
HAL Id: cea-04215728
https://cea.hal.science/cea-04215728v2

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

µArchiFI: Formal modeling and verification strategies
for microarchitetural fault injections

Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann,
Mathieu Jan

To cite this version:
Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, Mathieu Jan. µArchiFI: For-
mal modeling and verification strategies for microarchitetural fault injections. FMCAD.23 - For-
mal Methods in Computer-Aided Design 2023, Oct 2023, Ames, IO, United States. pp.101-109,
�10.34727/2023/isbn.978-3-85448-060-0_18�. �cea-04215728v2�

https://cea.hal.science/cea-04215728v2
https://hal.archives-ouvertes.fr

µARCHIFI: Formal Modeling and Verification
Strategies for Microarchitectural Fault Injections

Simon Tollec∗, Mihail Asavoae∗, Damien Couroussé§, Karine Heydemann¶‡ and Mathieu Jan∗
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France – firstname.lastname@cea.fr
§Univ. Grenoble Alpes, CEA, List, F-38000, Grenoble, France – firstname.lastname@cea.fr

¶Thales DIS, France – firstname.lastname@thalesgroup.com
‡Sorbonne Univ., CNRS, LIP6, F-75005, Paris, France

Abstract—This paper introduces µARCHIFI, an open-source
tool dedicated to the formal modeling and verification of
microarchitecture-level fault injections and their effects on com-
plex hardware/software systems. First, we address the problem of
the system modeling, and our implementation is integrated into
the Yosys toolchain. Second, we introduce verification strategies
to evaluate the fault effects for software-level security. We
demonstrated the practical use of µARCHIFI on RISC-V use
cases using state-of-the-art model-checking tools for hardware
verification.

Index Terms—Faulty transition system ; Bounded model check-
ing ; SW/HW co-verification ; Security

I. INTRODUCTION

Context. Fault Injection (FI) attacks aim at applying abnor-
mal execution conditions to an embedded system, such as high
temperature or electromagnetic radiation. These disturbances
induce computational errors in the system, leading to undesired
behaviors. From a security point of view, these FI attacks
can create vulnerabilities, such as the ability of an attacker
to retrieve sensitive data or to acquire execution privileges on
the platform. Consequently, there is a growing desire to study
fault injections and better understand their effects to analyze
the system’s security or develop countermeasures.

Different abstraction layers are involved in describing faults
in a system [1]. Faults initially appear in the circuit, and
representing faults at this level permits to describe their
initial effect, e.g., bit-flip, bit-reset. The consequences of the
fault then propagate in the microarchitecture, can be captured
by sequential logic, and induce a different behavior at the
software level. An analysis at the hardware level, e.g., [2]–
[4], can show that a module is functionally incorrect due to the
perturbation induced by fault injections. Such approaches are
sufficient for the robustness analysis of standalone components
such as cryptographic IPs, but usually, the exploitation of a
fault injection, in an attack, involves software. On the other
side, a pure software analysis, e.g., [5]–[7], struggles to model
many subtle behavioral effects induced by fault injection [8].

Recent research motivates the need to consider both the
hardware and the software in the same analysis [8]–[10]. Lau-
rent et al. show how faults on the forwarding mechanism per-
mit to retrieve a previously computed value and reintroduces
it in one of the processor pipeline stages [11]. Tollec et al.
show how faults on the prefetch buffer can result in various

software-level consequences [10], such as: immediate replay
of instructions that are alive in the prefetch buffer; execution
of instructions in incorrect order; and corruption of the next
branch target. However, such effects, induced by faults in the
processor microarchitecture, can only be leveraged in an attack
by specific software conditions, in particular the sequence
of program instructions executed, such that the fault effects
propagate until the attack target is reached.

Problem statement. There is a need for modeling and
analysis methods to better understand fault effects while
considering the software and the hardware together. Such
techniques can help to highlight microarchitectural implemen-
tation details impacting the system’s security. We need to
automatically build a model that encompasses both hardware
and software implementation details, and fault effects. Such a
model needs to be tractable by verification tools in order to
leverage automated verification techniques.

Proposal and contributions. We propose a complete work-
flow for the formal analysis of a full system composed
of hardware and software components under fault injection.
Faults are modeled at the microarchitectural level to accurately
analyze the impact of a fault injection at the hardware level and
their effects at the software level. We leverage bounded model
checking in order to reason about the impact of fault injections
on the system and their possible exploitation by an attacker.
This work is a follow-up of [10], and we bring improvements
in two directions. First, we formalize the model-checking
problem with a transition system including the attacker model.
We describe its implementation in an end-to-end formal anal-
ysis workflow, named µARCHIFI, based on Yosys [12] and a
third-party model checker. µARCHIFI generates the system’s
formal model from the RTL implementation of the hardware,
an input binary program, and the attacker model to analyze the
system’s robustness under fault injection. The attacker model
supports various fault-injection models. Second, we discuss
practical strategies to improve the efficiency of the workflow,
leveraging well-known optimization techniques from formal
methods. We illustrate the use of µARCHIFI on several case
studies and evaluate the impact of the proposed strategies.
µARCHIFI is open-source and will be publicly available on
the GitHub of Yosys1.

1Currently available on https://zenodo.org/record/7958412

https://zenodo.org/record/7958412

Paper outline. Section II introduces microarchitectural fault
injection models and hardware transition systems. Section III
describes the faulty transition system we introduce to analyze
microarchitectural fault consequences at the software level.
Section IV introduces our verification problem. The formal
model is then automatically generated by the tool detailed in
Section V. Section VI evaluates our approach in three case
studies. Section VII discusses our contributions wrt. related
work, and Section VIII concludes.

II. BACKGROUND

This section introduces microarchitectural fault models, pro-
vides definitions on hardware transition systems modeling, and
describes the Yosys framework that can translate a hardware
description to formal models.

A. Microarchitectural Faults

Fault Injection (FI) attacks are a powerful threat against
embedded systems that cover various physical injection means
like clock glitches, electromagnetic pulses, or laser fault
injections. In [13], Brockmann et al. propose a unified fault
injection model that describes fault effects in the microarchi-
tecture. The authors represent the synchronous digital circuit
as a directed graph (V,E) composed of vertices V and edges
E. Vertices V represent logic gates, state-holding elements,
inputs, and outputs in the circuit, while edges E represent
circuit wires connecting two vertices and carrying a digital
value. Each vertex representing a logic gate in the graph
is associated with a Boolean function describing the gate
behavior. By definition, a fault occurs in the circuit when
a given logic gate is not evaluated with its correct Boolean
function.

Microarchitectural faults in the graph are parametrized with
the three following attributes: location, effect, and number.
The location lists the vertices v ∈ V targeted by the fault
injection. The effect specifies the fault effect by associating a
faulty Boolean function with the targeted vertices. Finally, the
number describes the maximum number of vertices simulta-
neously affected by a fault.

B. Transition System for Sequential Hardware Circuits

We model sequential hardware circuit [14, §2.1.2] as a
transition system M = (S, S0, X, T) where:

• S is the set of circuit states,
• S0 ⊆ S is the set of initial states,
• X is the set of circuit inputs,
• T : S ×X → S is the transition function of the circuit.
A system state s ∈ S corresponds to a valuation of state-

holding elements (e.g., microarchitectural registers, memories)
in the hardware design. Assuming there are n state-holding
elements, denoted as registers in the following, the state s can
be seen as a vector of the n register values s := ⟨r1,..., rn⟩.

An initial state s0 ∈ S0 is a system state where each
register rj,1≤j≤n is evaluated with its initial values. Initial
states can be determined according to register reset values, for

instance. Uninitialized registers imply multiple initial states in
the system.

An input x ∈ X is a vector x := ⟨i1,..., im⟩ composed
with a valuation of the m input variables given to the system.
Circuit outputs are not considered in the formalization as they
are not useful for the rest of this work.

The transition function T describes the valid transitions
from a state si and an input vector xi to the state si+1 at the
next circuit clock cycle. The function T is determined with
the combinational logic of the hardware design and can be
decomposed in n register transition functions δrj where each
register next state value is computed by applying δrj to the
current state and the input vector.

si+1 = T (si, xi) = ⟨δr1(si, xi), . . . , δrn(si, xi)⟩

In hardware circuits, intermediate combinational results
are often factorized to minimize the number of operations.
This optimization avoids duplicating identical operations to
reduce hardware costs. We denote combinational functions
these intermediate results. Consequently, the register transition
functions δrj can be expressed as a composition of these
intermediate combinational functions.

C. Yosys Framework

Yosys [12] is an open-source synthesis tool with a compiler-
like infrastructure. Its frontend takes as input a design de-
scription using a hardware description language like Verilog.
The Yosys intermediate language, called RTLIL, is a netlist
composed of gates and wires. The backend converts the RTLIL
design into various outputs ranging from technological targets
like FPGA or ASIC to formal languages.

In particular, Yosys can transform a hardware design de-
scription into a hardware transition system. Supported for-
mal languages are AIGER, SMV, BTOR2 and SMT-LIB.
AIGER [15] describes hardware systems at the bit level using
an and-inverter graph. The SMV language [16] is provided
by the symbolic model checker NUXMV [17] and describes
finite and infinite transition systems. NUXMV lifts the verifi-
cation from the bit level to the word level with data types
like bit vectors or memories. BTOR2 [18] is a word-level
generalization of AIGER and provides word-level data types,
registers, and memories. Finally, the SMT-LIB language [19]
is the standard specification to describe SMT problems and
is broadly supported by SMT solvers. SMT-LIB can also
specify hardware transition systems using the quantifier-free
bit-vector theory. Yosys can produce VCD waveform traces of
the successive hardware states from model-checker outputs.

Finally, Yosys has built-in options to simulate the design
and set the register’s initial values. These functionalities allow
a user to configure the initial state of the circuit before
converting it into a hardware transition system M.

III. FAULTY SYSTEM MODELING

Hardware analysis often relies on equivalence-checking
techniques [4], [20] to capture faults that induce a different
circuit behavior compared to a reference model. But these

methods can only classify fault effects at the circuit level
and cannot determine whether the faults have consequences on
the running software. To analyze the consequences of a fault
described at the microarchitectural level on the software, we
need to observe its propagation in the system. For this purpose,
in the following, we perform model checking to capture the
successive system states between the fault injection and the
fault manifestation. This section defines a faulty transition
system comprising the program, the hardware, and the attacker
model.

A. Bringing the Software and the Hardware Together

The hardware processor design is modeled as a transition
system M = (S, S0, X, T), as introduced in Section II. The
software program is the sequence of instructions to be executed
on the processor. The program is encoded in the initial state
of a memory modeled simultaneously with the processor.
Accordingly, the initial state S0 of the system restricts the
possible processor executions to the software program under
study. The input set X of the system does not represent the
program as it is already encoded in the transition system.
Instead, system inputs are used to model the fault injections
applied during the processor operation. The attacker model and
the faulty transition system are introduced in the following of
this section.

B. Attacker Model

We define an attacker model which specifies how the
attacker can perturb the system operation. This model re-
lies on the definition of microarchitectural faults introduced
in Section II-A and extends this definition to describe the
attacker’s capabilities on a hardware transition system. The
attacker model comprises i) the attacker’s goal expressed as
a reachability property φ, ii) the number of faults N that the
attacker can inject into the system, and iii) the fault model.
The fault model is parametrized by the triplet (L, T , E) and
describes the possible modifications that a fault may induce
on the system.

• L is the set of possible locations of the fault,
• T is the timing range of the fault injection,
• E is the set of possible effects of the fault.

The fault location L is a set that denotes the registers
targeted by the fault injection, i.e., L ⊆ {r1,..., rn}.

The timing range T ⊂ N of the fault is a set of non-negative
integers that specifies when the fault injection can occur in the
system. For example, a fault can be injected in the transition
system between states si and si+1 if i ∈ T .

The fault effect E ⊂ {set , reset ,flips, . . . } is a set of
functions that modifies how a register is updated in the next
state. For instance, a fault e ∈ E injected in register rj
consists in replacing the transition function δrj with the faulty
transition δerj within the same domain, i.e., it produces the
same output data type. A non-exhaustive list of possible effects
is given below for an 8-bit register:

e ∈ E : δrj (s) 7→ δerj (s)

reset : δrj (s) 7→ 0x00
set : δrj (s) 7→ 0xff
flips : δrj (s) 7→ ¬δrj (s)
fliplsb : δrj (s) 7→ δrj (s)⊕ 0x01

The number of fault injections N restricts the possibilities
offered by the fault model (L, T , E). An attacker can use at
most N faulty transitions δer to compute the next system states.

The attacker’s goal φ is a reachability property defined on
the transition system M. It represents a vulnerability that the
attacker wants to reach in order to create an exploit on the
system by injecting faults. In the system’s normal operation,
such an exploit should not exist. In other words, ¬φ is a
system’s invariant that the attacker wants to break.

Let us illustrate some practical instantiations of the attacker
model we defined. Laser fault injections are accurate in space
and time and can be modeled with only one or two bit-flip.
On the other hand, voltage or clock glitches are less accurate
and can affect the whole design. We may model them with
multiple bit-set and bit-reset.

C. Faulty Hardware Transition System

The faulty transition system MF = (S, S0, X, T) results
from the modification of the hardware and software transition
system M and the attacker model ((L, T , E), N, φ). First, a
new variable cnt ∈ [[0, N]] is added in the system model to
encode the maximum number of fault injections N . The cnt
is incremented each time a faulty transition is applied and
cannot be targeted by the fault model, i.e., cnt /∈ L. Then, for
each targeted register rl in L, we add a new input xl to the
system to control the fault injection. The input xl determines
whether a fault is injected in register rl, and hence, if the value
of register rl in the next state should be computed using the
normal transition function δrl or the faulty transition δerl .

r′l =

{
δrl(s) if xl = False
δerl(s) if xl = True

A possible extension of this faulty transition system is to
expose intermediate combinational functions often used in
hardware circuits, as introduced in Section II. We can then ex-
tend our fault model and the resulting faulty transition system
to target these combinational functions with fault injection.
This extension is not formalized here but is implemented in
the µARCHIFI tool.

IV. TRANSITION SYSTEM VERIFICATION

This section introduces verification techniques on a faulty
transition system. In addition, we describe how the knowledge
of the running software can be leveraged to refine the transition
system verification.

A. Verification Problem Statement
In Section III, we model the system under attack as a

transition system MF = (S, S0, X, T). The set of initial states
S0 describes the possible software execution path to analyze,
and the inputs X control the possibilities of the attacker to
inject faults in the system. The verification problem is then a
reachability property verification where an attacker wants to
find a sequence of states (s0, s1,..., sk) ∈ Sk+1 such that:

• s0 is an initial state, i.e., s0 ∈ S0,
• transition between states si and si+1 is valid, i.e., it exists

an input xi ∈ X such that si+1 = T (si, xi),
• the number of faults injected in the system does not

exceed the attacker capacity, i.e., cnt ≤ N and,
• φ(sk) is true.
Such a path in the transition system allows an attacker to

identify an instance of the fault model and a software execution
trace that verifies the property φ.

Different strategies exist to iterate over the transition
model to verify the property. Unbounded verification tech-
niques [21]–[24] prove the property in the general case,
but the data dependency and the transient nature of faults
make these techniques ill-suited [25] on the fault injection
problem. Bounded verification techniques like Bounded Model
Checking (BMC) [26], [27] prove the property from an initial
state for a limited number of transitions, fixed a priori with
a bound. This bound is typically set according to the length
of execution trace of the analyzed software. In this work, we
rely on bounded verification techniques to address the fault
verification problem.

The remainder of this section introduces software-related
considerations for applying well-known optimization tech-
niques to speed up our BMC verification.

B. Sandboxing Execution Paths
Sandboxing is a general technique that adds a global con-

straint on the model to reduce the problem’s state space. We
apply sandboxing to restrict the Program Counter (PC) to a
range of values that a simple static analysis can retrieve from
the addresses in the binary, e.g., using objdump-like tool. The
verification framework then stops exploring software execution
paths that do not satisfy this sandboxing constraint. Conse-
quently, the BMC procedure can also terminate faster when
the entire state space has been explored. However, adding such
a global constraint on the model may lose the k-completeness
of the bounded verification procedure. This technique must
therefore be used to explore possible vulnerabilities rather than
prove the system’s robustness.

While only one PC exists at the software level, several
microarchitectural registers store its value in the processor de-
sign. The fetch stage PC speculates on the next addresses to be
read from memory. Applying the sandboxing technique on this
register would thus require relaxing the sandboxing constraint.
The execute stage PC misses unconditional branches that are
resolved directly in the decode stage. We therefore implement
sandboxing by constraining the PC of the decode stage of in-
order processors, as presented later in Section VI.

Algorithm 1: Bounded model checking (BMC) with
concretization

Input: transition system M = (S, S0, X, T), reachability
property φ, BMC bound k, concretization depth m,
number of concretizations L

Output: a path π if a φ is reachable, None otherwise

1 Function BMC_Concretizing(M, φ, k, m, L) is
// BMC() checks the reachability of φ up to

the bound. M, φ, ϕ, i are global variables.
2 Function BMC(bound) is
3 while i < bound do
4 if ϕ ∧ φ(si) is SAT then
5 exit(π := (s0, ..., si))
6 i← i+ 1
7 ϕ← ϕ ∧ (si = T (si−1, xi−1)) // Unrolling
8 end
9 end

// Initial BMC verification up to step m
10 ϕ← S0(s0) ; i← 0
11 BMC(m)

// Concretization loop
12 ψ ← ϕ ; setPC ← ∅ ; iter ← 1
13 incomplete enum ← False
14 while ψ is SAT do
15 address← get_model(ψ)(PC)
16 setPC ← setPC ∪ address
17 ψ ← ψ ∧ (PC ̸= address)
18 if iter = L then
19 incomplete enum ← True; Break
20 iter ← iter + 1
21 end

// Parallel BMC verifications for each
concretized path up to bound k

22 for address ∈ setPC do
23 ϕ← ϕ ∧ (PC = address)
24 BMC(k)// run BMC on ϕ (concretized paths)
25 end
26 if incomplete enum then
27 ϕ← ϕ ∧ (PC /∈ setPC)
28 BMC(k) // run BMC on ϕ (remaining paths)
29 end

C. Concretizing Execution Paths

BMC algorithms [27] typically unroll the transition system
in a formula ϕ to check the reachability of a property φ. As
a result, solving the formula ϕ suffers from the increasing
number of variables and clauses.

We apply the general concretizing technique to split ϕ into
sub-formulas encoding the different software execution paths.
Like sandboxing, we rely on the PC to distinguish between
these different execution paths. However, a given PC value
can refer to several microarchitectural contexts if more than
one execution path can reach this address at the same time.
This aspect is discussed at the end of this section.

The concretization procedure is detailed in Algorithm 1.
After initializing the formula ϕ with an initial state s0 and
performing BMC up to bound m (lines 10-11), a concretization
loop enumerates the possible values for the PC (lines 12-21).
This loop successively asks an SMT solver to give models

- Sandboxing

- Concretization

Fig. 1: µARCHIFI architecture and verification tool-chain.

of the system with different PC values. It stops when no
more system model exists, i.e., ψ becomes unsatisfiable, or
after a given number of concretizations L (lines 18-19). A
new BMC procedure is performed for each enumerated PC
value until bound k (lines 22-25). When the PC enumeration
is incomplete, the remaining paths are encoded within a
single formula and checked together (lines 26-28). A program
analysis can identify branches’ locations in the program and
determine the optimal depth m the user should perform the
concretization.

D. Discussion

Both the sandboxing or the concretization techniques reduce
the state space to explore by adding terms and clauses to
the formula encoding the problem. However, this general
approach has some limitations. To speed up verification, a
trade-off must be found between eliminating execution paths
and the number of additional state variables that increase
the complexity of the formula to check. For example, we
might want to add constraints ensuring that injected faults
lead to a different system behavior than the fault-free reference
model. This technique allows to focus on analyzing effective
faults while ineffective ones are ignored. However, it requires
capturing the complete microarchitectural state twice, leading
to an excessively complex system encoding formula. The
verification times thus increase.

V. TOOL IMPLEMENTATION

This section introduces the µARCHIFI tool we developed to
generate a formal transition system from a hardware descrip-
tion, a program, and an attacker model. First, we detail how a
user can use the tool, then we give its implementation details.

A. µARCHIFI Usage

µARCHIFI, illustrated in Fig. 1, takes as input a processor
hardware description in Verilog, a binary software program,
and an attacker model comprising the fault model. First,
the user can simulate the execution of the target program,
compiled for the corresponding ISA, on the hardware design to

set the initial state of the hardware right before the instruction
sequence to analyze formally. Then, the user needs to spec-
ify the attacker model comprising the goal φ, the maximal
number of faults N , and the fault model (location, timing,
and fault effects). This model is automatically integrated into
the system through the FaultRTLIL pass. The attacker’s
goal can also be specified into the hardware design using
the SystemVerilog Assertion subset supported by Yosys. Fi-
nally, the µARCHIFI tool produces a transition system, as
introduced in Section III-B, in SMT-LIB or BTOR2 format.
The faulty transition system can be verified using external
model-checking tools compatible with these input formats, like
AVR [25], PONO [28] or BTORMC [18].

When an external model checker finds a counterexample, as
illustrated in the verification box in Fig. 1, a VCD file reports
precisely where the fault is injected and when the attacker’s
goal is reached. However, understanding the propagation of
faults and their consequences requires human expertise, but
this task can be facilitated by external tools that perform
differential traces comparison against a reference model.

Additional global constraints for the sandboxing technique
can be specified to the model checker or can be directly
included in the input Verilog design parsed by Yosys. The
concretization technique requires an external model checker to
enumerate possible execution paths and is thus not integrated
into the µARCHIFI tool.

B. µARCHIFI Architecture

Fig. 1, in the modeling box, illustrates the integration
of the µARCHIFI tool with the Yosys framework. Yosys
can parse and translate a hardware specification into formal
languages, allowing us to focus on the automated integration
of an attacker model into the system. We work on the
RTLIL intermediate representation of Yosys to get the best
expressivity and exhaustiveness to specify the fault model.
Besides, as the Yosys RTLIL translation preserves all signal
and register names from the Verilog processor design, the user
can accurately select fault locations based on name pattern
matching, cell type, or cell-width filtering. In addition, the

TABLE I: Use Cases description and expected verification result.

Hardware Design Software Program Attacker Model BMC Results

Name Logic Gates Flip-Flops Name gcc Flag Attacker goal φ Location Timing Effect N k Reachability

Use Case I CV32E40P 2842 179 VerifyPIN V7 Og Bypass authentication Flip-Flops in Control path 60:75 Symbolic 1 75 φ reachable

Use Case II Secure Ibex 4422 211 VerifyPIN V1 Os Bypass authentication Flip-Flops in Lockstep * Symbolic 5 46 φ unreachable

Use Case III Ibex 1983 114 KeySchedule (AES) Os Set expanded key to 0 Combinational in EX Stage * Reset 2 38 φ unreachable

preservation of names facilitates the generation of compre-
hensive counterexamples.

Our work extends the Yosys tool by proposing a
FaultRTLIL translation pass, illustrated in Fig. 1, that takes
the attacker’s model (L, T , E), N, φ in input and integrates it
into the system. This integration is achieved in several steps.
First, a new RTLIL register is created to encode the maximum
number of fault injections N the attacker can inject into the
system. Then, a clock is added to control the timing range
of the fault injection T . Finally, additional logic functions are
inserted into the intermediate representation for each location
l ∈ L potentially targeted by a fault injection, modeling
the possible fault effects E . The targeted elements are then
replaced by an if-then-else structure controlled by a fault
selector. Fault selectors are exposed as system inputs and
indicate whether the fault should be injected or not. The
maximum counter value N and the clock for fault injection
timing T , introduced previously, are used to constrain the fault
selectors.

VI. EVALUATION

This section illustrates the use of µARCHIFI in three case
studies, applies the verification strategies introduced in Sec-
tion IV, and discusses the tool’s limitations. The µARCHIFI
implementation, the case studies, and the experimental results
are publicly available2.

All verifications have been executed on an 11th Gen Intel(R)
Core(TM) i7-1185G7 CPU platform. Every program presented
in this section is compiled with the RISC-V toolchain for
the RV32IMC architecture (gcc version 10.2.0). For each
verification, the BMC bound k is fixed according to the longest
program execution trace plus a 10-percent increment to capture
possible modifications in the control flow.

A. Use Case I: Robust Software

Use Case I illustrates the possibility for a user to analyze
the robustness of a secure program running on a processor.

Software. We consider a memcmp-like authentication mech-
anism from the FISSC benchmark suite [29]. This collection
provides eight versions of the VerifyPIN program embed-
ding software countermeasures against fault injections. The
VerifyPIN program compares two 3-digit3 PIN codes stored
in memory: a user and a secret PIN. The user can authen-
ticate when the two codes are identical. In the following,
PIN values are symbolic, but we assume that the user PIN
and the secret PIN are different in each of their digits. In

2https://doi.org/10.5281/zenodo.7958412
3VerifyPIN uses 4-digit PINs in its original version.

Use Case I, we target VerifyPIN V7 with the most software
countermeasures. It implements hardened booleans, constant
iteration, loop counter check, inline PIN comparison, and
duplication of critical tests. VerifyPIN V7 is compiled with the
optimization flag Og to prevent the compiler from removing
the countermeasure. The program runs in constant time, in 69
clock cycles.

Hardware. We execute the program on the 32-bit, in-order,
4-stage pipeline CV32E40P RISC-V core from the OpenHW
group [30]. The version under study does not provide any
security countermeasures.

Attacker Model. In this system, the attacker aims to bypass
the secure authentication mechanism without triggering the
software countermeasures.

φI := (authenticated ∧ ¬software alert)

The VerifyPIN V7 program implements the authentication
process in two steps. First, a constant-time loop sets a Boolean
to True if a difference is detected between the two PINs.
Second, a comparison is performed to test the Boolean value
and allow the authentication. We evaluate the robustness of the
second comparison block against a single fault injected on the
sequential logic of the processor control path. The considered
fault model targets 102 registers among 179 in the processor.
Use Case I is summarized in Table I.

Verification Results. Table II compares verification per-
formance between three model checkers with and without
faults. Performing the verification without fault ensures that
the attacker goal φ does not hold outside of an attack. The
analysis results in Table I highlight that the attacker can bypass
the authentication by injecting a single fault. Counterexamples
provided by the model checkers permit the user to find the
exact location of the fault that leads to the vulnerability φI.
All solvers found the same fault model on this use case, but we
can observe that PONO is faster to solve the model-checking
problem.

B. Use Case II: Robust Hardware

Use Case II details how a user can determine whether a
fault injected into a secure processor can induce a vulnera-
ble behavior on the software without being detected by the
hardware countermeasure.

Software. We consider VerifyPIN V1, the baseline version
of the VerifyPIN collection, without any countermeasure. As in
Use Case I, the same constraint is applied to user- and secret-
PIN, which are still symbolic. VerifyPIN V1 is compiled with
the optimization flag Os.

Hardware. The Ibex [31] is a parametrizable open-source
32-bit, in-order processor. We analyze the small version of the

https://doi.org/10.5281/zenodo.7958412

core [32] in its secure configuration. The secure Ibex imple-
ments protections against physical attacks like the redundancy-
based lockstep mechanism that instantiates the core twice and
compares the outputs. The duplicated core is called the shadow
core and an alert signal is triggered if an attack has been
detected during the operation of the processor.

Attacker Model. In this second use case, the attacker still
aims to bypass the secure authentication mechanism without
triggering the hardware countermeasures.

φII := (authenticated ∧ ¬hardware alert)

The considered attacker model cannot inject more than five
faults into the system. Fault locations are limited to the
sequential logic in the shadow core since we do not want to
inject the same fault in both cores.

Verification Results. Table I reports that an attacker cannot
bypass the secure authentication with the considered fault
model. This use case leverages the fact that the secure Ibex
implements hardware countermeasures. On the one hand,
assuming that the hardware alert cannot be triggered makes
sense as the attacker wants to bypass the authentication
without being detected. On the other hand, it helps the solver
simplify the formula during the verification. Table II reports
verification performance. BTORMC fails to solve the problem,
and we stop the verification after 2 hours.

C. Use Case III: Cryptographic Software

Use Case III details how a user can apply the tool to
software implementations of cryptographic algorithms.

Software. Tiny AES [33] is a small software implementation
of the encryption algorithm. The key schedule function of
the AES program expands the key into several separate keys
for each round of AES. We focus here on a round of the
key schedule function from the 128-bit AES. The program is
compiled with the optimization flag Os.

Hardware. We run the key schedule function on the baseline
version of the small Ibex core without any countermeasure.

Attacker Model. The attacker wants to set to zero a byte
in the penultimate round key. An attacker can then use the
observation of such an effect to perform differential fault
analysis [34], [35]. Fault consequences are observed at the
end of the key schedule function to limit the analysis to a
small sequence of instruction.

φIII := (9 th Round keybyte = 0)

To attempt to reach the property φIII, we allow an attacker
to inject up to two word-reset faults anywhere in the execute
stage of the Ibex.

Verification Results. As reported in Table I, an attacker can-
not reach his goal with the considered fault model. Additional
verification not described here shows that a more powerful
attacker reaches his goal with four fault injections instead of
two. We can also note that the verification of φIII on the AES
program without fault is faster than both Use Case I and II
because the AES key is fixed for while the two 3-digit PINs
are symbolic for the VerifyPIN program.

TABLE II: Use-cases verification time with three model checkers.

Without Fault With Faults

PONO YOSYS-BMC BTORMC PONO YOSYS-BMC BTORMC

Use Case I 12.6s 11.1s 1.5s 107s 249s 273s

Use Case II 20.7s 10.6s 3.5s 250s 373s timeout

Use Case III 0.3s 2.4s 0.1s 313s 1945s 3427s

TABLE III: Verification time improvement with the sandboxing
technique wrt. the baseline verification time with faults in Table II.

PC Sandboxing PONO YOSYS-BMC BTORMC

Use Case I 0x1c4 ≤ PC ≤ 0x234 110s (+2.8%) 242s (-2.8%) 205s (-24.9%)

Use Case II 0x84 ≤ PC ≤ 0x114 206s (-17.6%) 297s (-20.4%) timeout

Use Case III 0x40 ≤ PC ≤ 0xc0 107s (-65.8%) 1454s (-25.2%) 1659s (-52.0%)

TABLE IV: Verification time improvement with the concretization
technique wrt. the baseline verification time with faults from Table II.

Concretization

Concretized step Baseline Parallelized Accumulated

Use Case I 62 (Status comparison) 249s 189s (-24.1%) 509s (+104%)

Use Case II 31 (PIN comparison) 373s 304s (-18.5%) 891s (+139%)

Use Case III 23 (No branch instruction) 1945s 1504s (-22.7%) 2955s (+51%)

D. Influences of Verification Strategies

Sandboxing Execution Paths. For each use case introduced
before, we determine the range of possible values for the
program counter (PC) by dumping addresses from the binary
file. Here, the possible addresses are contiguous, and we add a
global constraint on the system to force the PC to stay in this
set of values. Table III illustrates that the sandboxing strategy
results in an improvement of the performances up to 65%,
and these additional constraints do not prevent model checkers
from retrieving the vulnerability highlighted in Use Case I.

Such improvements are due to two factors. First, some fault
effects are not analyzed if they lead to PC values out of
the memory range considered. Secondly, the verification may
end before the bound k if all execution paths in the system
exit from the considered address range. We also observe that
improvements vary between the different solvers even if PONO
remains more efficient on the use cases analyzed.

Concretizing Execution Paths. We apply the concretization
strategy for each use case with an enumeration bound L = 3
to split the bounded verification procedure into L + 1 sub-
verifications (c.f., Algorithm 1). We arbitrarily set L = 3 as it
provides the best performance in these practical use cases. A
higher value of L increases the accumulated verification time
without improving the parallelized time.

Table IV reports the concretization steps, the baseline verifi-
cation time from Table II, and the concretization performance.
We show each experiment’s wall-clock time and accumulated
verification time since we can parallelize the executions. Per-
formance is given for the YOSYS-BMC since other evaluated
model checkers do not permit to retrieve the SMT formula
encoding the unrolled system.

On Use Case I, we concretize the execution at the first
branching instruction targeted by fault injection. It corresponds
to the PIN-status comparison to allow authentication (step 62).

This results in an improvement of the verification time by 24%.
On Use Case II, we apply concretization during a PIN-digit
comparison and enumerate PC values associated to different
execution paths. However, few performance improvements are
observed, especially regarding the accumulated verification
time. We believe this is due to the hardware countermeasure
that already prevents executing different paths due to the faults.
No branching instruction exists on Use Case III. However,
many execution paths are possible due to fault injections.
Concretization is applied at step 23, at half of the verification
time. This results in a 22.7% verification time improvement.

In conclusion, concretization often improves the verification
time thanks to the parallelization of the executions. However,
these verification times remain higher than the one obtained
when using the PONO model checker (Table II).

VII. RELATED WORK

Similar works propose modeling and verification method-
ologies to study fault injection effects. Classical verification
methods like simulation are used [3], [6], [36], [37], but they
are often not exhaustive, and it is often difficult to highlight
corner cases, like the Prefetch Buffer introduced in Section I.
For instance, VERFI [3] needs to set a fixed input test vector
to evaluate cryptographic implementation robustness to faults.
In the following, we will discuss papers that propose a formal
framework to analyze fault effects on the system.

First, some works analyze fault effects on hardware imple-
mentation [2], [4], [20]. Formal techniques were first dedicated
to analyzing cryptographic circuits with equivalence checking.
AutoFAULT tool [2] can parse and transform a small block
cipher written in VHDL into a SAT formula to determine if
a fault can induce a wrong ciphertext. The FIVER tool [4]
translates Verilog netlists to Binary Decision Diagram to
compare a fault-free circuit with a faulty copy to determine
the fault effects. FIVER symbolically checks every possible
input and classifies fault effects according to the expected
reference behavior. Faults are classified as effective, ineffective,
or detected, depending on whether they induce a different
behavior and if the countermeasure (if any) detects them.
SYNFI [20] can parse technological netlists to prove the
equivalence between golden and faulty circuits to detect if
the synthesis step removes countermeasures. However, SYNFI
does not handle sequential verification since the design to
analyze is unrolled to perform equivalence checking, and thus,
the tool cannot analyze software. In comparison, µARCHIFI
does not support advanced technological netlists, but we still
support any Verilog or SystemVerilog design by plugging
our translation pass into the Yosys tool. In addition, we
take advantage of a simplified word-level netlist to bridge
the gap with the software and facilitate the analysis of the
transitional system. We also keep the sequential logic instead
of unrolling and flattening the whole design to use model-
checking verification techniques.

On the other hand, some additional works model and
study faults at the software level and analyze fault effects
on the control flow [5], [7], [38]–[40]. These approaches

address the binary or the Instruction Set Architecture level
and propose methodologies to analyze the robustness of the
software programs. SAMVA [40] assesses a binary program
against multiple instruction-skip attacks with static analysis.
The proposed method by Ducousso et al. [7] permits scaling on
large programs like bootloader with up to 10 fault injections.
However, these works do not consider the execution platform,
and the generic fault models used are sometimes inadequate
to model microarchitectural implementation details.

Furthermore, commercial tools offer all the building blocks
required for such a fault injection analysis, but their closed
nature prevents users from integrating them into the same
verification framework. SystemVerilog Assertion (SVA), sup-
ported by tools such as Synopsys VC Formal or Siemens
QuestaVerify, could define the attacker’s goal, but is not
suitable for fault modeling. On the other hand, tools such as
Cadence JasperGold offer support for fault injection but do
not consider software. In short, none of these tools address the
verification of software and hardware against fault injection.

Finally, apart from fault injection, some works [41], [42]
tackle the problem of hardware-software co-verification using
BMC verification. Schmidt et al. [42] propose to separate the
control path and the computation in the modeling to cope with
system complexity. However, this compositional approach is
undermined when the underlying hardware is corrupted by
fault injection since data and control are then both impacted.

VIII. CONCLUSION

In this paper, we propose a faulty transition system to
model the hardware implementation of a processor and the
software program conjointly. This modeling allows to formally
analyze and study the propagation of faults in the microarchi-
tecture and their consequences on the system behavior. The
µARCHIFI tool automatically implements this model, from
the hardware design description at the RTL level, in Verilog,
a binary program, and a specification of the attacker model.
µARCHIFI allows to specify a large variety of microarchitec-
tural fault models with high expressiveness. We illustrate the
use of µARCHIFI on three use cases encompassing complete
microarchitectural designs of RISC-V processors representa-
tive of the embedded market and binary programs of hundreds
of machine instructions. We discuss possible strategies to
improve the verification performance. At this stage, the user
of µARCHIFI must find a sweet spot between the size of
the hardware design, the size of the analyzed program, and
the complexity of the fault model. Future work will focus on
combining several verification strategies leveraging software,
such as sandboxing and concretization techniques, but also
robust hardware embedding countermeasures to analyze fault
injections on a larger scale.

ACKNOWLEDGMENTS

This work was funded in part by the French National
Research Agency (ANR) under the ARSENE project (ANR-
22-PECY-0004), and by Key Digital Technologies Joint Un-
dertaking (KDT JU) under the TRISTAN project (101095947).

REFERENCES

[1] B. Yuce, P. Schaumont, and M. Witteman, “Fault Attacks on Secure Em-
bedded Software: Threats, Design and Evaluation,” Journal of Hardware
and Systems Security, Jun. 2018.

[2] J. Burchard, M. Gay, A.-S. M. Ekossono, J. Horáček, B. Becker,
T. Schubert, M. Kreuzer, and I. Polian, “AutoFault: Towards Automatic
Construction of Algebraic Fault Attacks,” in 2017 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2017.

[3] V. Arribas, F. Wegener, A. Moradi, and S. Nikova, “Cryptographic
Fault Diagnosis using VerFI,” in 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), Dec. 2020.

[4] J. Richter-Brockmann, A. Rezaei Shahmirzadi, P. Sasdrich, A. Moradi,
and T. Güneysu, “FIVER – Robust Verification of Countermeasures
against Fault Injections,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, Aug. 2021.

[5] M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic
Approach for Evaluation the Robustness of Secured Codes against
Control Flow Injections,” in Verification and Validation 2014 IEEE
Seventh International Conference on Software Testing, Mar. 2014.

[6] M. Hoffmann, F. Schellenberg, and C. Paar, “ARMORY: Fully Auto-
mated and Exhaustive Fault Simulation on ARM-M Binaries,” IEEE
Transactions on Information Forensics and Security, vol. 16, 2021.

[7] S. Ducousso, S. Bardin, and M.-L. Potet, “Adversarial Reachability
for Program-level Security Analysis,” in 32nd European Symposium on
Programming (ESOP), 2023, pp. 59–89.

[8] J. Laurent, C. Deleuze, F. Pebay-Peyroula, and V. Beroulle, “Bridging
the Gap between RTL and Software Fault Injection,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 17, no. 3, May 2021.

[9] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont, “Software Fault Resistance is Futile: Effective Single-
Glitch Attacks,” in 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), Aug. 2016.

[10] S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan, “Ex-
ploration of Fault Effects on Formal RISC-V Microarchitecture Models,”
in 2022 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC), Sep. 2022.

[11] J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula, “Fault
Injection on Hidden Registers in a RISC-V Rocket Processor and
Software Countermeasures,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2019.

[12] C. X. Wolf, “Yosys open synthesis suite,”
https://github.com/YosysHQ/yosys, 2016.

[13] J. Richter-Brockmann, P. Sasdrich, and T. Guneysu, “Revisiting Fault
Adversary Models – Hardware Faults in Theory and Practice,” IEEE
Transactions on Computers, 2022.

[14] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
Apr. 2008.

[15] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” 2011.
[16] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani, “Ver-

ilog2SMV: A Tool for Word-level Verification,” in Proceedings of the
2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016.

[17] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv Symbolic Model
Checker,” in Computer Aided Verification, 2014.

[18] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , BtorMC and
Boolector 3.0,” in Computer Aided Verification, 2018.

[19] C. Barrett, P. Fontaine, and A. Stump, “The SMT-LIB Standard,” 2010.
[20] P. Nasahl, M. Osorio, P. Vogel, M. Schaffner, T. Trippel, D. Rizzo, and

S. Mangard, “SYNFI: Pre-Silicon Fault Analysis of an Open-Source
Secure Element,” May 2022.

[21] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT-Solver,” in Formal Methods in Computer-
Aided Design, 2000, pp. 127–144.

[22] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Computer Aided Verification, vol. 2725. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003.

[23] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
Verification, Model Checking, and Abstract Interpretation, 2011.

[24] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in 2011 Formal Methods in Computer-
Aided Design (FMCAD), Oct. 2011.

[25] A. Goel and K. Sakallah, “AVR: Abstractly Verifying Reachability,”
in Tools and Algorithms for the Construction and Analysis of Systems,
A. Biere and D. Parker, Eds., 2020.

[26] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Formal Methods in System Design, 2001.

[27] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook
of Model Checking. Springer International Publishing, 2018.

[28] M. Mann, A. Irfan, F. Lonsing, Y. Yang, H. Zhang, K. Brown, A. Gupta,
and C. Barrett, “Pono: A Flexible and Extensible SMT-Based Model
Checker,” in Computer Aided Verification, 2021, pp. 461–474.

[29] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de
Choudens, “FISSC: A Fault Injection and Simulation Secure Collection,”
in Computer Safety, Reliability, and Security, 2016.

[30] OpenHW group, “OpenHW Group CV32E40P User Manual,” https://
cv32e40p.readthedocs.io/en/latest/.

[31] LowRISC, “Ibex: An embedded 32 bit RISC-V CPU core,” https:
//ibex-core.readthedocs.io/en/latest/.

[32] “Ibex RISC-V Core github repository,” https://github.com/lowRISC/
ibex#configuration.

[33] kokke, “Tiny AES,” https://github.com/kokke/tiny-AES-c, 2019.
[34] J. Takahashi, T. Fukunaga, and K. Yamakoshi, “DFA Mechanism on the

AES Key Schedule,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 2007). Vienna, Austria: IEEE, Sep. 2007.

[35] S. S. Ali and D. Mukhopadhyay, “A Differential Fault Analysis on AES
Key Schedule Using Single Fault,” in 2011 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Sep. 2011.

[36] J. Grycel and P. Schaumont, “SimpliFI: Hardware Simulation of Em-
bedded Software Fault Attacks,” Cryptography, vol. 5, no. 2, Jun. 2021.

[37] T. Given-Wilson, N. Jafri, and A. Legay, “Combined software and
hardware fault injection vulnerability detection,” Innovations in Systems
and Software Engineering, vol. 16, no. 2, Jun. 2020.

[38] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer, “SymPLFIED:
Symbolic program-level fault injection and error detection framework,”
in 2008 IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC (DSN), Jun. 2008.

[39] J.-B. Bréjon, K. Heydemann, E. Encrenaz, Q. Meunier, and S.-T. Vu,
“Fault attack vulnerability assessment of binary code,” in Proceedings
of the Sixth Workshop on Cryptography and Security in Computing
Systems. Valencia Spain: ACM, Jan. 2019.

[40] A. Gicquel, D. Hardy, K. Heydemann, and E. Rohou, “SAMVA: Static
Analysis for Multi-fault Attack Paths Determination,” in Constructive
Side-Channel Analysis and Secure Design (COSADE), 2023, pp. 3–22.

[41] D. Groβe, U. Kühne, and R. Drechsler, “HW/SW co-verification of
embedded systems using bounded model checking,” in Proceedings
of the 16th ACM Great Lakes Symposium on VLSI - GLSVLSI ’06.
Philadelphia, PA, USA: ACM Press, 2006.

[42] B. Schmidt, C. Villarraga, T. Fehmel, J. Bormann, M. Wedler,
M. Nguyen, D. Stoffel, and W. Kunz, “A New Formal Verification
Approach for Hardware-dependent Embedded System Software,” IPSJ
Transactions on System LSI Design Methodology, pp. 135–145, 2013.

https://cv32e40p.readthedocs.io/en/latest/
https://cv32e40p.readthedocs.io/en/latest/
https://ibex-core.readthedocs.io/en/latest/
https://ibex-core.readthedocs.io/en/latest/
https://github.com/lowRISC/ibex#configuration
https://github.com/lowRISC/ibex#configuration
https://github.com/kokke/tiny-AES-c

	Introduction
	Background
	Microarchitectural Faults
	Transition System for Sequential Hardware Circuits
	Yosys Framework

	Faulty System Modeling
	Bringing the Software and the Hardware Together
	Attacker Model
	Faulty Hardware Transition System

	Transition System Verification
	Verification Problem Statement
	Sandboxing Execution Paths
	Concretizing Execution Paths
	Discussion

	Tool Implementation
	µArchiFI Usage
	µArchiFI Architecture

	Evaluation
	Use Case I: Robust Software
	Use Case II: Robust Hardware
	Use Case III: Cryptographic Software
	Influences of Verification Strategies

	Related Work
	Conclusion
	References

