def.7, the set Υ (i, n) of all n-unfoldings of an interac-
tion i (i.e. the set of all interactions resulting from n in-
stantiations of any loop from i) is defined recursively. On
Fig.4 loop unfolding is illustrated with Υ (i, 0) = {i} and Υ (i, 1) = {i′}.

Definition 7 (n-unfoldings). We define Υ : I(L,M) × N → P(I(L,M)) such
that ∀i ∈ I(L,M) Υ (i, 0) = {i} and ∀n ∈ N+:

Υ (i, n) =
⋃

p∈pos(i) s.t. i|p=loopf (i|p.1)

Υ (i[f(i|p.1, i|p)]p, n− 1)
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We define a function F : I(L,M) → B(L,M) that flattens interactions with
loops i.e. that replaces all loop subterms with the empty interaction ∅. For
instance, in Fig.4 we have F (i) = ∅ and F (i′) = seq(i|1,∅). As F (I(L,M)) ⊂
B(L,M), we can define an unfolding-based semantics7 for i ∈ I(L,M) by simply
considering the union of semantics obtained from flattened unfoldings of i.

Definition 8 (Denotational semantics for interactions).
We define σu : I(L,M)→ P(Act(L,M)∗) such that for all i in I(L,M):

σu(i) =
⋃
n∈N

⋃
i′∈Υ (i,n)

σ(F (i′))

3 Operational Semantics

We aim to define algorithms that can determine whether or not a trace t is ac-
cepted by an interaction i. This amounts to ascertaining whether or not t ∈ σu(i).
Naturally, being able to do so without having to compute σu(i) is preferable. In
the following we’ll refer to this problem as ’trace analysis’.

Fig. 5: Operational Semantics

As per Sec.2.3, asserting t ∈ σu(i) equates
to finding a combination of loop unfoldings i? ∈⋃∞
k=0 Υ (i, k) such that t ∈ σ(F (i?)). Even if fea-

sible, this would be time and space consuming8.
As for non acceptation, it equates to proving
that ∀i? ∈

⋃∞
k=0 Υ (i, k) we have t 6∈ σ(F (i?)).

In this case, a termination in finite time would
not even be guaranteed and would require defin-
ing some stopping criterion on the unfolding.

Consequently, we investigate another ap-
proach, in which traces are analyzed action by
action. Here, instead of systematically unfolding
loops, we do so on demand (when executing an
act that is found within a loop). This approach
is based on a different semantics (σo) whose de-
scription is the purpose of Sec.3.

σo is presented in the style of operational se-
mantics, i.e. consisting in: (1) identifying from
the structure of i which act can be immediately
executed (coined ’frontier actions’) and (2) de-
riving for each such act a new interaction i′ spec-

ifying all the possible continuations of act within the set of execution traces
specified by i (noted as i act−−→ i′).

Intuitively, an action is in the frontier iff no structural operators (parent
nodes) coerce it to be preceded by another action (sibling leaf). Accepted traces
7 coined σu, u standing for ’unfolding-based’
8 and would not be adaptable if one considers an extension to monitoring as new
combinations i? may be needed every time a new action is observed
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are then built recursively through the successive consumption of actions. Let’s
consider a trace t = act1.(...).actn with ∀k ∈ [1, n] ik−1

actk−−−→ ik and such that
i0 = i (by extension we may note i t−→ in).
• If the last interaction in can express the empty trace ε (i.e. ε ∈ σu(in)) - which
can be statically analysed - then t is accepted by i i.e. t ∈ σo(i).
• In any case, for all frontier actions actn+1 of in, we have in

actn+1−−−−→ in+1, meaning
that t can be extended by actn+1 and is a prefix of given trace(s) accepted by i.

To illustrate this, let’s consider the example from Fig.5. The initial interaction
is i = seq(alt(a!m1, b?m2), a!m3). There are 3 frontier actions that may play the
role of act: i|11 = a!m1, i|12 = b?m2 and i|2 = a!m3. The interactions remaining
after the execution of i|11 and i|12 (resp. referred to as i′1 and i′2), which happen
to be the same, are depicted below on the left, while the one remaining after the
execution of i|2 (noted i′3) is depicted on the right. The cases leading to i′1 and i′2
are self-evident. As for the one leading to i′3, the execution of a!m3 is contingent
to the choice of the branch 12 of the alt hence the elimination of branch 11 in
the remaining interaction. Indeed, if branch 11 were to be chosen, the execution
of a!m3 would not be possible as a!m1 should have been executed before. This
illustrates that a!m3 is a frontier action up to the choice of the right branch of the
alt operator. Let us remark that b?m2 may indeed happen after a!m3 as those
two actions occur on different lifelines and the top seq operator structuring them
does not constrain their order of execution. Finally, we conclude by defining the
operational semantics as σo(i) = a!m1.σo(i

′
1) ∪ b?m2.σo(i

′
2) ∪ a!m3.σo(i

′
3).

3.1 Frontier actions

In this section we explain how to identify frontier actions. Our notion of frontier
differs slightly from that of [4], where it refers to the set of positions p such
that ∀j ∈ {1, 2}∗, p.j 6∈ pos(i) (i.e. positions of leaf nodes). Indeed, our frontiers
contain only leaves that are immediately executable actions.

Any ordering as defined in Def.4 provides a partial order relation for the set
of (positions of) actions of a basic interaction. A frontier action act on position
p is then simply a minimal element given such a relation (e, o), i.e. s.t. ∀p′ ∈ e
we have (p′, p) 6∈ o i.e. act does not have to be preceded by any other action. The
frontier of an interaction i is then defined as the union of such p, considering all
the orderings from ord(i). As Def.4 did not include loop operators, we extend it
in the following definition, in which the empty ordering (∅, ∅) corresponds to the
case where the loop has not unfolded. According to this, the frontier of i from
Fig.5 is then front(i) = {11, 12, 2}.

Definition 9 (Ordering). We define ord : I(L,M) → P(O) as an extension
to I(L,M) of its counterpart from Def.4. For all f in {strict, seq, par}:

∀i ∈ I(L,M), ord(loopf (i)) = 1.ord(i) ∪ {(∅, ∅)}

Definition 10 (Frontier). front : I(L,M)→ P({1, 2}∗) is the function s.t.:

∀i ∈ I(L,M), front(i) =
⋃

(e,o)∈ord(i)

{p ∈ e | ∀p′ ∈ e, (p′, p) 6∈ o}
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3.2 Pruning

The design of the rules i act−−→ i′ hinted at earlier is made operational thanks to
2 mechanisms: pruning and execution. Given an action act ∈ front(i), branches
preventing its execution are detected and eliminated with pruning. However, this
is not done on the whole interaction i but rather on specific neighboring (w.r.t.
act) subinteractions. Execution orchestrates the calls to pruning, eliminates act
and constructs the remaining interaction i′.

(a) i

seq

loopseq

strict

a!m1 b?m1

seq

loopseq

alt

a!m2 b?m3

a!m4

(b)
red - action to execute

green - neighbors to prune
blue - pruning

(c) effect of pruning

(d) after executing i|22 = a!m4

Fig. 6: Example showcasing pruning

We first define the pruning mechanism which consists in removing from an
interaction all the actions which occur on a given lifeline. For instance, on Fig.6-
b, let us consider the interactions i1 = i|1 = loopseq(strict(a!m1, b?m1)) and
i2 = i|21 = loopseq(alt(a!m2, b?m3)) highlighted in green. We want to remove
actions occurring on the lifeline a (so as to allow the execution of i|22 = a!m4).
We find that i1|11 = a!m1 (resp. i2|11 = a!m2) needs to be removed from i1 (resp.
i2). If we do not want to get an interaction which is inconsistent or outwardly
contradicts the original semantics, we can only prune subinteractions at positions
where branching choices are made i.e. in alt and loop nodes. Indeed, by definition,
eliminating a subinteraction at one such node would lead to a semantics that is
included in the original.

In i2, eliminating i2|11 is easily done given that its parent node is an alt
and that its brother node does not need to be eliminated. Indeed, it suffices to
operate the replacement i2[i2|12]1 i.e. replacing the alt node with its right child
b?m3.

In i1, eliminating i1|11 is more delicate: its parent node is a strict and as
such, behaviors from its left and right children must both happen (there is no
branching choice). Thus, if we want to eliminate i1|11 we must also eliminate
the whole i1|1. The problem is hence forwarded upwards in the syntax. The
parent i1|ε is a loop operator, which characterizes a branching choice. We can
eliminate the problematic branch by choosing not to instantiate the loop i.e. via
the replacement i1[∅]ε.
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The pruning mechanism is given in Def.11 as the recursive prune function,
which takes as arguments an interaction i and a lifeline l. prune eliminates from
i branching choices hosting actions that occur on l.

In a first descending phase, prune goes down the syntax of i through recursive
calls (from root to leaves). When reaching a leaf, prune returns an interaction
i′ and a boolean b. b = > signifies that the current branch needs to be elimi-
nated (pruned) while i′ is the interaction that will be used to reconstruct i in
the ascending phase (only used if b = ⊥). Leaves are either actions or empty
interactions. For an action act, if θ(act) = l, the current branch must be pruned
so prune(act, l) = (∅,>): the value of the returned interaction i′ has no im-
portance here because a parent will be pruned anyway. If θ(act) 6= l we have
prune(act, l) = (act,⊥) because there is nothing to prune here. Similarly, we
have prune(∅, l) = (∅,⊥).

In the second, ascending phase, the pruned interaction is reconstructed ac-
cording to the values of i′ and b returned from child branches. If at any point
b = >, this value is forwarded upwards until an expendable branching choice is
reached.

prune(i, l) is recursively called on the child nodes of i. Depending on the
operator in i, the return values of prune(i|1, l) = (i′1, b1) (and also prune(i|2, l) =
(i′2, b2) for binary operators) will be used differently to determine i′ and b.

For the operators f ∈ {strict, seq, par}, if any one child must be pruned
(b1 ∨ b2) then the whole branch must also be pruned and otherwise a recon-
structed f(i′1, i′2) is returned. For the exclusive alternative alt, if no branch needs
pruning, alt(i′1, i′2) is returned; if any single branch needs pruning, prune returns
the one that does not need to be pruned and if both branches need pruning, then
the whole interaction is pruned. For the repetition operators, if the loop con-
tent needs pruning then the choice of ’never taking the loop’ is made meaning
that ∅ is returned with b = ⊥, signifying a successful pruning. If there is no
needed pruning, it simply returns the loop with an already pruned loop content
loopf (i

′
1).

Definition 11 (Pruning). prune : I(L,M)×L→ I(L,M)×bool is the function
such that for all i ∈ I(L,M) and l ∈ L:

– prune(∅, l) = (∅,⊥)
– for act ∈ Act(L,M): if θ(act) = l then prune(act, l) = (∅,>) (else (act,⊥))
– if i = f(i1, i2) with f ∈ {strict, seq, par}, given prune(i1, l) = (i′1, b1) and
prune(i2, l) = (i′2, b2):
if b1 ∨ b2 then prune(i, l) = (∅,>) (else (f(i′1, i

′
2),⊥))

– if i = alt(i1, i2), given prune(i1, l) = (i′1, b1) and prune(i2, l) = (i′2, b2):
• if b1 ∧ b2 then prune(i, l) = (∅,>)
• if b1 ∧ ¬b2 then prune(i, l) = (i′2,⊥)
• if ¬b1 ∧ b2 then prune(i, l) = (i′1,⊥)
• if ¬b1 ∧ ¬b2 then prune(i, l) = (alt(i′1, i

′
2),⊥)

– if i = loopf (i1) with f ∈ {strict, seq, par}, given prune(i1, l) = (i′1, b1):
if b1 then prune(i, l) = (∅,⊥) (else (loopf (i

′
1),⊥))
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3.3 Execute function and operational semantics

Let us consider the example i from Fig.6. We wish to execute the frontier action
i|22 = a!m4 (highlighted in red). To allow this execution we need at first to
remove the actions occurring on the same lifeline (i.e. on a) from the neighbors
highlighted in green. To do so, we use the prune function from Def.11. More
generally, the nature of our syntax is such that, for the execution of a frontier
action at position p, we only need to prune subinteractions at positions p0.1 s.t.
∃p′ ∈ {1, 2}∗ s.t. p = p0.2.p

′ and s.t. i|p0 = seq(i|p0.1, i|p0.2). Those are exactly
the left cousins of i|p that are scheduled sequentially (i.e. with seq) w.r.t. i|p.

We now define the execution function χ (Def.12), which takes as arguments
an interaction i and a frontier position p and returns the remaining interaction
i′. As explained earlier, χ orchestrates the use of prune. In the example from
Fig.6 this first cleaning feature would result in the transformation of i from the
diagram on Fig.6-a to the one on Fig.6-c. The only thing left to do is then to
remove the executed action s.t. the result is the interaction from Fig.6-d.

χ is defined inductively on both the structure of the interaction i and the
position p = d1...dn ∈ {1, 2}n. The execution of χ(i, p) traverses recursively the
syntactic structure of i guided by the path defined by the position p, that is,
from χ(i|ε, d1...dn) (root node), ..., up to χ(i|p, ε) (target action leaf to execute).
Here, χ(i|p, ε) = ∅ constitutes the stopping criterion and i′ is then constructed
when the algorithm goes back up through the syntactic structure of i. Assigning
∅ to χ(i|p, ε) ensures that the action i|p is removed in the construction of i′.

When a par node is encountered during the upward traversal, i.e. for j ∈
[1, n], i|d1...dj = par(i|d1...dj .1, i|d1...dj .2) then χ(i|d1...dj , dj+1...dn) is simply:

par(χ(i|d1...dj .1, dj+2...dn), i|d1...dj .2) if dj+1 = 1 or,
par(i|d1...dj .1, χ(i|d1...dj .2, dj+2...dn)) if dj+1 = 2.

Indeed, as par specifies parallel executions, there is no need for pruning.
When an alt node is reached, using the same notations, we would have:
χ(i|d1...dj , dj+1...dn) = χ(i|d1...dj+1

, dj+2...dn).
Indeed, we can ’skip’ the alt node itself and replace it directly with the interaction
resulting from the execution of the chosen branch.

When a loop is reached, i.e. i|d1...dj = loopf (i|d1...dj .1) (with a mandatory
dj+1 = 1), we have :

χ(i|d1...dj , dj+1...dn) = f(χ(i|d1...dj+1
, dj+2...dn), i|d1...dj ).

Indeed, the execution is done on a copy of the loop content that precedes (with
f operator) the loop i|d1...dj itself, that is, on an unfolding of the loop.

For the sequential operators, pruning needs to be considered only if the ex-
ecuting action is situated on the right branch of the seq or strict node (if the
action is on the left branch, we have the same transformation as in the par
case). Given i|d1...dj = seq(i|d1...dj .1, i|d1...dj .2) and dj+1 = 2, when construct-
ing χ(i|d1...dj , dj+1...dn) we must prune in i|d1...dj .1 all the actions that could
interfere with i|p i.e. those taking place on θ(i|p). As such, given (i′1, b1) =
prune(i|d1...dj .1, θ(i|p)), we’ll replace the left branch of the seq with i′1 and re-
construct:

χ(i|d1...dj , dj+1...dn) = seq(i′1, χ(i|d1...dj+1
, dj+2...dn)).
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Given that the strict operator won’t allow any action from the left branch to
occur after an action on the right has occurred, we can simply prune the whole
left branch i.e. given i|d1...dj = strict(i|d1...dj .1, i|d1...dj .2) and dj+1 = 2:

χ(i|d1...dj , dj+1...dn) = χ(i|d1...dj+1
, dj+2...dn).

Definition 12 (Execution). The function χ : I(L,M)× {1, 2}∗ → I(L,M) is
defined for couples (i, p) with i ∈ I(L,M) and p ∈ front(i) as follows:

– if p = ε then χ(i, p) = ∅
– if p = 1.p1 then
• if i = f(i1, i2) with f ∈ {strict, seq, par} then χ(i, p) = f(χ(i1, p1), i2)
• if i = alt(i1, i2) then χ(i, p) = χ(i1, p1)
• if i = loopf (i1) with f ∈ {strict, seq, par} then χ(i, p) = f(χ(i1, p1), i)

– if p = 2.p2 then
• if i = seq(i1, i2) then χ(i, p) = seq(i′1, χ(i2, p2))
where prune(i1, θ(i|p)) = (i′1, b)

• if i = strict(i1, i2) then χ(i, p) = χ(i2, p2)
• if i = par(i1, i2) then χ(i, p) = par(i1, χ(i2, p2))
• if i = alt(i1, i2) then χ(i, p) = χ(i2, p2)

In Def.13 below, we now define the operational semantics. Note that interac-
tions that can express the empty trace ε are identified with the predicate expε.
This semantics expresses rules of the form i

i|p−−→ χ(i, p) where p ∈ front(i).
Definition 13 (Operational semantics for interactions).
We define σo : I(L,M)→ P(Act(L,M)∗) as:

σo(i) = empty(i) ∪
⋃

p∈front(i)

i|p.σo(χ(i, p))

with empty(i) = {ε} (resp.∅) if expε(i) = > (resp. ⊥)
where expε : I(L,M)→ bool is defined as:

– expε(∅) = >
– expε(l∆m) = ⊥
– expε(f(i1, i2)) = expε(i1) ∧ expε(i2) for f ∈ {strict, seq, par}
– expε(alt(i1, i2)) = expε(i1) ∨ expε(i2)
– expε(loopf (i1)) = > for f ∈ {strict, seq, par}

4 Back-to-back comparison of both semantics

Dataset. The recursive definition of interactions as syntactic terms allows to
characterize them by their depth. Interactions of depth 1 include the empty
interaction ∅ and all actions from Act(L,M). Depending on the cardinals nl =
Card(L) and nm = Card(M), those interactions can all be enumerated and
computed. Given a signature, interactions of depth 2 can be deduced from those
of depth 1 and exhaustively computed via the application of the binary and unary
operators (e.g. seq(∅, a!m)). Likewise, interactions of depth 3 can be computed
from those of depths 1 and 2 and so on. To illustrate this, Fig.7 presents for each
couple (nl, nm) the numbers of interactions of depths 1, 2 and 3 in each cell. For
instance, we have 3 interactions of depth 1 for nl = nm = 1.
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aaaaa
nm nl 1 2 3

1
3
45
9315

5
115
57845

7
217

201159

2
5
115
57845

9
351

519129

13
715

2121405

3
7
217

201159

13
715

2121405

19
1501

9244659

Fig. 7: Numbers of
interactions per nl, nm and d

Experiments. We implemented both semantics
(σu from Def.8 and σo from Def.13) and com-
pared the set of traces σu(i) and σo(i) they gen-
erate (with a stopping criterion on the maximum
number of loop unfolding - 4 in our experiments)
on a significant set of interactions of depth 3 with
nl = nm = 3. For all of the 234175 selected inter-
actions i from our dataset, the tests systematically
concluded on the equality σu(i) = σo(i). Although
not a proof, our successful back-to-back compari-
son comforts our confidence in both semantics, all
the more so because of the exhaustivity of the subject data set up to maximum
numbers of lifelines, messages types, interaction depth (up to 3), number of loop
unfolding (up to 4), allowing covering all 2 by 2 combinations of operators.

5 Trace analysis

Fig. 8: Application of ω

The definition of the execution function χ (Def.12)
that comes with the operational nature of the σo se-
mantics (Def.13) allows us to solve the ’trace anal-
ysis’ problem hinted at earlier. Indeed, analysing a
trace t = act1...actn w.r.t. an interaction i0 equates
to verifying whether or not there exists transformations
i0

act1−−−→ χ(i0, p1) = i1, ..., in−1
actn−−−→ χ(in−1, pn) = in s.t. in

accepts the empty trace.
We define an ω function (Def.14) which takes as

arguments an interaction i and a trace t and checks
whether or not t is a trace of i. Additional traceabil-
ity information is provided using four distinct verdicts:
• Covered is returned when t is a trace of i i.e. t ∈ σo(i);
• TooShort is returned when t 6∈ σo(i) is a strict prefix
of a trace of i i.e. ∃t′ ∈ Act(L,M)∗ s.t. t.t′ ∈ σo(i);
• TooLong is returned when neither Covered nor
TooShort can be, and given t = act1...actn ∃k < n
s.t. act1...actk ∈ σo(i) i.e. t extends a trace of i;
• Out is returned when none of the others can be.

We define the enumerated type V erdict and provide
it with a total order Out ≺ TooLong ≺ TooShort ≺
Covered.
• If t is empty then: either i accepts the empty trace in
its semantics and in this case ω(i, t) returns Covered, or it returns TooShort.
• If t is of the form act.t′ (i.e. not empty and starts with act) then, for all match-
ing actions i|p in the frontier of i, recursive calls are performed on ω(χ(i, p), t′)
and ω(i, t) returns the strongest (max≺ function) verdict among those and either
TooLong if i expresses the empty trace ε or Out if not.
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Definition 14 (Trace Analysis). We define ω : I(L,M) × Act(L,M)∗ →
V erdict such that ∀i, t ∈ I(L,M)×Act(L,M)∗:

– ω(i, ε) = Covered (resp. TooShort) if expε(i) = > (resp. ⊥)
– if t is of the form act.t′ then:

ω(i, t) = max≺

(
outε(i) ∪

{
ω(χ(i, p), t′)

∣∣∣∣p ∈ front(i)i|p = act

})
with outε(i) = {TooLong} (resp. {Out}) if expε(i) = > (resp. ⊥)

Fig.8 is a graphical representation of the ω process when applied to the
interaction from Fig.6-a and the trace a!m4.b?m3.
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Fig. 9: Correctness of ω
experiments

Fig.9 presents a synthesis of experiments conducted
to assess the correctness of ω and of our implementation
of it. We randomly sampled 1000 interactions from the
set of 234175 interactions mentioned in Sec.4. Each of
them were tested with the 18 single action traces from
Act(L,M) and we sampled 15 traces from their seman-
tics (computed with 3 loop unfolds). Each of those traces
were tested as well as a random selection of their prefixes
and of interesting mutants. Addition (resp. replacement)
mutants consists in adding an action to a trace (resp.
prefix). By construction we could classify all those traces
according to the verdicts they are expected to obtain.
Fig.9 details those results, showing a systematic con-
cordance between the expected and obtained verdicts.
Those results reinforce our confidence on ω, the more so
that they were done on a panel of traces and interactions
which covers all 2 by 2 combinations of operators.

To provide an evaluation of performances (plotting
time vs. length), we needed a large model and long cor-
rect traces. Indeed, the time required by the analysis is
not always correlated to trace length e.g. an arbitrar-
ily long trace starting with an action act of position
p 6∈ front(i) is analyzed immediately, whatever length

it may be. There is however a correlation for correct traces and their prefixes.
We defined a partial high-level model of the MQTT [22] telecommunication pro-
tocol (see Fig.10-a). This model states that a communication session between a
client and a broker starts (resp. ends) with a sequential connection (resp. dis-
connection) phase. In between, at any time, any number of instances of one of
the 5 proposed subinteractions can be run concurrently. Hence, we used a multi-
threaded Python script to generate 100 traces, each of those corresponding to
the concurrent activation and execution at random time intervals of 20 instances
of the looppar from Fig.10-a. All those traces (resp. prefixes) have the verdict
Covered (resp. TooShort); we evaluated computation times and plotted some
of them on Fig.10-b.
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(a) mqtt model (b) time vs. trace length

Fig. 10: Performances

The linear regression shows
curves with a great variability
(some traces need 4 seconds while
others only 0.06). In this precise
model, it is explained by the pres-
ence of par (via looppar) opera-
tors and by the fact that messages
are not uniquely identified. For
instance analyzing t = a!m.b?m
on i = par(a!m, strict(a!m, b?m))
would give rise to 2 branches:
i′ = strict(a!m, b?m) (resp.
i′ = par(a!m, b?m)) with t′ =
b?m which ends with Out (resp.
Covered) because m is not
uniquely identified. This number
of branches can quickly explode
when par operators are stacked
which happens when the trace de-
scribes an execution where many
loop content instances overlap. An applicable solution is to treat message
data arguments, given that communication protocols provide unique ids e.g.
m(id1) 6= m(id2). In Fig.10-b, on the plot below, we magnified on traces 9, 34
& 61 which have a very short analysis time. We can surmise here that minimal
(perhaps no) loop overlap occurred as the derivatives are almost constants (es-
pecially for trace 61). In conclusion, performance highly depends on the model
and input trace, but treating data which specifies unique ids for messages would
generalize the best case scenario. In this case, the algorithm could be applied to
monitoring within the limits of an input frequency that is inferior to the time
required to analyze a trace of length 1.

6 Related work

For classical IL such as UML-SD or HMSC, many authors have proposed their
own takes on formal semantics (see the survey [21] for UML-SD).
Denotational Semantics. Most existing semantics based on term interpreta-
tions are given in a denotational style [27,14,3,17] and do not follow-up with
algorithmic tools. In [27], the authors propose a denotational semantics similar
to ours (Def.5) as far as the strict, alt and par operators are concerned. [14]
proposes a semantics that is a detailed version of the one from [27]. In [17] there
is a distinction (snd(s, r,m)|snd(s,m)|rcv(s, r,m)|rcv(r,m)) between basic ac-
tions whether or not the intended receiver or original sender is the environment.
Apart from that, and the absence of loops, the denotational semantics proposed
by [17] is similar to ours. In [3], an institutional approach, likened to that of [17]
is proposed. However it includes loops and deals with modalities associated to
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the neg and assert operators [23] by separating the semantics in sets of accepted
and refused traces. This issue of modality is also raised in [21] and [13] but it is
out of the scope of this paper.

Translations based approaches. Most other approaches rely on translations
that map concepts of the given IL into a target formal framework, most often
based on automata [11,2,28,19] or Petri nets [8,5,10]. Albeit those translations
allow reusing advantageously the target framework’s tools, relying on them to
capture semantics leads to reasoning on foreign concepts. In [11], UML-SDs
are translated into timed automata, which are then verified with the UPPAAL
tool [18]. The translation mechanisms only concern models with synchronous
communications. An observer automaton has to be designed so as to intercept
communications between automata, make them observable, and enter an error
state if other events are observed. In [2], each lifeline is translated into a timed
input output symbolic transition system (TIOSTS) and message passing relies
on some synchronous product. In order to cope with asynchronism, FIFO based
communication schema have been introduced to ensure the consistency of exe-
cutions on different lifelines. Also, dedicated variables have to be introduced to
keep track of branching choices specified by alt or loop operators. In [28], a sym-
bolic automaton is built from UML-SD specifications in the goal of analyzing
traces by means of valid, invalid or inconclusive verdicts. [19] focuses on how
to test Message Sequence Charts when the system is only partially observed.
A translation into a network of asynchronous concurrent automata allows to
define semantics through a product automaton as in [2]. In [8], UML-SD speci-
fications are translated into multivalued nets (M-nets). The translation is com-
positional, entry and exit places of the M-nets corresponding to subinteractions
being connected differently according to the parent combined fragment. However
this process is complicated by the tracking of actions that are completely un-
ordered w.r.t. one another. [8] also treats data in the form of variables, message
parameters and guards. In [5], the authors propose an approach to automatically
translate UML-SDs designed with the Papyrus tool [12] to Coloured Petri Nets
(CPNs) in a format compatible with CPNTools [16]. CPNs come with an exe-
cution semantics that is particularly adapted for the description and analysis of
distributed and concurrent systems. In [5], the translation revolves around a list
of 11 rules with different priorities and which are applied to translate different
concepts (lifelines, message occurrences, combined fragments, etc.) while iterat-
ing sequentially through the UML-SD’s elements. In [10] a set of UML-SDs are
translated into Extended Petri Nets. Input execution traces can then be checked
against the EPNs.

Operational approach. The literature contains few attempts at defining op-
erational semantics for ILs. In [26], the authors build formal expressions over a
process algebra signature. Starting from axioms such as ε ↓ (the empty process
ε terminates) and a a−→ ε (a being an atomic action), an expression describing
a MSC is build using rules such as (x a−→ x′) ∧ (y 6 a−→)⇒ (x∓ y a−→ x′). Such an
expression is then associated with a transition graph. The contribution in [26]
does not however deal with loop operator and it is quite different from ours as
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the proposed transformations operate on process-algebraic expressions and not
on syntactic terms. In contrast, the semantics proposed in [20] relies on syn-
tactic term transformations. Still, it also requires a communication medium as
it is defined as the output of a combination of two transitions systems: an ex-
ecution system which keeps track of communications, and a projection system
which selects the next action to execute and provide the resulting interaction.
As explained in [9], communication models keep track of emitted messages and
messages pending receptions. They can for instance take the form of a set of
dedicated buffers (e.g. FIFO). Our approach has the advantage of making such
communication models implicit.
Discussions. Despite interaction languages specifying no synchronisation mech-
anisms between lifelines, several approaches that aim to implement tools, impose
synchronisation points when entering and exiting combined operators and at de-
cision points (alt, opt, loop) [28,2,8,21] (although more recent works such as
[10,20] do not). Although translation-based approaches have the benefit of al-
lowing the use of the many existing analysis tools (UPPAAL [18], DIVERSITY
[15], CPNTools [16] etc.) we postulate that direct operational approaches such
as ours facilitate features such as animation and debugging, becoming for the
most part free-of-charge by-products of the analysis process.

7 Conclusion

In this paper we proposed an operational semantics for ILs, aimed at trace valid-
ity analysis. This semantic is built upon a formal syntax for interaction terms and
validated back-to-back w.r.t. a reference denotational semantics. Our semantics
is built on partial order relations induced on messages by the syntax. Those re-
lations allow the identification of immediately executable actions. Pruning tech-
niques then ensure a consistent semantics based on successive transformations of
the form i

act−−→ i′. On this principle, we have defined and implemented algorithms
to compute semantics and to analyze the validity of traces. Experiments were
successfully conducted in order to evaluate the correctness of each.

We intend to enrich our formalism: (1) by expanding trace analysis to a
distributed context, where a set of traces (multi-trace) may be analyzed concur-
rently on a subset of observed lifelines; (2) by investigating whether or not our
algorithmic treatments are fast enough to deal with traces on-the-fly so as to
adapt them to monitoring. (3) by extending our IL to include modality oper-
ators such as assert or negate. (4) by allowing the use of message arguments,
variables, clocks and constraints within models.

Additionally, it would be interesting to perform a comparison with translation-
based approaches. This may consist in a comparison of formal semantics and/or
in benchmarking implementations according to a certain performance metric.
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