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A B S T R A C T
Fretting motion between two contacting solids can, under gross slip conditions, induce wear. A finite
element model and a simulation strategy aiming at predicting wear under fretting motion are presented.
The numerical results obtained are compared with experimental data from the literature. The proposed
simulation process is particularly suitable for computing high numbers of cycles. To this end, a
cycle jump technique is used, and different integration schemes are investigated. Results show that
instabilities may arise when an explicit scheme is used, which limits the size of the cycle jump. On the
other hand, using an implicit scheme involves a trade-off between the possibility of considering a larger
cycle jump and the number of iterations required for convergence. It is shown that the more cycles
we perform, the faster the implicit scheme converges. Therefore, the implicit scheme is especially
appropriate for high-cycle computations. Moreover, an adaptive cycle jump is used with the implicit
scheme, enabling to accelerate the computations for high numbers of cycles.

1. Introduction
Wear is a progressive surface degradation process that

results in material removal. It occurs in numerous engi-
neering systems as a result of mechanical and chemical
solicitations and can significantly reduce the lifetime of in-
dustrial components. Among the various mechanisms likely
to generate wear, fretting refers to small amplitude cyclic
tangential motions between two contacting solids. Different
fretting regimes can be identified, each leading to different
damage modes [1]. For the lowest displacement amplitudes,
the partial slip regime defines a situation in which an inner
stick zone in the contact area never slides. For higher dis-
placement amplitudes, the gross slip regime is characterized
by a contact area with no stick zone. Fretting maps relate
fretting regimes to damage modes [2]. Partial slip generally
leads to crack nucleation and propagation, whereas wear
typically prevails under gross slip conditions.

Fretting is inherent to a variety of industrial mechanisms,
including some components of nuclear reactors [3]. In pres-
surized water nuclear reactors (PWR), the guide cards of
the rod cluster control assemblies are prone to wear as a
consequence of repeated contacts with the control rods [4].
This case illustrates a situation of wear occurring under
fretting motion between stainless steel (SS) components. In
the scope of this study, the focus is on wear occurring under
gross slip fretting conditions between stainless steel solids,
meant to represent the contact between control rods and
guide cards.

Due to the diversity of physical and chemical processes
involved, wear is a complicated phenomenon to model [5].
One of the first attempt to propose a unified wear law was
made by Archard in 1953, and relates the wear volume to
the normal force and the sliding distance [6]. Later, studies
by Fouvry et al. [7] then Huq and Celis [8] showed that an

energetic wear model correlating wear to the energy dissi-
pated by friction was more reliable, in particular when the
friction coefficient is not constant. More recent works outline
the effect of other mechanisms on fretting wear rate. Ac-
cording to Archard’s model, wear rate is related to particles
detachment from the surfaces and is assumed to be constant
throughout the evolution of the surfaces shapes. Zhu et al.
[9] point out that in case of non-conforming surfaces, the
evolution of the wear scar size has an effect on wear rate due
to the more difficult ejection of debris out of the contact.
They derive a modified relation between wear volume and
dissipated energy that is found to be more reliable when
debris ejection happens to be the rate-determining process.
In addition, Baydoun et al. [10] consider the effect of oxygen
transport into the contact interface and develop an advection-
dispersion-reaction model. Based on this approach, they
differentiate locally adhesive wear from abrasive wear by
considering the partial pressure of di-oxygen in the contact.
These two recent advances were brought together in 2021
in an article by Shipway et al. [11]. Depending on the rate-
determining process, they argue that wear rate decreases
with increasing contact width.

Following the initial work by Johansson in 1994, differ-
ent studies proposed numerical frameworks for predicting
wear [12]. Most rely on the finite element method to compute
the incremental evolution of wear, based either on Archard’s
law or on the energetic wear model, and represent wear by
nodal displacements [13, 14, 15, 16, 17, 18]. They dealt
with the need to compute very high numbers of time steps
by using an acceleration factor [14]. In case of a cyclic
loading, it is equivalent to the cycle jump technique which
aims at computing wear on a limited number of cycles by
extrapolating the results from a single cycle over the next
cycles. It requires to introduce an acceleration factor that
defines the jump between two consecutive computed cycles.
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The acceleration factor can be supposed either constant or
variable [15]. Moreover, although most numerical models
are two-dimensional and suppose an elastic material be-
havior, three-dimensional models have also been proposed
[16] as well as the consideration of an elastoplastic mate-
rial behavior [19, 20]. Yang and Green [21] compute wear
profiles based on Archard’s law as a consequence of fret-
ting loading considering an elastic-perfectly plastic material
behavior, but their work only relies on the computation
of a few cycles and do not account for the evolution of
contact geometry. More recent studies include other features
such as the representation of third body in the interface
[20, 22] or a porous coating [23]. The advection-dispersion-
reaction model proposed by Baydoun et al. [10] has also
been implemented in a finite element analysis of fretting
wear [24]. Some authors also used these numerical models
to study the competition between wear and crack nucleation
and propagation under fretting motion [25].

In this paper, a numerical framework based on the finite
element method is proposed to compute high-cycles fretting
wear. The results will be compared to experimental data
obtained by Marc [26] on a AISI 316L SS/AISI 304L
SS cylinder/plane contact. The main difficulty lies in the
need to simulate a high number of cycles at a low con-
tact pressure. To this end, a cycle jump technique is used.
As related in previous studies [15, 17], this can lead to
unexpected fluctuations in the computed surface pressure
when the acceleration factor is high. In order to significantly
accelerate the computation without deteriorating the surface
smoothness, the use of a backward Euler implicit scheme is
proposed in this work. The computation strategy is similar to
existing methods used for fatigue simulations [27]. Besides
the implicit scheme, an original method using an adaptive
cycle jump is proposed.

The experimental setup and results are presented in Sec-
tion 2, while Section 3 describes the finite element model.
The wear simulation process is discussed in Section 4 with
the presentation of the cycle jump method and the explicit
and implicit integration schemes. Finally, the results ob-
tained are compiled and discussed in Section 5.

2. Experimental data and wear model
2.1. Experimental data

Experimental data summarized hereafter were obtained
by Marc et al. [28, 29, 26]. Fretting wear tests were carried
out on an unlubricated cylinder/plane contact at room tem-
perature (Figure 1). The cylinder is made of nitrided AISI
316L stainless steel, while the plane is made of AISI 304L
stainless steel. The cylinder has a length 𝐿0 = 10 mm and
a radius 𝑅 = 4.85 mm. A constant normal load and an
oscillating tangential displacement at frequency 𝑓 = 5 Hz
are imposed. Several tests are run, varying the normal load 𝑃
between 2 N/mm and 5 N/mm, the displacement amplitude
𝛿 between 40 µm and 160 µm, and the number of fretting
cycles between 25,000 and 1,500,000.

Dead mass

Force sensor
304L plane

Laser sensor
316L cylinderElectromagnetic shaker

Figure 1: Experimental setup for the fretting wear tests [26].

The tangential force 𝐹𝑇 and the horizontal displacement
𝛿 are recorded through the tests. The fretting log repre-
senting the evolution of the tangential force with respect
to the displacement over the cycles is depicted in Figure
2 for the test at 𝑃 = 3 N/mm, 𝛿 = 80 µm for 100,000
cycles. The fretting log is averaged into a mean fretting loop,
whose shape indicates that the test is run under gross slip
conditions. The value of the tangential force also yields the
macroscopic Coulomb’s friction coefficient 𝜇 = 0.9.

Cycles

𝛿 (µm)

𝐹 𝑇
(N

)

Figure 2: Fretting log for the wear test at 𝑃 = 30 N, 𝛿 = 80 µm
for 100,000 cycles [26].

After the tests, a first observation of the wear scars is
made with Scanning Electron Microscopy (SEM, Figure 3).
The samples show bilateral wear on both the cylinder and
the plane surfaces. A morphological description of the wear
scars is given using laser interferometry (Figure 4). The
3D wear scars are averaged along the cylinder axis to get
equivalent 2D wear profiles (Figure 5). For every test, the
cylinder displays a U-shaped wear profile, while the plane
shows a W to U shape transition at displacement amplitude
around 𝛿 = 100 µm: for displacement amplitudes lower than
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𝛿 = 100 µm the plane has a W-shaped profile (Figure 5 at
𝛿 = 80 µm), and for higher amplitudes it has a U shape.

Figure 3: SEM view of the worn plane surface [26].

Complementary investigations with Energy-Dispersive
X-ray spectroscopy (EDX) inform about the chemical com-
position of the scars. They show that in case of a W-shaped
scar, the cluster at the center of the scar is composed of
oxides, leading to the conclusion that this pile is made of
wear debris, despite the gross slip conditions. Marc also
mentions that the beads on the edges of the W-shaped wear
profile of the plane result from plastic deformations.
2.2. Wear model

The wear law used in this work relates wear to frictional
dissipated energy. Several studies established that a linear
relationship between the worn volume 𝑉w and the energy
dissipated by friction 𝐸d can be observed for both uni- or
bidirectional motion [7, 8]. This leads to formulate the Equa-
tion (1) in which 𝛼 is the wear coefficient of the energetic
wear law:

𝑉w = 𝛼𝐸d. (1)
In case of a constant coefficient of friction 𝜇, it is analogous
to the widely used Archard’s model. The wear equation
used in the present study is a local version of the energetic
wear law which was formulated by Fouvry et al. [30]. It is
expressed in Equation (2) and relates the wear depth ℎ at
some point 𝑥 of the surface to the dissipated energy density
per unit area 𝑒d at that point:

ℎ(𝑥) = 𝛼𝑒d(𝑥). (2)
It should be noted that the use of Archard’s law or,

equivalently, energetic wear law, has recently been ques-
tioned especially by Zhu and Shipway [31]. They argue that
as wear evolves, debris ejection can become more difficult
due to the increase in the contact dimensions. Thus, debris
ejection may become the wear rate-determining process
instead of debris formation, and in that case the wear rate
decreases. Accounting for that effect, they propose a modi-
fied relation between wear volume and dissipated energy for

Table 1
Wear coefficient values for the 316L SS cylinder and the 304L
SS plane [26].

𝛼cyl (mm3/mJ) 𝛼pla (mm3/mJ)
2.3241 × 10−8 3.1383 × 10−8

cylinder/plane contacts:
𝑉w = 𝛼𝐸0.75

d . (3)
In the present work however, wear evolution is considered to
be following the classical energetic law given in Equation 1.
Indeed, the experimental results obtained by Marc [26] for
fretting wear tests for different normal forces, displacement
amplitudes or numbers of cycles show a linear relationship
between the worn volume and the cumulative dissipated en-
ergy. This leads to the assumption that in this case, debris are
readily ejected out of the contact and that debris formation is
the mechanism that governs wear rate. Based on their data,
Marc et al. then determine the wear coefficient 𝛼 for both the
316L cylinder and the 304L plane (Table 1).

3. Finite element model
A numerical framework is developed in order to predict

wear kinetics under fretting conditions. Computations are
performed using the finite element code CAST3M [32]. The
results obtained are then compared with the experimental
data presented previously.

In order to represent the case study of Marc, a two-
dimensional plane strain finite element model is defined
using 4-nodes bilinear elements. The model represents a
cylinder in contact with a plane (Figure 6). In the vicinity
of the contact zone, the element size is 6 µm. As in the
experimental tests, the cylinder radius is 𝑅 = 4.85 mm. The
material behavior is considered as linear elastic, with the
same Young’s modulus and Poisson’s ratio for both solids
(𝐸 = 200 GPa and 𝜈 = 0.3).

A zero-displacement condition is imposed on the bot-
tom and side lines of the plane, and the equality of the
vertical displacement of all the cylinder top line nodes is
enforced (thus preventing rigid body rotations). Moreover,
a uniformly distributed normal pressure is applied on top of
the cylinder to account for the normal load 𝑃 = 3 N/mm,
and a cyclic triangular horizontal displacement is imposed
on the cylinder with an amplitude 𝛿 = 80 µm. Each fretting
cycle is divided into 64 time steps.

Enforcing the contact conditions at the interface is
not trivial and several methods exist. Here, frictional con-
tact conditions are defined using the Lagrange multipliers
method and a node-to-segment formulation [33]. The con-
tact surface of the cylinder is defined as the impactor surface
while the top surface of the plane is defined as the target
surface.

Wear is computed at the end of each fretting cycle based
on the accumulated dissipated energy over the cycle. A nodal
displacement is imposed accordingly at the end of each cycle
following a procedure described in Section 4.
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Figure 4: Wear scars on the cylinder (top) and the plane (bottom) obtained by interferometry for the wear test at 𝑃 = 30 N,
𝛿 = 80 µm for 100,000 cycles, and averaged 2D equivalent wear profiles [26].
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Figure 5: Equivalent wear profiles on the cylinder and the plane
for the test at 𝑃 = 30 N, 𝛿 = 80 µm for 100,000 cycles [26].
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Figure 6: 2D finite element mesh of the cylinder/plane contact
problem.

4. Simulation strategies
The objective of the simulation is to evaluate a func-

tion ℎ(𝑥, 𝑛) representing the wear depth at each point 𝑥
in [−𝐿∕2, 𝐿∕2] of the contacting surfaces for each fretting
cycle 𝑛 in [0, 𝑁cyc], 𝐿 being the horizontal dimension of the
model and 𝑁cyc the total number of fretting cycles.

Here, the variable 𝑛 is supposed to be a real number and
plays the role of a pseudo time variable. In this representa-
tion, a fretting cycle is set to be an elementary pseudo time
step. In other words, the problem can be described as a multi
time scales problem, with the short time scale referring to
what happens within a fretting cycle, whereas the long time
scale is driven by the cycle number variable 𝑛 [34]. This
process is represented in Figure 7. First, the computation
of the wear profile increment over a cycle is presented in
Section 4.1, describing the short time scale. Then, Section
4.2 describes the cycle jump method used to manage the long
time scale.

𝑡

𝑛

𝑡𝑗

ℎ̇𝑘 ℎ̇𝑘+1

𝑛𝑘 𝑛𝑘+1 = 𝑛𝑘 + Δ𝑛
ℎ𝑘 ℎ𝑘+1 Δ𝑛ℎ̇

Figure 7: Representation of the double time scale process

4.1. Computation of the wear kinetics: short time
scale description

The wear simulation routine consists in updating the
surface geometries at the end of each fretting cycle to ac-
count for material loss. Wear is represented through a nodal
displacement technique. The computed wear profile is ap-
plied to the mesh by moving the surface nodes, and the bulk
nodes are consequently moved in order to prevent element
distortion, as done for example by Kim et al. [16]. The third
body is not represented.

At each time step of a cycle 𝑛, the non-linear frictional
contact problem is solved yielding the nodal tangential reac-
tion force per unit surface 𝜆t and the nodal sliding distance 𝑑.
At each node 𝑥, the dissipated energy density over the time
step 𝑗 is then given by:

𝑒d,𝑗(𝑥, 𝑛) = 𝜆t,𝑗(𝑥, 𝑛)𝑑𝑗(𝑥, 𝑛) (4)
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and the sum over all the time steps of a fretting cycle yields
the accumulated dissipated energy density over that fretting
cycle:

𝑒d(𝑥, 𝑛) =
∑

𝑗
𝑒d,𝑗(𝑥, 𝑛). (5)

The nodal wear depth increment over the cycle 𝑛 is denoted
ℎ̇ and is referred to as the wear kinetics, namely the amount
of wear that is locally generated per fretting cycle. It is
expressed in Equation (6) as the derivative of the wear depth
ℎ with respect to the fretting cycle 𝑛:

ℎ̇(𝑥, 𝑛) = 𝜕ℎ
𝜕𝑛

(𝑥, 𝑛). (6)

According to the wear law (2) defined in Section 2.2, it is
obtained by multiplying the dissipated energy density profile
by the wear coefficient 𝛼:

ℎ̇(𝑥, 𝑛) = 𝛼𝑒d(𝑥, 𝑛) (7)
In the following, the node 𝑥 will be omitted in the expres-
sions for the sake of notation simplicity.
4.2. Cycle jump: long time scale description

In order to reduce the computational cost, a cycle jump
technique is used. For this purpose, an acceleration factor
Δ𝑛 is defined as the step between two consecutive computed
fretting cycles:

Δ𝑛 = 𝑛𝑘+1 − 𝑛𝑘 (8)
with 𝑘 in {1, 2,… , 𝐾}, leading to the effective computation
of only 𝐾 cycles. At first, the acceleration factor is set to be
constant. Then, an adaptive cycle jump process is defined
with a variable acceleration factor (see Section 4.4). In that
case, the acceleration factor after cycle 𝑛𝑘 is denoted Δ𝑛𝑘.

Consequently, the wear profile will be computed itera-
tively. An initial wear state ℎ0 is defined, typically as ℎ0(𝑥) =
0 for all nodes 𝑥, and then for every computed cycle 𝑛𝑘:

ℎ𝑘+1 = ℎ𝑘 + ∫

𝑛𝑘+1

𝑛𝑘
ℎ̇(𝑛)𝑑𝑛 (9)

with ℎ𝑘 a simplified notation for ℎ(𝑥, 𝑛𝑘) and ℎ̇ the wear
kinetics defined in Section 4.1 as the derivative of ℎ with
respect to 𝑛. Different integration schemes can be consid-
ered to compute the expression in Equation (9), which are
discussed next.
4.3. Explicit and implicit cycle jump integration

schemes
The simplest way to compute the integral term in Equa-

tion (9) is to approximate it using a forward Euler explicit
integration scheme. It relates the wear profile ℎ𝑘+1 at cycle
𝑛𝑘+1 to the wear kinetics calculated at the previous cycle 𝑛𝑘,
as expressed in Equation (10):

ℎ𝑘+1 = ℎ𝑘 + Δ𝑛 ℎ̇𝑘 (10)

The use of Runge-Kutta schemes is also explored. We
limit ourselves here to the use of Runge-Kutta schemes of
order 2 and 4. They are also explicit schemes as the wear
profile ℎ𝑘+1 can be directly derived based on the knowledge
of the wear profile ℎ𝑘, but they require the computation of
intermediate time steps. For instance, the relation between
ℎ𝑘 and ℎ𝑘+1 according to the Runge-Kutta scheme of order
2 is expressed by:

ℎ𝑘+1 = ℎ𝑘 + Δ𝑛 ℎ̇𝑘+1∕2 (11)
where

ℎ̇𝑘+1∕2 = ℎ̇
(

ℎ𝑘 +
1
2
Δ𝑛 ℎ̇𝑘

)

. (12)

These schemes are more time-consuming than the forward
Euler scheme, as they require to compute respectively 2 or 4
times more fretting cycles. In return, we can expect them to
be more reliable especially when a high acceleration factor
is used.

Finally, a backward Euler implicit scheme is considered.
It relates the wear profile at cycle 𝑛𝑘+1 to the wear kinetics
at that same cycle 𝑛𝑘+1, which depends itself on ℎ𝑘+1:

ℎ𝑘+1 = ℎ𝑘 + Δ𝑛 ℎ̇𝑘+1. (13)
As the computation of ℎ̇𝑘+1 requires the knowledge of ℎ𝑘+1,
an iterative scheme is required to solve Equation (13). This
is often made by the use of the Newton-Raphson algorithm,
but this requires to compute the tangent term defined here by
the derivative of the wear kinetics ℎ̇ with respect to the wear
depth ℎ. This computation is not straightforward and can be
costly. Hence, a simpler fixed-point iteration scheme is used
instead with a relaxation method in order to prevent non-
convergence situations. It consists in progressively relaxing
the increment between two consecutive iterations of the
fixed-point scheme. As a result, the iterative algorithm for
solving the backward Euler implicit scheme reads as follows:

• Initialization, 𝑖 = 0:
ℎ0𝑘+1 = ℎ𝑘 + Δ𝑛 ℎ̇𝑘 (14)

• Iteration 𝑖: while the convergence is not achieved,

ℎ𝑖+1𝑘+1 = ℎ𝑖𝑘+1 +
1
2𝑝𝑖

𝛿ℎ𝑖𝑘+1 (15)

where 𝑝𝑖 is the relaxation exponent at iteration 𝑖 and
the increment 𝛿ℎ𝑖𝑘+1 is expressed:

𝛿ℎ𝑖𝑘+1 = ℎ𝑘 + Δ𝑛 ℎ̇𝑖𝑘+1 − ℎ𝑖𝑘+1 (16)

• Convergence when:
‖𝛿ℎ𝑖𝑘+1‖

‖Δ𝑛 ℎ̇𝑘‖
< 10−3. (17)
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The relaxation exponent 𝑝𝑖 is set to 0 for the first iteration, to
1 for the next two iterations, to 2 for the next four iterations,
. . . , to 𝑘 for the next 2𝑘 iterations, etc. It is noteworthy that
if the relaxation exponent is equal to 0, then the classical
expression for the fixed-point iteration is retrieved.

Note that this way of solving the implicit scheme may
not be optimal, as the fixed-point iteration scheme does
not ensure a quadratic convergence, which is the case for
Newton-Raphson. In order to improve the convergence rate,
other algorithms than the simple fixed-point scheme should
be investigated.
4.4. Adaptive cycle jump

Finally, an adaptive cycle jump process is considered.
In this case, the acceleration factor Δ𝑛𝑘 is supposed to be
variable and is computed at the end of each fretting cycle
𝑛𝑘. The reason for investigating an adaptive cycle jump
technique lies in the observation that the computed wear
kinetics profile changes quickly with cycles at the start of the
computation, and then its shape changes progressively more
slowly. Thus, it could be beneficial to gradually increase the
acceleration factor throughout the computation.

Several studies proposed to use the maximal wear depth
to control the acceleration factor [15, 25]. In that case, a
maximal wear depth increment Δℎ0,max is allowed between
two consecutive computed cycles, and the acceleration factor
Δ𝑛𝑘 at cycle 𝑛𝑘 is derived based on the computed maximum
wear depth kinetics ℎ̇max:

Δ𝑛𝑘 =
Δℎ0,max
𝜕ℎmax∕𝜕𝑛

=
Δℎ0,max
ℎ̇max(𝑛𝑘)

. (18)

In the present paper, the strategy used to compute the ac-
celeration factor is based on an estimate of the wear pro-
file enlargement rate instead, which is an alternative never
explored to the authors’ knowledge. The enlargement rate
is taken to be an indicator of the speed at which the shape
of the computed profile changes. The faster the wear profile
widens, the lower the acceleration factor. The width of the
worn area is denoted 𝑙, and the enlargement rate �̇� is its
derivative with respect to the cycles 𝑛. The acceleration
factor is expressed as follows:

Δ𝑛𝑘 =
Δ𝑙0
𝜕𝑙∕𝜕𝑛

=
Δ𝑙0
�̇�(𝑛𝑘)

(19)

where Δ𝑙0 is the width increment expected between two
consecutive computed cycles. The strategy used to estimate
the enlargement rate �̇� is discussed later in Section 5.1.

5. Results and discussion
5.1. Explicit wear simulation

The numerical process described is applied first with
a forward Euler explicit integration scheme and a constant
acceleration factor. In order to compare the numerical results
with the experimental data, the computation is run on a total
number of 100,000 cycles.

Preliminary computations on a low number of cycles
show that unexpected oscillations may appear on the wear
profiles, depending on the value of the acceleration factor
(Figure 8). They arise from small perturbations in the com-
puted contact reaction forces which are eventually rever-
berated on the dissipated energy distribution and the wear
profile. These perturbations are amplified by the use of
an acceleration factor, and the modification of the surface
nodes position following a perturbed wear profile leads to
instabilities.

These instabilities have been related by several authors
[15, 17, 35]. Basseville et al. proposed to use a Gaussian
smoothing function in order to eliminate the perturbations
[36]. They used an exponential moving average to smooth
the dissipated energy profile, which showed good results
in removing the instabilities, but has the disadvantage of
slightly altering the shape of the profile. Moreover, it re-
quires to wisely choose the parameter of the smoothing
function: a moving average with a too large bandwidth will
alter the profile shape, while a too narrow one will not
remove the instabilities. Here, the choice is made to not use
smoothing techniques.

The results obtained in the present study show that there
exists a critical acceleration factor value under which no
oscillation is observed, and above which sharp oscillations
quickly appear on the pressure profile. This critical value
depends on the mesh density, and a finer mesh is detrimental
regarding the instabilities. A linear relation is observed
between the critical acceleration factor and the mesh size,
which is depicted in Figure 9. A computation with an accel-
eration factor Δ𝑛 is said to be unstable when the root mean
square (RMS) error of the pressure profile of the 300th cycle
compared to the same computation with Δ𝑛 = 1 exceeds
5%. Studies show that in case of instabilities, they appear as
early as the first fretting cycles, which we observe as well
[15, 17]. This leads to the assumption that if no instability
appears during the first 300 cycles, it will not appear later.

The same investigations are conducted with the Runge-
Kutta schemes of order 2 and 4. Results show that even
though they are more stable than the forward Euler scheme,
they are not worth the computational cost increase. Indeed,
these schemes require respectively 2 or 4 times more com-
putations, and do not ensure a critical acceleration factor
respectively 2 or 4 times greater than with the forward Euler
scheme (Figure 9).

Consequently, a full computation was run on 100,000
cycles with an acceleration factor Δ𝑛 = 3 and a forward
Euler explicit scheme, thus ensuring a stable computation of
wear profiles.

The wear kinetics profiles confirm that no instability
occurs during the computation (Figure 10). Results show
that the same amount of energy is dissipated at each fretting
cycle, and thus the wear volume per cycle is constant. It
implies that the wear kinetics profiles in Figures 10a and
10b respectively have a same integral, and only the spatial
distribution changes. During the early cycles, the wear ki-
netics (or, equivalently, the dissipated energy) distribution
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(c) Mesh size 1 µm, acceleration factor Δ𝑛 = 3

Figure 8: Mean contact pressure profiles on the cylinder surface
over a fretting cycle for computations with a forward Euler
scheme (a) stable and (b),(c) unstable.

is localized at the center of the surfaces, and then spreads
slightly.

0 2 4 6 8 10 12 14
Mesh size (𝜇𝑚)

0

5

10

15

20

25

30

Cr
itic

ala
cce

ler
ati

on
fac

tor

Forward Euler
Runge-Kutta 2
Runge-Kutta 4

Figure 9: Limit of stability in terms of acceleration factor versus
mesh size, for the forward Euler and Runge-Kutta of order 2
and 4 schemes.
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Figure 10: Wear kinetics profiles on the (a) cylinder and (b)
plane surfaces at cycles 18,000 ; 45,000 and 90,000 computed
with a forward Euler integration scheme.
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The evolution of the wear profiles on the cylinder and the
plane surface are depicted in Figure 11. They show that the
wear profiles are first located at the center of the surfaces,
and then expand both in depth and width over the cycles.

−0.4 −0.2 0.0 0.2 0.4
Horizontal position (mm)

−8

−7

−6

−5

−4

−3

−2

−1

0

We
ar

pro
file

s(1
0−

3
mm

)

𝑛 = 9,000
𝑛 = 27,000
𝑛 = 45,000
𝑛 = 63,000
𝑛 = 81,000
𝑛 = 100,000

(a) Cylinder

−0.4 −0.2 0.0 0.2 0.4
Horizontal position (mm)

−8

−7

−6

−5

−4

−3

−2

−1

0

We
ar

pro
file

s(1
0−

3
mm

)

𝑛 = 9,000
𝑛 = 27,000
𝑛 = 45,000
𝑛 = 63,000
𝑛 = 81,000
𝑛 = 100,000

(b) Plane
Figure 11: Evolution of the wear profiles on the (a) cylinder
and (b) plane surfaces over the cycles computed with a forward
Euler integration scheme for Δ𝑛 = 3.

In order to characterize the wear profiles evolution, the
expansion of the width of the worn area is considered. Figure
12 shows that the width of the worn zone on both the cylinder
and the plane expands very quickly during the early cycles,
before the rate of evolution decreases. The discontinuities
originate from the spatial discretization of the surfaces.
Based on these numerical results, the width 𝑙 of the worn
area can be approximated with good accuracy by a power
law of the form:

𝑙(𝑛) = 𝑙0 + 𝜅1𝑛
𝜅2 (20)

where 𝑙0, 𝜅1 and 𝜅2 are the parameters of the approximation
law and 𝑛 the cycle. The approximated evolutions are shown
in Figure 12 as well for comparison with the numerical
results. In their paper of 2019, Zhu et al. [9] derive a

geometrical relation between the wear volume and the wear
scar width for cylinder/plane contacts, under the assumption
that the displacement amplitude is negligible with respect to
the width of the wear profile, such that both solids have the
same wear scar width:

𝑉w
𝐿

= 𝑅2arcsin
( 𝑙
2𝑅

)

− 𝑙
2

√

𝑅2 − 𝑙2

4
(21)

where 𝑉w is the wear volume, 𝐿 is the out-of-plane dimen-
sion of the contact and 𝑅 is the cylinder radius. The relation
they obtained is compared with the numerical results from
the present work, using the relation between the wear volume
and the cycle number. Figure 12 shows similar tendencies
between the relation from Zhu et al. and the evolutions
obtained numerically. The discrepancy is related to the fact
that the hypothesis made by Zhu et al. is not fulfilled here,
namely both solids do not have the same width for the worn
area.
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Figure 12: Evolution of the wear profiles widths along the
100,000 computed cycles. Comparison with the approximated
evolution with a power law, and with the relation derived by
Zhu et al. [9].

Eventually, the final wear profiles after 100,000 cycles
are compared with those obtained experimentally (Figure
13). On the cylinder surface, the computed wear profile
has the same U shape as in the experiment, though slightly
deeper and wider. On the plane surface however, the W-
shaped profile obtained experimentally could not be rep-
resented by the model. This was expected, given that the
proposed model does not account for neither the third body
effects nor plasticity.
5.2. Implicit wear simulation with constant

acceleration factor
Afterwards, computations are performed using the back-

ward Euler implicit integration scheme presented earlier in
Section 4.3. Preliminary tests show that, unlike with the
forward Euler scheme, no instability has been observed as
far as it has been tried. For example, as depicted in Figure 14,
a computation with a mesh size of 5 µm and an acceleration
factor Δ𝑛 = 30 is highly unstable with the forward Euler
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Figure 13: Comparison of the computed wear profiles with the
experimental data on the cylinder and the plane surfaces after
100,000 fretting cycles.

scheme, but stable with the backward Euler scheme. The
use of a backward Euler scheme thus allows to take an
acceleration factor beyond the stability limit of the forward
Euler scheme. However, a certain number of iterations are
required for the scheme to converge, which increases the
computational costs. The issue is then to determine whether
the convergence is fast enough to compete with the forward
Euler scheme.

A computation is run on 100,000 fretting cycles with
a constant acceleration factor Δ𝑛 = 30. The evolution of
the number of iterations required for the convergence of the
backward Euler cycle jump integration scheme is shown in
Figure 15. First, it can be seen that a few cycles do not reach
convergence after a maximum number of iterations of 25.
As they represent less than 10 computed cycles out of sev-
eral thousands, we propose to leave these non-convergences
aside. Apart from these few cycles, the number of iterations
per cycle jump is between 5 and 10 for the early cycles, and
decreases quickly: after a few hundred cycles, the implicit
scheme converges often in one or two iterations. However,
as it can be seen in Figure 15, some cycles converge more
slowly (4 or 5 iterations). These slowly converging cycles are
regularly spaced and perfectly match the cycles at which the
wear profiles enlarge. In other words, the cycles at which the
implicit scheme converges slowly are the same as the cycles
at which the evolution of the wear profile width (Figure
12) has a discontinuity. According to the observations made
on Figure 12, these discontinuities happen frequently in
the early cycles, and then occur less and less often. These
remarks support the idea of using an adaptive acceleration
factor based on the wear profile enlargement rate: the faster
the wear profile enlarges, the lower the acceleration factor,
and vice-versa.

In the end, the wear profile after 100,000 fretting cycles
is obtained by computing only 7,353 cycles overall, tak-
ing the iterations into account (Figure 17). This yields an
equivalent acceleration factor Δ𝑛eq = 13.6 where Δ𝑛eq is
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(a) Forward Euler explicit scheme
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(b) Backward Euler implicit scheme
Figure 14: Wear kinetics profiles obtained on the cylinder
surface with (a) a forward Euler explicit integration scheme
and (b) a backward Euler implicit integration scheme on a
computation with mesh size 5 µm and acceleration factor
Δ𝑛 = 30.

defined by the ratio between the total number of cycles and
the number of effectively computed cycles.

In addition, the final wear profiles obtained are the same
as with the explicit scheme: the RMS error between the
results of the different procedures is lower than 0.01%.
5.3. Implicit wear simulation with adaptive

acceleration factor
Eventually, the computation is run with a variable ac-

celeration factor. As discussed in Sections 4.4 and 5.1, the
adaptive cycle jump technique is controlled by an estimate
of the wear profile enlargement rate �̇�. The approximation of
the wear profile width 𝑙 expressed in Equation (20) yields:

�̇�(𝑛) = 𝜅1𝜅2𝑛
𝜅2−1. (22)
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Figure 15: Number of iterations required for the convergence
of the wear profile for each computed cycle with a backward
Euler scheme and Δ𝑛 = 30.

Following Equation (19) the variable acceleration factor is
then given by:

Δ𝑛𝑘 =
Δ𝑙0
𝜅1𝜅2

𝑛1−𝜅2𝑘 . (23)
The parameters 𝜅1 and 𝜅2 are estimated and reevaluated on a
regular basis throughout the computation using a Levenberg-
Marquardt algorithm. This algorithm aims at solving non-
linear least square problems and is used here to find the best
fit 𝜅1 and 𝜅2 parameters with respect to the computed wear
profile enlargement rate.

Because this technique would give very low values for
the acceleration factor during the first cycles, a lower bound
Δ𝑛min is defined. Therefore, the value used for the accelera-
tion factor is derived as follows:

Δ𝑛𝑘 = max
(

Δ𝑙0
𝜅1𝜅2

𝑛1−𝜅2𝑘 ,Δ𝑛min

)

. (24)

The computation is run with Δ𝑛min = 30.
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Figure 16: Evolution of the adaptive acceleration factor

Figure 16 shows the evolution of the acceleration factor
through the computation. It increases progressively to reach

Table 2
Total number of computed cycles

Explicit, Δ𝑛 = 3 Implicit, Δ𝑛 = 30 Implicit, adaptive Δ𝑛
33,334 7,353 6,704

a value over 80 at the end. This computation required 6,704
cycles overall, thus yielding an equivalent acceleration factor
ofΔ𝑛eq = 14.9. Figure 17 shows the evolution of the number
of cycles required to compute the wear profile after a given
number of fretting cycles. It illustrates the efficiency of the
implicit scheme to compute a high number of cycles. The
greater the number of computed cycles, the lower the com-
putational cost per cycle with these procedures. Moreover,
using an adaptive cycle jump is beneficial for high cycle
computations.
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Figure 17: Evolution of the number of effectively computed
cycles through the computation of 100,000 fretting cycles

Table 2 compares the number of cycle computations
required to get the wear profiles after 100,000 cycles for the
forward Euler explicit scheme atΔ𝑛 = 3, the backward Euler
implicit scheme at Δ𝑛 = 30, and with a variable acceleration
factor. For the implicit scheme, the number of computed
cycles includes the number of iterations to convergence.

6. Conclusion
The simulation framework presented here enables to

compute wear occurring at the contact between two solids
under fretting solicitations. The interest of this kind of
simulation lies in the fact that it can derive local quantities
(wear depth distribution, contact stresses, distribution of the
dissipated energy density, etc.) based on global observations
from experimental tests: total wear volume, total dissipated
energy.

For the sake of computational cost, a cycle jump tech-
nique is used and different integration schemes are investi-
gated. The use of an explicit scheme can lead to unexpected
oscillations which limits the acceleration factor value. On the
opposite, results show that an implicit scheme succeeds to
prevent these instabilities, and its convergence is fast enough
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to decrease the computational cost. As a consequence, the
use of an implicit cycle jump integration scheme is rec-
ommended. In addition, choosing an adaptive acceleration
factor based on the wear profile enlargement rate is beneficial
for high cycles.

The wear profiles obtained numerically and experimen-
tally are similar to some extent. In the absence of plastic
deformation and third body trapped in the interface, the
comparison of the wear profiles obtained numerically with
the experimental data shows a good accuracy. Both profiles
have a U shape with similar width and depth. However,
some experimental profiles show a W shape that our simu-
lation process has more trouble representing. As a result, the
simulation framework developed is especially suitable when
debris transport out of the contact is easily achieved.

In order to better capture the complex processes involved
in wear damage, including the effects of third body and
plastic behavior would be a valuable asset. Regarding plas-
ticity, taking it into account is not straightforward when
using a cycle jump. As a matter of fact, the knowledge of
the plastic strains evolution during one cycle gives little
to no information on how it will evolve through the next
cycles. Different regimes exist: elastic or plastic shakedown,
or ratcheting, and extrapolating the behavior of a single cycle
seems expeditious.
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