Speaker: Amandine Marrel New estimation algorithm for more reliable prediction in Gaussian process regression: application to an aquatic ecosystem model Amandine Marrel CEA, DES, IRESNE, DER, Cadarache F-13108 Saint-Paul-Lez-Durance, amandine.marrel@cea.fr Bertrand Iooss EDF R&D, 6 quai Watier, 78400, Chatou, France, bertrand.iooss@edf.fr

In the framework of emulation of numerical simulators with Gaussian process (GP) regression [2], we proposed in this work a new algorithm for the estimation of GP covariance parameters, referred to as GP hyperparameters. The objective is twofold: to ensure a GP as predictive as possible w.r.t. to the output of interest, but also with reliable prediction intervals, i.e. representative of its prediction error. To achieve this, we propose a new constrained multi-objective algorithm for the hyperparameter estimation. It jointly maximizes the likelihood of the observations as well as the empirical coverage function of GP prediction intervals, under the constraint of not degrading the GP predictivity [1]. Cross validation techniques and advantageous update GP formulas are notably used. The benefit brought by the algorithm compared to standard algorithms is illustrated on a large benchmark of analytical functions (up to twenty input variables). An application on a EDF R&D real data test case modeling an aquatic ecosystem is also proposed: a log-kriging approach embedding our algorithm is implemented to predict the biomass of the two species. In the framework of this particular modeling, this application shows the crucial interest of well-estimated and reliable prediction variances in GP regression.
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In Especially in large dimension (d>10) and small dataset (n~100)?

How to to ensure that the estimated hyperparameters 𝜽 yield good predicitivity but also reliable GP prediction intervals?  Crucial for safety applications 
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  Safety studies: compute a failure risk (margins, rare events) and prioritize the risk indicators, with validated computer/numerical models  Numerical simulators: fundamental tools to understand, model & predict physical phenomena  Large number of input parameters, related to physical and numerical modelling  Uncertainty on some input parameters → impacts the uncertainty on the output, the evaluation of safety margins  BEPU (Best Estimate Plus Uncertainties): realistic models + uncertain inputs → Better assessment of the real margins Risk assessment in nuclear accident analysis  How to deal with uncertainties in numerical simulation? Probabilistic framework and statistical methods → Monte Carlo-based approaches and data analysis  Data Sciences techniques → CPU-expensive simulator  Essential use of machine learning (metamodels) Crucial use of metamodel (machine learning)

►

  case of costly ℳ: Approximation with Machine Learning Metamodel: Y app ≈ ℳ(X)  Build from the dataset a predictor that mimics the true model ℳ, with good prediction capabilities ⇒ to be controled  Bonus: with reliable quantification of prediction error ! Ex : Polynomials, splines, neural networks, random forests… Gaussian process Analysis of simulator outputs Probabilistic metamodel Reminders on Gaussian process metamodel ► Probabilistic surrogate model : response is considered as a realization of a random GP field [RW05,Gra21]: 𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙 , 𝒙)) With 𝜇 𝒙 the mean and 𝑘(𝒙 , 𝒙) the covariance function.  Predictive GP is the GP conditioned by the observations 𝑋 , 𝑌 : 𝑌 𝒙 * | ~𝐺𝑃 𝜇 𝒙 * , 𝑠̂𝒙 , 𝒙 * With analytical formulations for 𝜇 𝒙 * and 𝑠̂𝒙 , 𝒙 * ⇒ Conditional mean 𝜇̂𝒙 * serves as the predictor at location 𝒙 * ⇒ Prediction variance (i.e. mean squared error) is given by conditional covariance 𝑠̂𝒙 * , 𝒙 * ⇒ Prediction interval of any level  can be built at any location 𝒙 *  Only a n-sample of simulations is available (Monte-Carlo sample, LHS, space-filling design, etc.) In practice: parametric choices for trend function 𝜇 and covariance function 𝑘 𝑌(𝒙)~𝐺𝑃(𝜇 𝒙 , 𝑘(𝒙 , 𝒙))  For 𝜇: either constant or linear basis  For 𝑘: tensorized 1-D covariance functions of -Matérn (with ℎ = |𝑥 -𝑥 |)  Need to estimate from the dataset the correlation hyperparameters 𝜽 ∈ ℝ ,

►►

  Usual estimation methods [KO22,Mur21,Pet22]  Maximum likelihood-based estimation (MLE)  minimization of the NLL (Negative Log-Likelihood)  Cross-validation-based estimation (Leave-One-Out or K-fold): minimization of  Bayesian approaches (CPU ++) ► Validation criteria computed by cross-validation (LOO) [DIG + 21]  Accuracy of the GP predictor:  Accuracy of the whole GP conditional distribution ([ABG22]) Empirical coverage function for α ∈ 0,1 : 𝑄 ≈ 0.90 GP estimation and validation  Integrated Absolute Error on 𝚫 𝜶 IAE𝛼 ≈ 0.05 IAE𝛼 ≈ 0.2 (RMSE : Root Mean squared Error) ► Study of criteria NLL, 𝑸 𝟐 and 𝐈𝐀𝐄𝜶 on a large benchmark of analytical test functions  Close behavior of NLL and 𝑸 𝟐  keep NLL as the main estimation objective to ensure the predictivity of the metamodel  Consistent with result of [PBF + 22,Pet22]  𝑰𝑨𝑬𝜶 optimization is not guaranteed when optimizing NLL  But, in the neighborhood of the optimal NLL point, existence of better points 𝜽 (for 𝑰𝑨𝑬𝜶), however need to control the possible degradation of 𝑄 value, which guarantees the predictivity New estimation algorithm for GP hyperparameters  Optimization based on NLL and 𝑰𝑨𝑬𝜶 + Control of 𝑸 𝟐 (𝐼𝐴𝐸𝛼 and 𝑄 estimated by cross validation + use of LOO Dubrule formulas)  Proposition of a multi-objective NSGA-II algorithm with constraint on 𝑸 𝟐 ► Intensive benchmark on analytic functions  Comparison with usual algorithms based on NLL optimization only (with standard algorithms)  Input dimension from d=2 to 20, with ≠ covariance functions, ≠ sample sizes, ≠ design of experiments New estimation algorithm for GP hyperparameters  Predictivity with Constrained Multi-Objective algorithm (C-NSGA-II-BestC1) at least as good as simple NLL optimization  Furthermore, improvement of 𝑰𝑨𝑬𝜶 especially if :  The model is misspecified: covariance does not match the regularity of the function.  When the number of hyperparameters is large (case of large dimension d + tensorized anisotropic stationary covariance) 6 Application to an aquatic ecosystem data case (EDF test case)  MELODY model: prey-predator chain in an aquatic ecosystem  d = 20 uncertain inputs. Output of interest (Y G ) : Biomass of grazers at day 60.  Sample of n = 100 simulations of the model MELODY (LHS design)  Need of preliminar logarithmic transformation  Additional comparison with Bayesian RobustGaSP approach (package of GU et al. [GWB18]) New estimation algorithm for GP hyperparameters  Lognormal-kriging modeling:  Emulation of Z G = log(Y G ) with GP regression  Lognormal-kriging back-transformations to obtain a metamodel for Y G ► Application to an aquatic ecosystem data case (EDF test case)New estimation algorithm for GP hyperparameters
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  Demonstrates the benefits of considering (in addition to NLL) some criteria assessing the accuracy of whole GP distribution when estimating hyperparameters  More robust estimation !  Particular attention must be paid to GP validation  Part of a more general effort to ensure confidence in machine learning  Some improvement: combining our approach with RobustGasp with tractable approximation of robust prior proposed [GWB18]  Work partly funded by ANR SAMOURAI research project Conclusions