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In the framework of emulation of numerical simulators with Gaussian process (GP) re-
gression [2], we proposed in this work a new algorithm for the estimation of GP covariance
parameters, referred to as GP hyperparameters. The objective is twofold: to ensure a
GP as predictive as possible w.r.t. to the output of interest, but also with reliable pre-
diction intervals, i.e. representative of its prediction error. To achieve this, we propose a
new constrained multi-objective algorithm for the hyperparameter estimation. It jointly
maximizes the likelihood of the observations as well as the empirical coverage function
of GP prediction intervals, under the constraint of not degrading the GP predictivity
[1]. Cross validation techniques and advantageous update GP formulas are notably used.
The benefit brought by the algorithm compared to standard algorithms is illustrated on
a large benchmark of analytical functions (up to twenty input variables). An application
on a EDF R&D real data test case modeling an aquatic ecosystem is also proposed: a
log-kriging approach embedding our algorithm is implemented to predict the biomass of
the two species. In the framework of this particular modeling, this application shows the
crucial interest of well-estimated and reliable prediction variances in GP regression.

[1] C. Demay, B. Iooss, L. L. Gratiet, and A. Marrel. Model selection for Gaussian process
regression: an application with highlights on the model variance validation. Quality
and Reliability Engineering International Journal, 38:1482–1500, 2022.

[2] A. Marrel, B. Iooss, and V. Chabridon. The ICSCREAM methodology: Identification
of penalizing configurations in computer experiments using screening and metamodel
– Applications in thermal-hydraulics. Nuclear Science and Engineering, 196:301–321,
2022.
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Risk assessment in nuclear accident analysis
 Safety studies: compute a failure risk (margins, rare events) and prioritize the risk indicators, with

validated computer/numerical models

 Numerical simulators: fundamental tools to understand, model & predict physical phenomena

 Large number of input parameters, related to physical and numerical modelling

 Uncertainty on some input parameters → impacts the uncertainty on the output, the evaluation of
safety margins

 BEPU (Best Estimate Plus Uncertainties): realistic models + uncertain inputs → Better assessment of the
real margins
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Risk assessment in nuclear accident analysis
 How to deal with uncertainties in numerical simulation?

→ Probabilistic framework and statistical methods

→ Monte Carlo-based approaches and data analysis  Data Sciences techniques

→ CPU-expensive simulator Essential use of machine learning (metamodels)

Crucial use of metamodel (machine learning)

Incertain inputs:
• Environmental variables
• Physical parameters
• Modeling and numerical parameters
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Design of numerical
experiments

Numerical
simulations

Analysis of simulator outputs

Simulator

Y = ℳ(X1, …, Xd)

In case of costly ℳ:
Model reduction or Approximation 

with Machine Learning (ML)
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Crucial use of metamodel (machine learning)
Design of numerical

experiments
Numerical

simulations

Simulator

Y = ℳ(X1, …, Xd)

In case of costly ℳ:
Approximation with Machine Learning

Metamodel: Yapp ≈ ℳ(X)

 Build from the dataset a predictor that mimics the true model ℳ, with
good prediction capabilities ⇒ to be controled

 Bonus: with reliable quantification of prediction error !

Ex : Polynomials, splines, neural networks, random forests… Gaussian process

Analysis of simulator outputs

Probabilistic
metamodel

Reminders on Gaussian process metamodel

► Probabilistic surrogate model : response is considered as a realization of a random GP field [RW05,Gra21]:

𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙ᇱ, 𝒙))

With 𝜇 𝒙 the mean and 𝑘(𝒙ᇱ, 𝒙) the covariance function.

 Predictive GP is the GP conditioned by the observations 𝑋௦ , 𝑌௦ :

𝑌 𝒙∗
|௒ ௑ೞ ୀ௒ೞ

~𝐺𝑃 𝜇ො 𝒙∗ , 𝑠̂ 𝒙ᇱ, 𝒙∗

With analytical formulations for  𝜇ො 𝒙∗ and  𝑠̂ 𝒙ᇱ, 𝒙∗

⇒ Conditional mean 𝜇̂ 𝒙∗ serves as the predictor at location 𝒙∗

⇒ Prediction variance (i.e. mean squared error) is given by conditional covariance 𝑠̂ 𝒙∗, 𝒙∗

⇒ Prediction interval of any level  can be built at any location 𝒙∗

Only a n-sample of simulations is available (Monte-Carlo sample, LHS, space-filling design, etc.)

𝑫𝑺 = 𝑿𝑺
(𝒋)

, 𝒀𝑺
(𝒋)

𝟏ஸ𝒋ஸ𝒏
where 𝑌ௌ

(௝)
= ℳ 𝑋ௌ

(௝)
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Reminders on Gaussian process metamodel

► In practice: parametric choices for trend function 𝜇 and covariance function 𝑘

𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙ᇱ, 𝒙))

 For 𝜇: either constant or linear basis 

 For 𝑘: tensorized 1-D covariance functions of  -Matérn (with ℎ = |𝑥 − 𝑥෤ |)

 Need to estimate from the dataset the correlation hyperparameters 𝜽 ∈ ℝା,ௗ

Especially in large dimension (d>10) and small dataset (n~100)? 

How to to ensure that the estimated hyperparameters 𝜽 yield good predicitivity but also reliable GP 
prediction intervals?  Crucial for safety applications

1-Dim 

d-Dim 

► Usual estimation methods [KO22,Mur21,Pet22]

 Maximum likelihood-based estimation (MLE)  minimization of the NLL (Negative Log-Likelihood)

 Cross-validation-based estimation (Leave-One-Out or K-fold): minimization of

 Bayesian approaches (CPU ++)

► Validation criteria computed by cross-validation (LOO) [DIG+21]

 Accuracy of the GP predictor:

 Accuracy of the whole GP conditional distribution ([ABG22])

Empirical coverage function for α ∈ 0,1 :

𝑄ଶ ≈ 0.90

GP estimation and validation 

 Integrated Absolute Error on 𝚫෡ 𝜶

IAE𝛼 ≈ 0.05

IAE𝛼 ≈ 0.2

(RMSE : Root Mean squared Error)
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► Study of criteria NLL, 𝑸𝟐 and 𝐈𝐀𝐄𝜶 on a large benchmark of analytical test functions

 Close behavior of NLL and 𝑸𝟐  keep NLL as the main estimation objective to ensure the predictivity
of the metamodel  Consistent with result of [PBF+22,Pet22]

 𝑰𝑨𝑬𝜶 optimization is not guaranteed when optimizing NLL

 But, in the neighborhood of the optimal NLL point, existence of better points 𝜽 (for 𝑰𝑨𝑬𝜶), however 

need to control the possible degradation of 𝑄ଶ value, which guarantees the predictivity

New estimation algorithm for GP hyperparameters

 Optimization based on NLL and 𝑰𝑨𝑬𝜶 + Control of 𝑸𝟐

(𝐼𝐴𝐸𝛼 and 𝑄ଶ estimated by cross validation + use of  LOO Dubrule formulas)

 Proposition of a multi-objective NSGA-II algorithm with constraint on 𝑸𝟐

► Intensive benchmark on analytic functions 

 Comparison with usual algorithms based on NLL optimization only (with standard algorithms)

 Input dimension from d=2 to 20, with ≠ covariance functions, ≠ sample sizes, ≠  design of experiments

New estimation algorithm for GP hyperparameters

 Predictivity with Constrained Multi-Objective algorithm (C-NSGA-II-
BestC1) at least as good as simple NLL optimization

 Furthermore, improvement of 𝑰𝑨𝑬𝜶 especially if :

 The model is misspecified: covariance does not match the 
regularity of the function.

 When the number of hyperparameters is large (case of large 
dimension d + tensorized anisotropic stationary covariance)
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► Application to an aquatic ecosystem data case (EDF test case)

 MELODY model: prey-predator chain in an aquatic ecosystem

 d = 20 uncertain inputs. Output of interest (YG) : Biomass of grazers at day 60.

 Sample of n = 100 simulations of the model MELODY (LHS design)

 Need of preliminar logarithmic transformation 

 Additional comparison with Bayesian RobustGaSP approach (package of GU et al. [GWB18])

New estimation algorithm for GP hyperparameters

 Lognormal-kriging modeling: 

 Emulation of ZG = log(YG) with GP regression

 Lognormal-kriging back-transformations to obtain a metamodel for YG

► Application to an aquatic ecosystem data case (EDF test case)

New estimation algorithm for GP hyperparameters

 With nugget effect (included in the set of GP hyperparameters to be estimated)

 Best results with Constr-NSGA-II 
algorithm: better 𝑄ଶ and IAE

 Without nugget effect*

 Better behavior of RobustGasp
without nugget : best 𝑄ଶ but not IAE

 Constr-NSGA-II algorithm more 
robust to modeling choices

Multi-BFGS C-NSGA-II-BestC1 RobustGaSP Multi BFGS C-NSGA-II-BestC1 RobustGaSP

Matern3/2 0,70 0,74 0,25 0,10 0,07 0,04
Matern5/2 0,77 0,82 0,66 0,09 0,02 0,07
Gaussian 0,75 0,79 0,66 0,08 0,02 0,06

IAEα

Y2

Data Covariance
Predictivity Coefficient Q2

Multi-BFGS C-NSGA-II-BestC1 RobustGaSP Multi BFGS C-NSGA-II-BestC1 RobustGaSP

Matern3/2 0,70 0,75 0,47 0,10 0,06 0,03
Matern5/2 0,78 0,84 0,83 0,08 0,02 0,07
Gaussian 0,70 0,72 0,89 0,06 0,03 0,06

Predictivity Coefficient Q2

Y2

Data Covariance

IAEα

*additional white noise  one additional variance parameter (to be estimated)
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 Demonstrates the benefits of considering (in addition to NLL) some criteria assessing the accuracy of
whole GP distribution when estimating hyperparameters More robust estimation !

 Particular attention must be paid to GP validation

 Part of a more general effort to ensure confidence in machine learning

 Some improvement: combining our approach with RobustGasp with tractable approximation of
robust prior proposed by [GWB18]

 Work partly funded by ANR SAMOURAI research project

Conclusions

[ABG23] Acharki, N., Bertoncello, A., and Garnier, J. (2023). Robust prediction interval estimation for GP by cross-validation
method. Computational Statistics Data Analysis, 178:107597

[CCC12] Ciric, C., Ciffroy, P., and Charles, S. (2012). Use of sensitivity analysis to discriminate non-influential and influential
parameters within an aquatic ecosystem model. Ecological Modelling, 246:119–130.

[DIG+21] Demay, C., Iooss, B., Gratiet, L., and Marrel, A. (2022). Model selection for GP regression: an application with highlights
on the model variance validation. QREI Journal, 38:1482-1500.

[Gra21] B. Gramacy. Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. Chapman and Hall/CRC,
2021.

[GWB18] Gu, M., Wang, X., and Berger, J. O. (2018). Robust gaussian stochastic process emulation. The Annals of Statistics,
46(6A):3038 – 3066.

[KO22] Karvonen & Oates (2022). Maximum Likelihood Estimation in GP is ill-posed. Preprint.

[Mur21] Muré (2021). Propriety of the reference posterior GP distribution. The Annals of Statistics. 49(4):2356-2377.

[Pet22] Petit S. (2022). Improved Gaussian process modeling. Application to Bayesian optimization. PhD University Paris-Saclay.

[PBF+22] Petit, S., Bect, J., Feliot, P., and Vazquez, E. (2022). Model parameters in GP interpolation: an empirical study of
selection criteria. Preprint - https://hal-centralesupelec.archives-ouvertes.fr/hal-03285513.

[RW05] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine learning. MIT Press, 2006.

References

8


