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Abstract—High-performance many-core processors have com-
plex computing architectures with many design parameters
related to different levels (CPU macro/micro-architecture, in-
terconnect, memory, specific accelerators, etc.). Design Space
Exploration (DSE) is key to tackle the challenges related to
the design of such processors, especially in the early stages.
This work introduces A-DECA, a highly modular DSE approach
for automating the exploration of design parameters. A-DECA
combines simulators, models, and exploration strategies to derive
relevant objective estimations while preserving a reasonable
execution time. Thus, it provides a full methodology enabling
the exploration of the design space in an easy-to-use, automatic,
and effective way. A-DECA is evaluated in the context of
next-generation HPC processors with various applications. We
combine simulation tools and analytical formulations to assess
PPA (Performance, Power, and Area). Based on an efficient
implementation of a multi-objective genetic algorithm for the
exploration strategy, current results show a great reduction of
design space optimization by around 30% compared to the initial
population. A-DECA optimizes the objectives and automatically
returns a set of configurations with different characteristics
allowing the architect to choose the best design according to
the application context.

Index Terms—Automated Design Space Exploration, multi-
objective optimization, High Performance Computing.

I. INTRODUCTION

Nowadays, the growing worldwide demand for efficient
data processing is driving innovations in High-Performance
Computing (HPC). HPC systems are required to meet the
high computational needs required for data analysis, weather
forecasting, or scientific, economic applications for example.
These systems also need to be energy-efficient in order to
lower cooling requirements and overall power consumption.

Typically, these systems are very complex since they com-
prise several tens of thousands of parallel processors intercon-
nected with high-speed and low-latency links. Consequently,
designing these systems and their components is a challenging
process in which complex architectures with many design
parameters related to different levels (CPU macro/micro-
architecture, interconnect, memory, accelerators, etc.) need
to be chosen and finally tuned. In addition, heterogeneity
(various cores, accelerators) is a key element enabling energy-
efficiency and new technological perspectives such as chiplets
and 3D integration lead to an ever growing number of design
parameters. Consequently, processor designers are facing an

increasingly difficult challenge of ensuring they make at least
good choices among all these opportunities.

Therefore, design space exploration (DSE) is crucial to
enable various design options to be explored, especially in the
early stages of the design process. This early DSE is essential
since early design choices strongly influence the success or
failure of the resulting device. Moreover, automatic explo-
ration is paramount to push the performance and efficiency of
these systems with reduced effort and a fast time to results. In
this context, the development of decision tools for the design
of such processors is important but raises many challenges,
which makes it a very active research field [15].

The growing importance of Software (SW) in every system
and the fact that Hardware (HW) and SW need to be adapted
to each other to have an efficient system lead to an increasing
demand for exploration strategies taking into account several
parameters. It is especially true when designing heterogeneous
System-on-Chips based on accelerators (GPUs, eFPGAs, etc.)
or even processor extensions (rise of RISC-V CPUs). The main
purpose is to answer the so-called ”what if” questions concern-
ing design decisions and their impact on both functional and
extra-functional aspects, as explained in [11].

The process of system-level DSE is usually divided into two
parts [13]. The first one consists in evaluating a single design
point in the design space using analytical models as well as
simulation, usually called system-level design. The second
one is the search mechanism to browse the design space
systematically. System-level design methodologies typically
urge designers to start with modeling and simulating system
components and their interactions in the early design stages.
The target is to have an estimation of the performances and a
validation of the system. This first part is covered through the
development and improvement of various models and simula-
tion tools at different levels for improving the accuracy of the
evaluation while not degrading too much evaluation time. The
proposed work focuses on the second part and proposes a full
methodology to automate design space exploration called A-
DECA (Automated Design space Exploration for Computing
Architectures). It is a modular DSE approach for automating
the investigation of design parameters. A-DECA combines
several simulators, models, and exploration strategies to derive
relevant objective estimations and best configurations while
preserving a reasonable execution time. A-DECA is evaluated
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in the context of next-generation HPC processors, using both
CPU- and memory-bound applications. The main contributions
of this article include the following:

• a comprehensive flow for early stages DSE,
• an intuitive and effective way for automatic exploration,
• combination of different simulation tools and analytical

formulations to fully estimate PPA
• a modular easy-to-use and updatable approach.
The paper is structured as follows. Section II describes an

overview of existing DSE approaches, Section III presents
the proposed methodology to perform automatic exploration
followed by the implementation of the proposed framework in
Section IV. The numerical results are discussed in Section V.
Finally, Section V concludes and opens on future works.

II. RELATED WORK

Several approaches exist in the literature to accelerate the
DSE process. They mainly tackle two challenges: the explo-
ration (i.e. the algorithms) and the evaluation of the objectives.

Platune [10] is an exploration framework for the design
of SoCs. It simulates the system using application mapping
to capture performance and power metrics. Then, it explores
some parameters (e.g., processors, memories, interconnect
busses, peripherals) to derive the best configurations for these
two objectives. Since the simulation is cycle-accurate, the
evaluations are consistent; however, the timing is large, and
thus exploration is limited. The approach combines heuristics
and parameter inter-dependency models which might lead to
an exhaustive investigation, not adapted for very complex
architectures as we find currently.

The framework NASA [13] is a modular approach that
uses various interfaces to easily integrate different system-
level simulation tools and combinations of search strategies.
However, it does not combine simulation data outcomes to
address a broader set of metrics. It has been evaluated for
PowerPC exploration with vision application.

Sesame [7] targets heterogeneous embedded multimedia
systems. It focuses on multiprocessor mapping problems under
multiple objectives by modeling the application and architec-
ture using mathematical representations. The exploration prob-
lem is formulated as a nonlinear mixed integer programming
and solved with various optimization approaches. This work
targets more application mapping rather than optimization of
design parameters at early stages.

The MAGELLAN framework [14] was developed to explore
the design space of heterogeneous multi-core architectures us-
ing Machine Learning algorithms. This work highlights the po-
tential of Machine Learning algorithms to reduce exploration
time without relying on simulators to perform the evaluation
phase. Their algorithms aim to find the best configuration
for given area and power consumption targets. Hence two
objectives are modeled as constraints, which is not enough
for current design problems.

The ArchExplorer [6] framework is a website that serves as
an implementation platform for design space exploration. The
user can choose the simulator and upload it to the platform.

He can define the parameters on which the optimization is
based and the possible value ranges. The platform explores the
design space and then proceeds to the configuration for a set of
given applications. Then it simulates each configuration and
application. The authors present this framework as flexible.
However, the objectives are not specified, and exploration
techniques not detailed.

In MULTICUBE project [19], the author presents an au-
tomatic exploration framework for the design of multi-core
processors with Multicube-Scopefor performance estimation
while Multicube-Explorer implements the solution search. To
improve convergence speed, the authors propose adding a
surface response model to eliminate solutions rather than
executing simulations on several configurations

This approach is bound to one simulator that is not[A] easily
changed and thus is limited to the latter’s feedback while only
dealing with two objectives (performance and power).

Also, the work in [8] presents an iterative method based on
a meta-model for deriving objective values of various MPSoC
configurations from low-level simulations. It prevents expen-
sive multiple evaluations but provides less accurate results.

The articles [3], [4], [9] propose a new FADSE framework
based on genetic algorithms. This framework takes advantage
of a particularity of genetic algorithms to increase convergence
speed. As the population is never completely changed, some
configurations are evaluated several times. The results of the
simulations are saved in a database allowing the reuse of the
results without having to run a new simulation. Moreover, the
simulations of a population can be performed in parallel. This
study restricted evaluation from a single simulator. Even if
this one can change (contrary to other approaches), there is
no combination of multiple simulation outputs.

In [18], authors outline the issues involved in DSE, focusing
on simulation tools and the flow around them to be as generic
as possible and cover large evaluation needs. However, no
automatic exploration solutions with optimization algorithms
are provided.

In [1], the authors present Boom Explorer, an automatic
framework to explore micro-architecture designs for RISC-V
Berkeley Out-of-Order Machine (BOOM) to find a good trade-
off between power and performance. First, micro-architecture-
aware active learning (MicroAL) algorithms generate a diverse
and representative initial design set. Then, the Gaussian pro-
cess model with deep kernel learning functions (DKL-GP) is
built to characterize the design space. Moreover, correlated
multi-objective Bayesian optimization is leveraged to explore
Pareto-optimal designs. Even if the global strategy and vision
are effective, their results are within limited application in the
many-core context. In addition, various design choices have
been already fixed before the exploration.

In [22], the authors present an exploration methodology
based on multi-level HW/SW co-design. This exploration is
performed using three simulators (runtime trace, architecture,
and micro-architecture levels) to refine the exploration pa-
rameters. In this flow, the exploration is performed by hand,
especially regarding the different configurations, the simulator
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executions, and the exploitation of the results. Therefore, no
automatic optimization algorithm allows the generation of the
best configurations following the different simulations, which
may be time consuming.

As written in [11], there is a growing need for efficient and
salable DSE approach despite several challenges to be solved.

Thus, we aim here to leverage works in [9], [13], [22] to
tackle DSE of future many-core processors for HPC systems
with the proposed A-DECA framework. It is a fully automatic
approach that does not require the regular intervention of the
architect to fix some choices before the exploration and then
launch scripts for the exploration. It quickly adapts the various
possible configurations to assist the architect in choosing the
initial parameters as early as possible in the design process
while being fast to perform several iterations and test different
configurations rapidly. By combining analytical formulas with
several simulators to get the most out of their evolution in
evaluations, A-DECA provides good accuracy without neces-
sarily requiring high precision, especially at the beginning of
the flow. Next section details the proposed A-DECA flow.

III. OVERVIEW OF THE A-DECA DESIGN METHODOLOGY

Two main challenges have to be addressed in the process
of tuning architecture parameters for new complex high-
performance computing architectures. The first one is to enable
fast and precise automatic exploration of the design space and
the second one is to satisfy multiple and possibly conflicting
design metrics. Methodologies targeting one or two objectives
such as performance and power consumption are no longer
sufficient to meet the complexity of modern design flows.

The proposed A-DECA methodology has been developed to
automatically solve the problem of designing and optimizing
a complex computing architecture by improving multiple cri-
teria. This is done by taking into account coming from various
sources. Figure 1 presents the overall A-DECA methodology.
The main concept of A-DECA is clearly to separate the
problems and thus the flow, into different domains, each with
appropriate representations and tools to solve the domain’s
specific sub-problem. Therefore, A-DECA proposes three dif-
ferent functional blocks allowing to perform the exploration
in an automatic and optimized way. Each of these blocks 1)
translates one representation domain (e.g. problem description,
mathematical modeling, simulation modeling, etc.) into an-
other one and 2) controls the process (e.g. the tools) for solving
the particular sub-problem in the overall flow 3) generates
HW configurations. These blocks are in blue in Figure 1 and
detailed below.

The set of inputs of A-DECA is a template of the com-
putational architecture (e.g. the possible processing cores,
their various components, specific accelerators, etc.), the ar-
chitecture parameters, but also the objectives (e.g. maximize
performance, minimize power consumption and/or area, etc.)
and the constraints (e.g. memory size, interconnect, etc.).

The first block, called Modeling the HW problem allows
a translation between the possible input formats and a math-
ematical model representation to formulate the various con-

straints and objectives from a mathematical point of view.
This functional block thus provides a translation between
the internal way of representing the problem from the A-
DECA implementation point of view (obtained after parsing
the input files) and a mathematical representation adapted to
the processing by optimization and exploration algorithms.
It therefore separates the architectural vision of the problem
from the decision making problem. It enables the use of
mathematical algorithms adapted to the problem or different
parts of the problem.

The second functional block, called HW translator trans-
lates the outputs of the mathematical algorithms used for
the optimization into a HW representation of the problem,
automatically generating the specifications of the various con-
figurations of architectures for the targeted evaluation tools
(e.g. simulators). This HW representation allows us to deduce
the parameter files to configure the simulation, emulation, or
other tools allowing the evaluation. This block also allows
launching and/or controlling several tools simultaneously with
a single uniform representation (the decision representation
coming from the first block). It provides, on the one hand, the
independence of the mathematical modeling (adapted to the
optimization problem) from the evaluation tools (simulators,
etc.). On the other hand, it allows the simultaneous execution
of several tools (contrary to other state-of-the-art approaches).

The last block, called HW simulator & generator allows
to recover the results of the evaluations at the end of the
execution of the evaluation tools (simulations, etc.) and to
exploit them. Thus, this block makes it possible to combine the
results of the evaluation tools at different levels. It allows 1)
to drive the functional blocks of translations of the assessment
results of some tools to inject them into other tools with multi-
level management, 2) to recover the data of the assessment
tools to combine them to get back more complex/adapted
metrics for exploration. This third block also allows the
translation of these evaluation results into a compatible format
for optimization algorithm(s) to close the exploration loop.

One key feature of the proposed approach is modularity and
genericity. Indeed, the exploration is unrelated to a particular
simulator because it is not restricted to a single evaluation
tool. Thus, it is fully modular, generic, and therefore not
limited to a restricted set of parameters due to the simulator.
On the one hand, the three blocks can be integrated into a
classical SoC design flow. On the other hand, the methodology
is intended to optimize the design and thus allow engineers to
quickly create configurations, evaluate them and explore the
different combinations. The next section introduces the first
implementation of the A-DECA methodology.

IV. FRAMEWORK IMPLEMENTATION

A. Basic notions and definitions

Multi-objective optimization methods are usually applied
to get the best solution to a well-defined problem. They are
considered as a mathematical process looking for a set of
alternatives representing the Pareto optimal solution. Pareto
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optimality is a cornerstone concept in the field of multi-
objective optimization. We give here some basic notions.

A multi-objective combinatorial optimization problem can
be mathematically defined as follows:

Optimize F (x) = (f1(x), f2(x), ..., fn(x)) with x ∈
D, where (n ≥ 2) is the number of objectives , x =
(x1, x2, ..., xk) is the vector representing the decision vari-
ables, D represents the set of feasible solutions and each of the
functions fi(x) is to be optimized (minimized or maximized).
In contrast to single-objective optimization, the solution of a
multi-objective problem is a set of non-dominated solutions,
known as the set of Pareto Optimal solutions.

A feasible solution x∗ ∈ D is Pareto optimal (non-
dominated) if and only if there is no solution x ∈ D such
that x dominates x∗. A solution y = (y1, y2, ..., yk) is said
to dominate a solution z = (z1, z2, ..., zk), in the case of
objective minimization, if ∀i ∈ [1...n] , fi(y) ≤ fi(z) and
∃i ∈ [1...n] such that fi(y) < fi(z).

Hence, any solution of the Pareto set can be considered
optimal since no improvement can be made on an objective
without degrading the relative value of another objective.
These solutions form the Pareto front, also called the set of
non dominated solutions.

In the case of a bi-objective problem (two objectives to
be minimized, for example), the efficient solutions can be
identified visually in the as represented in Figure 2.

The DSE problem to determine the best many-core pro-
cessors parameters is a multi-objective optimization prob-

lem. Let’s consider a system with several design parameters
(D1, D2, . . . , Dn) under the designer’s control. The particular
values of the parameters result in specific values of criterion
functions (f1, f2, . . . , fn), which are functions of the inputs
and measure the system performance. Each choice of parame-
ter values yields a feasible solution (system design that meets
the user constraints) and has a value in the objective space.

We aim to find the best design parameter values (many-
core architectures configurations) to optimize all imposed
objectives. We studied here the three objective functions:
timing performances, energy, and area. Next section details
how we compute these evaluations.

B. Objectives evaluation
The proposed approach A-DECA is evaluated using a DSE

problem focusing on complex memory hierarchy regarding
classical PPA key performance indicators. We compute them
here through the three objectives: timing performance, power
consumption, and chip area. We combine different simulators
and analytical models to derive these objectives. We detailed
here the models used with analytical formulas as well as
simulator tools.

Timing performance of a system configuration is evaluated
by simulating the execution of an application on this configura-
tion. Indeed, an analytical formulation will not reflect the real
execution and thus is unsuitable. We choose the VPSim Virtual
Prototyping Simulator [5] for this purpose. VPSim ensures fast
simulation speed while keeping models accurate. In addition,
it provides many performance counters parameters related to
memory hierarchy, NoC, peripherals, and SW [12]. Thus, a
large set of design parameters could be explored to design
efficient many-core architectures.

Evaluation of Power consumption concentrates on the
caches and is noted Pcache. We combine here CACTI [21]
simulation results to estimate the cache power per access
noted PRA for read and PWA for write depending on cache
parameters found during the exploration phase. VPSim counts
the number of cache access noted NbRA or NbWA for
each cache level for the application. Consequently, different
information can be combined to calculate power as follows :
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References [16] [16] Wikichip ExtrapolationARM A57
Size of technology (nm) 65 32 16 1
Size of the chip (nm2) 18,5 5 1,66 0,013

TABLE I: Chip Area estimation.

Pcache =
∑

L1D,L2,L3 NbRAK
×PRAK

+NbWAK
×PWAK

Note that we do not consider here static power consumption
that should add a fixed parameter to the previous formulation.
Since we will have to minimize this value adding a constant
is no more needed.

We can also evaluate the energy (denoted here by Ecache)
that reflects the execution of an application over a given time.
This value must also be minimized to limit, for example,
the environmental impact of processing an application on the
chosen design, Ecache = Pcache × TimeExecution.

To compute chip Area, we evaluate the area of the caches
and use the estimation of cache dimensions given by CACTI
noted Acache. Next, the cache’s area is added to the estimated
value of the core area, evaluated by a model with a factor size
in nm noted F and a theoretical area for a 1nm core noted
ThAcore. Peripherals and NoC areas are not modeled in this
example.

Thus assume here that the area equals Area = Areacores+
Areacache. The core area is computed as follows:

Acores = Nbcores × ThAcore1nm × F sizenm +Acache.
The area of a cache is directly extracted from CACTI

simulator. Thus the final area is equal to :
Area = Nbcores × 0, 013× 3, 4sizenm +Acache

C. Multi-objective exploration based on Genetic Algorithm

The Genetic Algorithm (GA) is a bio-inspired optimization
algorithm. It is widely used for multi-objective optimization
exploration. It has been studied in the domain of system-level
design [17], and has been demonstrated to yield good results.

The principle of the GA is based on individuals’ reproduc-
tion and natural selection. Figure 3 shows the custom diagram
of a GA. The first step is to create an initial population, i.e.
a set of individuals (in our case, design configuration). The
explored solutions must be feasible, so a verification step is
performed (as represented in red). Afterward, the candidates
must be evaluated and then selected. This selection is one
of the key points of convergence in the algorithm. We will
carry out crossings on this new reduced population to obtain
children individuals (new configurations). Some children will
be mutated in one or more of their genes before being checked
again and integrated into the population.

In our case, an individual (configuration) is represented by
a vector: this allows a seamless manipulation of individuals
and enables the possibility to change or add parameters easily.
Thus, any design parameters can be represented to reflect
architectural choices.

V. NUMERICAL RESULTS AND ANALYSIS

The A-DECA framework was evaluated using a DSE prob-
lem focusing on memory hierarchy regarding the three objec-

Fig. 3: Costumed multi-objective Genetic Algorithm.

tives: timing performance, energy consumption and area. The
studied many-core systems has up to 16 ARMV 8 processors.
The set of explored parameters are presented in Table II. In
addition, various HPC applications has been used as described
in the next section.

Parameters Design space
Number of cores 1, 2, 4, 8, 16

Size of L1D (data) cache kB 4, 8, 16, 32, 64
Size of L1I (instruction) cache kB 4, 8, 16, 32, 64

Size of L2 cache kB 128, 256, 512, 1024
Associativity L1 cache 1, 2, 4
Associativity L2 cache 2, 4, 8

TABLE II: Description of design space parameters.

During our experiments, we used three different HPC ap-
plications. The first one is STREAM which is an application
with the primary objective of stressing the memory, and the
other two are Fmm and Radiosity from the SPLASH suite.

STREAM aims at measuring the bandwidth of memories, by
performing different types of operations such as copies, sums,
averages and compositions of multiplication and sums [20].
The Fmm application of the SPLASH suite which is widely
used in the HPC domain. It handles a problem of size 65, 536
data called particles [2]. The Radiosity application computes
the equilibrium distribution of light. This is a data-intensive
and also time-consuming benchmark.

The A-DECA framework was built to be flexible regarding
optimization. Thus, it is possible to choose the number of
objectives to optimize and the number of parameters to adjust.
In this section, we present the results obtained by optimizing
first two objectives: energy consumption and execution time
and next with three objectives by adding the area which have
to be minimized. We also give GA best parameters.

Indeed, the efficiency of GA relies on the right choice of
parameters, such as the number of individuals in the initial
population and the number of generations, the proportion of
good individuals to keep during the selection, the probability
of maintaining an individual among those remaining (the less
good ones) and finally the probability that an individual mu-
tates. All these parameters may influence the convergence of
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the algorithm. Besides, since the initial population is generated
randomly in our case, we have also studied the impact of
its distribution. Thus after performing several tests, the GA
parameters used here are described in Table III. However, the
size of the initial population and the number of generations
has been adapted (through intensification and diversification)
depending on exploration needs.

Proportion of good individuals retained 0.4
Probability of keeping a less good individual 0.2

Probability of mutate 0.1
Number of generations 10,20,50
Number of individuals 30,50,100

TABLE III: Description of the Genetic Algorithm parameters.

Figure 4 illustrates the results obtained with A-DECA for
a population of 50 individuals and 10 generations. The initial
population is in blue, and the Pareto front is in red. This figure
highlights the advantages of the framework. Indeed, without
this automatic exploration, the designer would need to explore
the 50 configurations in blue to estimate their fitness. A-DECA
reduces the design space to interesting solutions to explore.
Only two solutions remain for the designer to consider, which
saves time spent on initial analysis.

Config. Nb Size Size Asso. Energy Time
of L1.D L2 L1 /L2 (nJ) (ns)

cores /L1.I (kB)
(kB)

1 8 16 1Mo 1 / 2 5503365 61700921
2 8 16 1Mo 1 / 2 4834036 69876511

TABLE IV: Description of the configurations for bi-objectives
consumption & timing exploration, with an initial population
of 50 individuals, and 10 generations.

Table IV gives the configurations obtained for energy con-
sumption and timing optimization, with an initial population
of 50 individuals, and 10 generations. Columns 1 to 6 describe
the configurations selected by the framework, and the last
columns contain the objective values for each configuration.

Figure 4b shows the bi-objective exploration results for an
initial population of 50 configurations and 20 generations.
The black dots represent the initial population, the gray dots
represent the generations. For example, the darker gray points
represent the 4th generation of individuals, the lighter ones
represent the last generation. In red, the points belonging to
the Pareto front appear, which can be seen in the figure 4c
with the three configurations. We can observe that generation
after generation; the population converges and minimizes
objectives. The three objectives are minimized around 25%
or 30% compared to the initial population.

Moreover, the resulting configurations appear interesting.
Indeed, thanks to this result, the architect will be able to easily
make a decision according to the application context or the
given constraints. For instance, in this case, the reasonable
choice seems to be the configuration 2 with 16 cores, 8 KB
of L1 instruction and data cache, 1 MB of L2 cache, an
associativity of 2 for the L1 cache and 4 for the L2 cache.

Indeed, the gain in energy compared to the configuration 1
is noticeable for a very slight time increase and similarly, the
time gain over the configuration 3 is significant.

These figures allow us to conclude on the interest of this
approach and the convergence of this one. On the average,
the energy consumption of the initial population is 7621034
nJ against 5583864 nJ for the Pareto front. The gain is thus
26%. Similarly, the average temporal performance of the initial
population is 154444960 ns against 71704660 ns for the Pareto
front. This is a gain of 53%. Thus, these graphs clearly
show the interest of the framework and its ability to optimize
the objectives. Moreover, the proposed configurations seem
interesting. Indeed, thanks to this result, the architect will be
able to easily make a decision according to the application
context or the given constraints. For example, in this case,
the reasonable choice seems to be the orange configuration,
16 cores, 8 KB of L1 instruction and data cache, 1 MB
of L2 cache, an associativity of 2 for the L1 cache and 4
for the L2 cache. In fact, the gain in energy consumption
compared to the blue configuration is notable for a very slight
increase in time and similarly, the time gain compared to the
green configuration is significant. To complete this part on the
bi-objective exploration, the configurations which belong to
the Pareto front for two different executions under the same
conditions (same initial population and same configuration of
the framework parameters) are reported in Table V, along with
their corresponding objectives.

Nb Size Size Size Asso. Energy Time
of L1.D L1.I L2 L1/L2 (nJ) (ns)

cores (ko) (ko) (ko)
First execution

16 8 8 1Mo 2 / 4 5185089 54936198
16 4 8 1Mo 1 / 4 4031200 71313079

Second execution
8 16 8 1Mo 2 / 4 6574809 52300955

16 8 8 1Mo 2 / 4 5185089 54936198
16 8 8 1Mo 1 / 4 4991696 107876829

TABLE V: Solutions achieved for a bi-objective exploration:
consumption & time, for the same configuration.

Thus, for two executions of the GA with the same parame-
ters and the same initial population, the solutions obtained are
different due to the random nature of the crossovers. Indeed,
the choice of the individuals to cross is random, but the way of
crossing is not, and this is what leads to that the configurations
are quite close to each other, while being various.

The flexibility of the framework enabled us to easily add
a third objective to optimize. Thus, we chose the area and
present here optimization results with three objectives: timing
performance, power consumption which is converted into
energy and area.

Table VI shows configurations obtained with A-DECA for
a multi-objective exploration, with different configurations
and populations. Columns 1 to 6 describe the configurations
selected by the framework, and the last columns contain the
objective values for each configuration. For the first set, the
first execution, it is interesting to notice that the single-core
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Fig. 4: Exploration result for bi-objectives optimisation: Energy consumption and timing.

configurations consume less, but are also less fast. The fastest
configurations are those with 4 cores, there is no other solution
with more cores proposed here by the framework. Moreover,
for the same L1 cache configuration and the same number
of cores, it seems more interesting in terms of consumption
to choose an L2 cache of 1 MB rather than 512 KB and an
associativity of the L1 and L2 caches of 2 and 4 respectively
instead of 1 and 8.

For the second set, we perform an optimization on the same
initial population with a different framework configuration.
Here again, the solutions highlight different points.

Considering only consumption and time, the most interest-
ing configurations are those with many cores and a large L2
cache. However, these are also the most expensive configura-
tions in terms of area. Therefore, 4 core configurations with
256 KB or 1 MB of L2 cache, 8 KB of L1.D cache, and
4 KB of L1.I cache seem better if we want to minimize
the set of objectives without favoring one. This is a benefit
of this framework, which gives a Pareto front as an output.
It allows the architect to decide which configuration among
those proposed is the most suitable according to the context.
Notice that in this part, a configuration with 16 cores appears
in the Pareto front. This can be due to random choices or
a mutation making new solutions appear. The third set does
not bring any additional information. However, it is possible to
compare the results with those of the first set. The modification
of initial population allowed the algorithm to explore other
configurations with higher associativity values of 4 and 8 or
4 and 4. The consumption of the configurations is globally
higher than for the first population. Finally, Figure 5 illustrates
Configuration 1 with 100 individuals and 20 generations .

Regarding A-DECA execution time, our process is fast since
a database is created and consulted to minimize the number
of simulations launched. Each time a new configuration is
generated, the database is updated with the values of the
three objective functions to avoid unnecessary simulations.
This mechanism allows us to speed up the exploration. In
addition, a good compromise between the intensification and
diversification operations of the search (the size of the initial
population and the generation name) is implemented.

Nb Size Size Size Asso. Energy Area Time
of L1.D L1.I L2 L1/L2 (nJ) (mm²) (ns)

cores (ko) (ko) (ko)
3 objectives, configuration 1 population 1

4 8 4 1Mo 2 / 4 7503721 32.07 101671585
2 32 16 1Mo 2 / 4 7541173 21.38 148245725
2 32 16 512 1 / 8 7936920 20.07 149850398
1 4 8 1Mo 2 / 4 7107366 15.94 223392147
1 4 8 512 1 / 8 7230306 15.28 223942955

3 objectives, configuration 2 population 1
16 8 8 1Mo 2 / 4 5324934 96.69 70470207
4 8 4 256 1 / 4 6453200 28.07 108118854
2 32 8 256 1 / 4 6738560 19.37 149832524
2 32 8 128 4 / 2 7179795 19.16 146628182
4 8 4 1Mo 2 / 4 7503721 32.07 101671585

16 8 8 256 1 / 4 8077873 80.68 87641542
4 8 4 128 4 / 8 8204671 28.02 103547531
4 8 4 1Mo 4 / 2 8407218 32.03 97911504

3 objectives, configuration 1 population 2
4 64 8 1Mo 4 / 8 10446521 32.12 99850234
4 64 8 256 4 / 4 9397644 28.68 106946821
1 32 8 1Mo 4 / 8 8570587 15.87 223172226
1 8 4 1Mo 4 / 8 8339735 15.81 223238938
1 32 8 256 4 / 4 7574778 15.01 224298406

TABLE VI: A-DECA solutions for a multi-objective explo-
ration, with different configurations & populations.

As an example, for the STREAM application design explo-
rations the average time is 2.25 min while it is 30 min for the
Radiosity.

VI. CONCLUSION AND FUTURE WORKS

Design Space Exploration (DSE) is key to tackle the chal-
lenges related to the design of complex HPC processors,
especially in the early stages. This work introduces A-DECA
(Automated Design space Exploration for Computing Archi-
tectures), a modular approach for automating the exploration
of design parameters. A-DECA combines several simulators,
models, and exploration strategies to derive relevant objective
estimations while preserving a reasonable execution time. It
can quickly adapt to different possible architectural needs to
assist in the initial choices as early as possible in the design
process. Thanks to its fast execution, the designer can quickly
perform several iterations and test many configurations. More-
over, it provides relevant feedback to evaluate tendencies
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Fig. 5: Numerical Results for three objectives 100 individuals and 20 generations.

between the different designs explored (without necessarily
requiring a high level of precision since it is at the beginning
of the flow).

We implemented a multi-objective Genetic Algorithm using
classical HPC applications to explore many-core architectures
concentrating on the number of cores and memory hierarchy
tuning parameters. The evaluation relies on combinations
of simulators (VPSim and CACTI) and models to compute
the objectives (timing performance, energy consumption, and
area). We use an evaluation database to increase the speed of
our algorithm.A-DECA optimizes the objectives and returns
a set of configurations with different characteristics allowing
the architect to choose the best design according to the
application context. In future works, we plan to propose other
optimization strategies, refine objective function evaluations,
use more accurate simulators to explore the accuracy versus
speed tradeoff, and perform tests on larger architectural design
parameters and heterogeneous cores.
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