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3Université Paris-Saclay, CEA DAM DIF, Laboratoire en Informatique Haute Performance pour le Calcul et

la Simulation, 91297 Arpajon, France.

August 5, 2024

Abstract

The positivity preservation is very important in most applications solving elliptic problems. Many
schemes preserving positivity has been proposed but are at most second-order convergent. Besides, in
general, high-order schemes do not preserve positivity. In the present paper, we propose an arbitrary-order
positivity preserving method for elliptic problems in 2D. We show how to adapt our method to the case of
a discontinuous and/or tensor-valued diffusion coefficient, while keeping the expected order of convergence.
We assess the new scheme on several test problems.
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1 Introduction

This paper describes a follow-up of two recently published works [6, 7]. In the former work, we designed a positivity
preserving and arbitrary-order numerical method for an elliptic equation in 1D. In the latter one, we showed that the
approach used in 1D extends to second-order accurate methods in 2D. Our goal in this paper is to propose the first
arbitrary-order positivity preserving finite volume method for elliptic problems in 2D. Furthermore this method allows
polygonal meshes of almost any shape to be used.

The model we consider is 
−∇ · (κ∇ū) + λū = f in Ω,

ū = gD on ΓD,

κ∇ū · n = gN on ΓN ,

(1)

where Ω is a bounded open domain of R2 with ∂Ω = ΓD ∪ ΓN (ΓD ∩ ΓN = ∅), and n ∈ R2 is the outgoing unit normal
vector. The data are such that f ∈ L2(Ω), gD ∈ H

1/2(ΓD), gN ∈ L2(ΓN ), λ ∈ R+ (if λ = 0, then |ΓD| > 0), and
κ ∈ L∞(Ω)2,2. The tensor-valued diffusion coefficient κ satisfies the uniform ellipticity condition:

∀x ∈ Ω, ∀ξ ∈ R2, κmin‖ξ‖2 ≤ ξtκ(x)ξ. (2)

where κmin is a strictly positive coefficient. Under the above conditions, one can prove (see for instance [39], Chapter 7,
in the case of Neumann or Dirichlet boundary conditions, extension to mixed boundary conditions is straightforward)
that system (1) has a unique solution in H1(Ω) which satisfies a positiveness principle, i.e. if f ≥ 0 and g ≥ 0, then
ū ≥ 0. One often refers to positivity preserving in the literature for this principle.

For the applications we have in mind, such as inertial confinement fusion simulations, we need to be able to solve
problem (1) on (almost) arbitrary meshes. The reason for this is twofold. First, the domain Ω can be very distorted.
Second, problem (1) is coupled to the Euler equations, which is descretized using a Lagrangian finite volume scheme
(see [14, 31, 37]). We thus have no control on the quality of the mesh. Further, a fundamental property of the hy-
drodynamics scheme is to be conservative, in order to reproduce as precisely as possible singular solutions, such as
shocks. Thus, the diffusion scheme applied to (1) should be conservative too, in order to preserve this property. As a
consequence, the positivity of the solution cannot be recovered by merely truncating negative values: such a strategy is
incompatible with conservativity.

This is why a large amount of work has been devoted to the design of positivity preserving schemes since the seminal
works of [5, 34]. Among other publications, let us cite recent works [12, 13, 44, 46, 49, 51, 52, 57] and references therein
about this topic. However, none of these methods is arbitrarily high-order accurate. The most advanced work in this
direction is [52], which achieved third-order accuracy.

Some methods are particularly well-suited for achieving arbitrary high-order for elliptic problems. Let us cite for
instance the finite-element method [17], the Virtual Element method [4], the Discontinuous Galerkin method [19], and
the Hybrid High-Order method (HHO) [22]. However, very few (see [2, 3, 11, 50] and references therein) can enforce the
positiveness of the unknown without imposing severe constraints on the mesh, and none of them achieve a convergence
order higher than two.

In [16, 28, 35, 36, 47], Discontinuous Galerkin (DG) schemes that satisfy the maximum principle are presented for
solving different types of parabolic models. These methods are based on the seminal work [55], and use limiters to
preserve the positivity of the mean values, at the discrete level. An explicit integration in time is performed, leading to
a parabolic constraint on the timestep which is not affordable in our context. Another approach to achieve positivity
relies on the change of variable ū = ev̄. Equation (1) is transformed into a nonlinear equation. This idea has been used
for instance in [8, 20, 40] to produce high-order positivity preserving methods. A DG method is proposed in [8, 20],
which preserves the positivity of the solution of the Fischer-Kolmogoroff-Petrovsky-Piscounov equation. In [40], a similar
scheme is designed in the framework of the HHO method. These two methods are arbitrary-order accurate in space,
and allow for general polygonal meshes. They can be considered as alternatives to the present work.
A reason for not using these methods in our context, is that their coupling with other models can be problematic since
the degrees of freedom of the different discrete operators approximations do not match. Besides, the method presented
in this paper is cell-centered (with piecewise constant unknowns), which is the simplest possible set of unknowns.
To our knowledge, the method we propose here is the first arbitrary-order positivity preserving finite volume type
scheme for discretizing the elliptic equation (1) on general polygonal meshes. The diffusion coefficient can be tensor-
valued and/or discontinuous. We show that the arbitrary high-order accuracy is preserved even with a discontinuous

2



diffusion coefficient as long as discontinuities are known and coincide with edges of the mesh. We recall the main steps
of the proposed method (see also [7]):

1. Integration of the equation over each cell of the mesh.

2. Transformation of this surface integral into a sum of fluxes using the divergence theorem.

3. Approximation of the fluxes using a Gauss quadrature rule on each edge of the cell.

4. Taylor expansion of the solution ū in the neighborhood of each Gauss quadrature point of each edge along two
independent privileged directions in order to obtain an approximation of ∇ū involving the values of ū and its
derivatives at certain suitably chosen points, in this case the center of mass and vertices of the cell.

5. Using this Taylor expansion, estimation of (κ∇ū) · n = (∇ū) · (κtn).

6. Calculation of the values of ū at vertices by a polynomial interpolation formula in the neighborhood of the Gauss
quadrature points of each cell edge.

7. Calculation of the values of derivatives of ū at centers of mass and vertices of the neighboring cells by differentiating
this polynomial interpolation.

8. Transformation of the scheme into a positivity preserving non-linear approximation with a two-point flux structure.

9. Resolution of the non-linear system by the Picard iteration method.

The paper is structured as follows. Definitions and notations are given in Section 2. The proposed arbitrarily
high-order Finite-Volume method is described in Section 3. Then, we explain how the scheme is modified to enforce
the positivity in Section 4. In Section 5, we prove some nice properties of the method. Finally the arbitrary high-order
accuracy and the positivity of the method are assessed in Section 6 on a range of benchmarks including cases with highly
anisotropic and discontinuous diffusion coefficients.

2 Definitions and notations

•i
•j

•r

•s

`•x`

•g ni`θgj

θig

Figure 1: Example of a mesh with our notations.

Given an arbitrary mesh the cells of which are numbered from 1 to n, consider a cell denoted i and its neighbor j
(see Figure 1). The center of mass of i (resp. j) is denoted by xi (resp. xj), their common edge is ` and the vertices
of ` are xr and xs. The position of the center of the edge ` is x`. We denote by xg a Gauss quadrature point located
on the edge `. The length of ` is |`| and the volume of a cell i is Vi. The normal vector ni` is the unit vector which is
orthogonal to the edge ` and outgoing for the cell i. Let us emphasize that if ` is shared by cells i and j then nj` = −ni`.
Let θig (resp. θgj) be the angle between xg − xi (resp. xj − xg) and ni`.

By abuse of notations, we denote by ∑
`∈i

resp.
∑
g∈`


any sum on all edges ` (resp. on all Gauss quadrature points g) of cell i (resp. edge `).
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We define h = min
`
|`|. We assume that there exists a constant θ0 independent of h such that, for all g,

|θ0| <
π

2
, cos(θ0) < cos(θig), cos(θ0) < cos(θgj). (H)

This condition is close to imposing that the cells are star-shaped. However, since θ0 does not depend on h, it is slightly
stronger. Note that the higher the order, the more Gauss points there are, and the more restrictive this assumption
becomes.

In the case where (H) is not satisfied, we replace xi by the midpoint of an inner diagonal of i or by any interior point
for which i is star-shaped (right-hand side of Figure 2).

Figure 2: A non convex cell i and a convex cell j such that xi and xj are not separated by the line defined by edge `.

Given v = (vi) a vector in Rn we will denote respectively its Euclidian, L2 and L∞ norms by

‖v‖ =

(
n∑
i=1

v2
i

)1/2

, ‖v‖2 =

(
n∑
i=1

Viv
2
i

)1/2

, ‖v‖∞ = max
1≤i≤n

|vi|

and we use the compact notation v > 0 (resp. v ≥ 0) if, for all i, vi > 0 (resp. vi ≥ 0).

3 Finite volume formulation

In this part, we detail the construction of a linear arbitrary order scheme for problem (1). Up to some details, this con-
struction is similar to that proposed in [42] (see also [18, 21]). In particular, in [21] some proofs are provided concerning
the accuracy order of the linear scheme. These proofs can be easily adapted to our derivation.

To simplify the presentation we suppose that κ is isotropic : κ = κI, with κ > κmin. It is worth noting that the full
anisotropic case can be immediately dealt with by remarking that (κ∇ū) · n = (∇ū) · (κtn) and by replacing n by κtn
in what follows. Moreover we assume that the discontinuities of κ coincide with edges of the mesh.

3.1 Approximation of the interior fluxes

The first step to design a finite volume scheme consists in integrating (1) on cell i

−
∫
i

∇ · κ∇ū+

∫
i

λū =

∫
i

f.

Thanks to the divergence formula we obtain

−
∑
`∈i

∫
`

κ∇ū · ni` +

∫
i

λū =

∫
i

f. (3)

Using a k-th order accurate Gauss’s quadrature formula for approximating the flux through the edge `

F̄i` =

∫
`

κ∇ū · ni`

we have

−
∑
`∈i

|`|
∑
g∈`

ωgκ(xg) (∇ū) (xg) · ni` +

∫
i

λū =

∫
i

f +O(hk),
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where ωg > 0 and xg are respectively the weights and the points of the quadrature. Thus we have to approximate

κ(xg) (∇ū) (xg) · ni`.
Suppose that ū ∈W 1,∞(Ω) and denote :

Np
q =

1

p!

(
p

q

)
=

1

q!(p− q)! .

A Taylor expansion at order k in the neighborhood of xg gives

ū(x) = ū(xg) + (x− xg) ·∇ū(xg) +

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)(x− xg)q(y − yg)p−q +O

(
‖x− xg‖k+1

)
. (4)

Let ū be the vector

ū = (ūi)1≤i≤n, (5)

with ūi the mean value of ū in cell i

ūi =
1

Vi

∫
i

ū(x).

Integrating (4) on cells i, j and dividing respectively by their volume Vi, Vj provides

ūi = ū(xg) + (xi − xg) ·∇ū(xg) +
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
i

(x− xg)q(y − yg)p−q +O
(
hk+1

)
,

ūj = ū(xg) + (xj − xg) ·∇ū(xg) +
1

Vj

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
j

(x− xg)q(y − yg)p−q +O
(
hk+1

)
.

hence

(xg − xi) ·∇ū(xg) = ū(xg)− ūi + r̄gi,

(xj − xg) ·∇ū(xg) = ūj − ū(xg) + r̄gj

with

r̄gi =
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
i

(x− xg)q(y − yg)p−q +O
(
hk+1

)
,

r̄gj = − 1

Vj

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
j

(x− xg)q(y − yg)p−q +O
(
hk+1

)
Using respectively x = xr and x = xs in the Taylor expansion (4), we obtain

ū(xr) = ū(xg) + (xr − xg) ·∇ū(xg) +

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)(xr − xg)q(yr − yg)p−q +O

(
hk+1

)
,

ū(xs) = ū(xg) + (xs − xg) ·∇ū(xg) +

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)(xs − xg)q(ys − yg)p−q +O

(
hk+1

)
.

Subtracting these equalities gives

(xs − xr) ·∇ū(xg) = ū(xs)− ū(xr) + r̄rs

with

r̄rs = −
k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

(
(xs − xg)q(ys − yg)p−q − (xr − xg)q(yr − yg)p−q

)
+O

(
hk+1

)
.
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Thus, we have the system 
∇ū(xg) · (xg − xi) = ū(xg)− ūi + r̄gi,

∇ū(xg) · (xj − xg) = ūj − ū(xg) + r̄gj ,

∇ū(xg) · (xs − xr) = ū(xs)− ū(xr) + r̄rs.

(6)

We can decompose the unit normal vector ni` both in the basis ((xg − xi), (xs − xr)) and ((xj − xg), (xs − xr))

ni` = αgi
xg − xi
‖xg − xi‖

+ βgi
xs − xr
‖xs − xr‖

= αgj
xj − xg
‖xj − xg‖

+ βgj
xs − xr
‖xs − xr‖

with

αgi =
‖xg − xi‖

(xg − xi) · ni`
>0, αgj =

‖xj − xg‖
(xj − xg) · ni`

>0, (7)

βgi =
‖xs − xr‖ni` · (xg − xi)

⊥

(xs − xr) · (xg − xi)⊥
, βgj =

‖xs − xr‖ni` · (xj − xg)
⊥

(xs − xr) · (xj − xg)⊥
. (8)

That is, in view of Figure 1

αgi =
1

cos(θig)
, βgi =

sin(θig)

cos(θig)
, αgj =

1

cos(θgj)
, βgj =

sin(θgj)

cos(θgj)
.

According to assumption (H) these values are well defined. Owing to the definition we choose for xi (see Section 2 and
Figure 2), we have the inequalities αgi > 0, αgj > 0, which are mandatory for positiveness of the scheme (see Section 4).

Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell i, j, respectively
denoted by ∇ū(xg)i · ni`, ∇ū(xg)j · ni`

∇ū(xg)i · ni` = αgi
∇ū(xg) · (xg − xi)

‖xg − xi‖
+ βgi

∇ū(xg) · (xs − xr)

‖xs − xr‖
,

∇ū(xg)j · ni` = αgj
∇ū(xg) · (xj − xg)

‖xj − xg‖
+ βgj

∇ū(xg) · (xs − xr)

‖xs − xr‖
,

that is to say, using (6)

∇ū(xg)i · ni` = αgi
ū(xg)− ūi + r̄gi
‖xg − xi‖

+ βgi
ū(xs)− ū(xr) + r̄rs

‖xs − xr‖
, (9)

∇ū(xg)j · ni` = αgj
ūj − ū(xg) + r̄gj
‖xj − xg‖

+ βgj
ū(xs)− ū(xr) + r̄rs

‖xs − xr‖
, (10)

If κ is continuous on a Gauss point xg of an edge ` we define

κgi = κgj = κ(xg)

while if it is not we define

κgi = lim
x∈i→xg

κ(x), κgj = lim
x∈j→xg

κ(x).

Thanks to the continuity of the flux

κgi∇ū(xg)i · ni` = κgj∇ū(xg)j · ni`,
we obtain

ū(xg) =
1

κgiαgi

‖xg−xi‖
+

κgjαgj

‖xj−xg‖

( κgjαgj
‖xj − xg‖

(ūj + r̄gj) +
κgiαgi
‖xg − xi‖

(ūi − r̄gi)

+
κgjβgj
‖xs − xr‖

(ū(xs)− ū(xr) + r̄rs)−
κgiβgi
‖xs − xr‖

(ū(xs)− ū(xr) + r̄rs)
)
.

Inserting this value into (9) or (10) results in
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κgi∇ū(xg)i · ni` = κgj∇ū(xg)j · ni` =

(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
(ūj − ūi + r̄gj + r̄gi)

+

(
κgiκgjαgiβgj‖xj − xg‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(ū(xs)− ū(xr) + r̄rs)

+

(
κgiκgjαgjβgi‖xg − xi‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(ū(xs)− ū(xr) + r̄rs).

Let us assume that we have at our disposal an approximation u = (ui)1≤i≤n of ū = (ūi)1≤i≤n. From u we can find a
high-order polynomial approximation Pi(x) of ū in each cell i while respecting the discontinuity lines of the diffusion
coefficient κ (see Section 3.3). So, the numerical flux Fi`(u) is defined by

Fi`(u) = |`|
∑
g∈`

ωg

[(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
(uj − ui + rgj(u) + rgi(u))

+

(
κgiκgjαgiβgj‖xj − xg‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pj(xs)− Pj(xr) + sgj(u))

+

(
κgiκgjαgjβgi‖xg − xi‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pi(xs)− Pi(xr) + sgi(u))

]
with 

rgi(u) =
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pPi
∂xq∂yp−q

(xg)

∫
i

(x− xg)q(y − yg)p−q,

rgj(u) = − 1

Vj

k∑
p=2

p∑
q=0

Np
q

∂pPj
∂xq∂yp−q

(xg)

∫
j

(x− xg)q(y − yg)p−q,

sgi(u) = −
k∑
p=2

p∑
q=0

Np
q

∂pPi
∂xq∂yp−q

(xg)
(
(xs − xg)q(ys − yg)p−q − (xr − xg)q(yr − yg)p−q

)
,

sgj(u) = −
k∑
p=2

p∑
q=0

Np
q

∂pPj
∂xq∂yp−q

(xg)
(
(xs − xg)q(ys − yg)p−q − (xr − xg)q(yr − yg)p−q

)
.

(11)

Finally we obtain in a more compact form the following approximation of the flux through the edge `

Fi`(u) = γ`(uj − ui) + ri`(u) (12)

with 

γ` = |`|
∑
g∈`

ωg

(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
≥ 0,

ri`(u) = |`|
∑
g∈`

ωg

[(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
(rgi(u) + rgj(u))

+

(
κgiκgjαgjβgi‖xg − xi‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pi(xs)− Pi(xr) + sgi(u))

+

(
κgiκgjαgiβgj‖xj − xg‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pj(xs)− Pj(xr) + sgj(u))

]
.

The property γ` ≥ 0 is a consequence of ωg ≥ 0 and αgi, αgj ≥ 0 (Equation (7)).

Remark 3.1. The same construction can be made in the cell j. The only difference is that ni` is replaced by nj` = −ni`.
Thus, we have by construction that ri` = −rj` and moreover that Fi` = −Fj`.

Remark 3.2. In the present article, we consider a scalar-valued diffusion coeffient κ. The extension to the case of a
tensor-valued diffusion coeffient κ is straightforward and goes as follows. First, formula (3) becomes

−
∑
`∈i

∫
`

∇ū ·
(
κtni`

)
+

∫
i

λū =

∫
i

f.

7



Second, we decompose the normal vector κtni` both in the basis ((xg−xi), (xs−xr)) and in the basis ((xj−xg), (xs−xr))

κtni` = αgi
xg − xi
‖xg − xi‖

+ βgi
xs − xr
‖xs − xr‖

= αgj
xj − xg
‖xj − xg‖

+ βgj
xs − xr
‖xs − xr‖

Thus, the coefficient defined by (7) and (8) becomes

αgi =
‖xg − xi‖κtni` · ni`

(xg − xi) · ni`
> 0, βgi =

‖xs − xr‖κtni` · (xg − xi)
⊥

(xs − xr) · (xg − xi)⊥

and

αgj =
‖xj − xg‖κtni` · ni`

(xj − xg) · ni`
> 0, βgj =

‖xs − xr‖κtni` · (xj − xg)
⊥

(xs − xr) · (xj − xg)⊥
.

The fact that αgi, αgj are positive is a direct consequence of the ellipticity condition (2) satisfied by κ.

3.2 Approximation of the boundary fluxes

In this section we use the boundary conditions to estimate the boundary fluxes.

3.2.1 Neumann boundary condition

Integrating the Neumann boundary condition on an edge ` ⊂ ΓN , we have∫
`

κ∇ū · ni` =

∫
`

gN ,

that is to say

F̄i` = |`|
∑
g∈`

ωggN (xg) +O(hk),

we thus impose this equation on the numerical flux

Fi`(u) = |`|
∑
g∈`

ωggN (xg).

3.2.2 Dirichlet boundary condition

Taking into account the Dirichlet boundary condition ū(xg) = gD(xg) in (9) we have, for g ∈ ` ⊂ ΓD,

∇ū(xg) · ni` = αgi
gD(xg)− ūi + r̄gi
‖xg − xi‖

+ βgi
ū(xs)− ū(xr) + r̄rs

‖xs − xr‖
.

By mimicking the expression of this exact flux, the numerical one is defined by

F`(u) = |`|
∑
g∈`

ωgκg

(
αgi

‖xg − xi‖
(gD(xg)− ui + rgi(u)) +

βgi
‖xs − xr‖

(Pi(xs)− Pi(xr) + sgi(u))

)
with rgi(u) and sgi(u) given in (11). In a more compact form we have

Fi`(u) = −γ`ui +
∑
g∈`

(
ωgκgαgi|`|
‖xg − xi‖

gD(xg)

)
+ ri`(u)

with 
γ` =

∑
g∈`

(
ωgκgαgi|`|
‖xg − xi‖

)
≥ 0,

ri`(u) = |`|
∑
g∈`

ωgκg

(
αgi

‖xg − xi‖
rgi(u) +

βgi
‖xs − xr‖

(Pi(xs)− Pi(xr) + rrs(u))

)
,

where

rrs = −
k∑
p=2

p∑
q=0

Np
q

∂pPi
∂xq∂yp−q

(xg)
(
(xs − xg)q(ys − yg)p−q − (xr − xg)q(yr − yg)p−q

)
.
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3.3 High-order reconstruction by interpolation

For a polynomial of degree k, we have to calculate

(k + 1)(k + 2)

2

coefficients, so at least (k + 1)(k + 2)/2 neighboring cells of the cell are required. However, it is well known [54], that a
larger number of cells is highly desirable for stability purpose. Following [23, 30], we use a stencil of size (k+ 1)(k+ 2),
to be sure to have enough information in each direction. When it is possible, the stencil will be centered on the cell, but
the closer the cell is to the boundary or the discontinuity of κ, the more the stencil will be shifted so as not to cross the
discontinuity.

•i

•

• •i

•

•

•

•

•

Figure 3: Construction of the stencil for the cell i with a discontinuity (in red)

To be more precise, the construction of the stencil Si = {0, ..., p} associated with a cell i is illustrated on Figure 3. For
the sake of simplicity, we have assumed that the cells involved in the stencil have been renumbered. First the cell i itself
(in blue) is added to the stencil and then we add the cells that share, at least, an edge with the cell i (in yellow). If the
number of cells we have already selected is not sufficient (in our case, (k+ 1)(k+ 2) cells for a polynomial of order k), we
add the cells that have, at least, an edge linked to the cells that we have just been added to the stencil (in green) and
so on until we have enough cells. In all the above process, we impose that the stencil does not cross any discontinuity
of κ (see Figure 3). Note that this method only works if there are enough cells in the domain to build the stencil. If the
coefficient κ is discontinuous, there must be enough cells in all sub-domains generated by the discontinuity. When this
is not the case, the only strategy we are able to propose is to refine the mesh.

Let u0, ..., up denote the p+ 1 values of u used for the calculation, with p ≥ 2. The polynomial is of the form

P (x) =

k∑
m=0

k−m∑
n=0

am,n(u)(x− xi)m(y − yi)n.

The coefficients of the polynomial P (x) are assumed to satisfy

1

Vj

∫
j

P (x) = uj , ∀j ∈ Si.

This leads to the following system


1

1

V0

∫
0

(x− xi)
1

V0

∫
0

(y − yi) . . .
1

V0

∫
0

(x− xi)k
1

V0

∫
0

(y − yi)k

...
...

...
. . .

...

1
1

Vp

∫
p

(x− xi)
1

Vp

∫
p

(y − yi) . . .
1

Vp

∫
p

(x− xi)k
1

Vp

∫
p

(y − yi)k


︸ ︷︷ ︸

=:M



a0,0

a1,0

a0,1

...
ak,0
a0,k


︸ ︷︷ ︸

=:a

=

 u0

...
up


︸ ︷︷ ︸

=:d

.
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Since the matrix M has more rows than columns we have to use the least square method so that the vector a is computed
as the solution to the linear system: MtMa = Mtd. To improve the condition-number of this Least-Squares problem,
we rewrite it as {

MGy = d,

a = Gy,

where G is the diagonal matrix defined by

Gkk =

(
1

Vi

) dk
2

,

with dk the degree of the k-th monomial of P (see Section 2.1.4 of [15]). We use the Givens method (see [27] p.206 and
following) to solve this least-square problem, which avoids the direct inversion of MtM.

In this process, we do not enforce the continuity of u at the vertices. Indeed, a priori, Pj(xs) 6= Pi(xs) for i 6= j.

4 Positivity preservation

A method borrowed from [25, 26, 51, 56] and developed in the framework of 2D diffusion on arbitrary meshes can be
used to make the scheme positivity preserving. The flux (12) can be rewritten as follows

Fi`(u) = γ`(uj − ui) + ri`(u)+ − ri`(u)−,

with

ri`(u)+ =
|ri`(u)|+ ri`(u)

2
≥ 0 and ri`(u)− =

|ri`(u)| − ri`(u)

2
≥ 0.

Let us assume that u > 0, the flux then reads as

Fi`(u) =

(
γ` +

ri`(u)+

uj

)
uj −

(
γ` +

ri`(u)−

ui

)
ui,

and the coefficients
(
γ` + ri`(u)+

uj

)
and

(
γ` + ri`(u)−

ui

)
are positive. We end up with a two-point flux structure, which

is very favorable for the resolution of the system. However note that this system is non-symmetric and non-linear since
its coefficients depend on u.

Remark 4.1. We have also

Fj`(u) =

(
γ` +

rj`(u)+

ui

)
ui −

(
γ` +

rj`(u)−

uj

)
uj .

Using that rj`(u) = −ri`(u) (see Remark 3.1), it implies rj`(u)+ = ri`(u)− and rj`(u)− = ri`(u)+. Hence,

γ` +
ri`(u)−

ui
= γ` +

rj`(u)+

ui
, γ` +

ri`(u)+

uj
= γ` +

rj`(u)−

uj
. (13)

This yields

Fj`(u) =

(
γ` +

ri`(u)−

ui

)
ui −

(
γ` +

ri`(u)+

uj

)
uj = −Fi`(u).

This is expected since the scheme is equivalent to (12) as long as ∀i ∈ J1, nK, ui 6= 0.

The definition of the nonlinear scheme requires ui > 0, ∀i ∈ J1, nK, but at the limit h → 0, ui may vanish. In order to
circumvent this difficulty, it is possible to add a term η > 0 to the denominator in the flux. Then, the flux is given by

Fi`(u)= −Fj`(u) =

(
γ` +

ri`(u)+

uj + η

)
uj −

(
γ` +

ri`(u)−

ui + η

)
ui. (14)

In addition, relation (13) becomes

γ` +
ri`(u)−

ui + η
= γ` +

rj`(u)+

ui + η
, γ` +

ri`(u)+

uj + η
= γ` +

rj`(u)−

uj + η
. (15)

We tried both implementations (with and without η) and found negligible differences on the results. The only sensitivity
we found is that, in difficult problems, adding η may lead to a reduction of the number of fixed-point iterations. Note
that in theory, η is no more negligible when u → 0. However we did not observe any difference in the results even for
problems with homogeneous Dirichlet boundary conditions. All the problems in Section 6 are run with η = 10−15. In
practice, this parameter should be scaled with respect to the problem considered.
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4.1 Matrix form

The scheme reads as (recall that we have assumed that λ is constant)

−
∑
`∈i

Fi`(u) + λViui = Vifi. (16)

Consider a mesh the cells of which are numbered from 1 to n. Denoting

u = (ui)1≤i≤n, b = (bi)1≤i≤n, A = (Aij)1≤i,j≤n,

we can write (16) as the matrix-vector product

A(u)u = b, (17)

with 
Aii(u) =

∑
`∈i,` 6∈ΓN

(
γ` +

ri`(u)−

ui+η

)
+ Viλ,

Aij(u) = −
∑
`∈i∩j

(
γ` +

ri`(u)+

uj+η

)
i 6= j

(18)

and

bi = Vifi +
∑

`∈i,`∈ΓD

ri`(u)+ +
∑
g∈`

(
ωgκgαgi|`|
‖xg − xi‖

)
gD(xg)

+
∑

`∈i,`∈ΓN

|`|
∑
g∈`

ωggN (xg). (19)

Remark 4.2. In (16) and (19), an approximation of order k is required to compute fi =
1

Vi

∫
i

f . Moreover, the formula

for the zero order term λViui is of order k if λ is assumed to be a constant.

If λ is not a constant, the integral

∫
i

λū in Equation (3) is approximated using a k-th order accurate Gauss’s quadrature

formula, which gives
∑
g̃

ωg̃λ(xg̃)ū(xg̃), where ωg̃ > 0 and xg̃ are respectively the weights and the points of the quadrature

in cell i. To be more precise, we proceed as follows.
Integrating (4) on cell i and dividing by its volume Vi gives

ūi = ū(xg̃) + (xi − xg̃) ·∇ū(xg̃) +
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg̃)

∫
i

(x− xg̃)q(y − yg̃)p−q +O
(
hk+1

)
,

which implies ∫
i

λū =
∑
g̃

ωg̃λ(xg̃) (ūi + r̄ig̃) ,

where

r̄ig̃ = −(xi − xg̃) ·∇ū(xg̃) +
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg̃)

∫
i

(x− xg̃)q(y − yg̃)p−q +O
(
hk+1

)
.

The scheme thus reads as ∑
`∈i

(γ`(ui − uj) + ri`(u)) +
∑
g̃

ωg̃λ(xg̃) (ui + rig̃) = Vifi,

where ri`(u) is defined in Section 3.1, and

rig̃ = −(xi − xg̃) ·∇Pi(xg̃) +
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pPi
∂xq∂yp−q

(xg̃)

∫
i

(x− xg̃)q(y − yg̃)p−q.

The above equation is valid for inner cells only, but can be easily adapted for boundary cells, as we explained in
Section 3.2.

Remark 4.3. Assuming that f ≥ 0 and g ≥ 0, all the components of the right hand side b are non-negative. Assuming
moreover that f and g are not both identically zero, then at least one component of b is positive.
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4.2 Picard iteration method

In order to solve (17) we use a Picard iteration method. We start with an initial guess u0 > 0, compute the matrix
A(u0) and solve A(u0)u1 = b. Repeating this process, we build a sequence (uν) that, if it converges to a positive
vector, tends to a solution of the scheme. We stop the algorithm when the difference uν+1 − uν between two successive
iterates is small enough. To summarize, the following algorithm is used

ν = 0

A(u0)u1 = b

While
‖uν+1 − uν‖2
‖uν‖2

> ε

A(uν)uν+1 = b

ν = ν + 1,

(20)

where ε is a small stopping criterium. Unfortunately, we are unable to prove that the above algorithm converges.
Nevertheless, we prove in Section 5.1 below that the scheme is well defined at each iteration of the algorithm, as soon
as the initial guess u0 is positive.
This procedure implies that the flux depends now on uν and uν+1. Accordingly, we define

Fi`(uν ,uν+1) =

(
γ` +

ri`(u
ν)+

uνj + η

)
uν+1
j −

(
γ` +

ri`(u
ν)−

uνi + η

)
uν+1
i . (21)

Note that relation (15) still holds, because the coefficients depend only on uν , hence

Fi`(uν ,uν+1) = −Fj`(uν ,uν+1). (22)

5 Properties

5.1 Well-posedness of the Picard iteration method

Consider the definition of an M-matrix (see for instance [43])

Definition 5.1. An n×n matrix A that can be expressed in the forme A = sI−B, where B = (bij)1≤i,j≤n with bij ≥ 0,
1 ≤ i, j ≤ n, and s ≥ ρ(B), the maximum of the moduli of the eigenvalues of B, is called an M-matrix.

We use the following lemma

Lemma 5.2. A matrix A = (Aij)1≤i,j≤n is an M-matrix if it satisfies the following inequalities

∀i 6= j, Aij ≤ 0, and ∀i,
n∑
j=1

Aij ≥ 0.

Moreover, if the last inequality is strict, we say that A is a strict M-matrix.

Proposition 5.3. Assume that u > 0. Then the matrice A defined by (18) is such that At is a strict M-matrix.

Proof. The matrix A satisfies

∀i 6= j, Aij ≤ 0 and ∀j,
n∑
i=1

Aij > 0.

Indeed we have, for all j

n∑
i=1

Aij =

n∑
i=1

 ∑
`∈i,`/∈ΓN

(
γ` +

ri`(u)−

ui+η

)
−
∑
`∈i∩j

(
γ` +

ri`(u)+

uj+η

)+ λjVj .

Thanks to the relation (15), only the boundary terms and the mass term remain, for all j

n∑
i=1

Aij =

n∑
i=1

∑
`∈(i∩ΓD)

(
γ` +

ri`(u)−

ui+η

)
+ λjVj > 0.

Proposition 5.4. Assume that f ≥ 0, g ≥ 0, and either ‖f‖L2(Ω) > 0 or ‖g‖L2(∂Ω) > 0. Assume moreover that u0 > 0.
Then, the algorithm (20) defines a sequence (uν)ν≥0 such, that for all ν, uν > 0.
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To prove this property, we need to introduce the concept of irreducible matrix: see [48, Definition 1.15].

Definition 5.5. An n× n matrix A is reducible if there exits an n× n permutation matrix P such that

PAPt =

[
A11 A12

0 A22

]
,

where A11, A12, A22 are respectively r × r, r × (n− r) and (n− r)× (n− r) sub-matrices with 1 ≤ r < n. If no such
permutation matrix exists, then A is irreducible.

The matrice A defined by (18) is irreducible thanks to the following Lemma (see [48, Theorem 1.17]).

Lemma 5.6. To any n × n matrix A we associate the graph of nodes 1, 2, ..., n and of directed edges connecting xi to
xj if Aij 6= 0. Then A is irreducible if and only if for any pair i 6= j there exists a chain of edges that allows to go from
xi to xj,

Ai,k1 6= 0→ Ak1,k2 6= 0→ · · · → Akm,j 6= 0.

With these definitions we can make use of the following theorem (see [48], Corollary 3.20).

Theorem 5.7. If A is an irreducible strict M-matrix, then it is invertible and, for all i, j (1 ≤ i, j ≤ n), (A−1)ij > 0.

We are now in position to prove Proposition 5.4.

Proof of Proposition 5.4. We argue by induction on the index ν. We assume that uν > 0. Hence (A(uν))t is a strict
M -matrix (see Proposition 5.3). It is easy to check that (A(uν))t is also irreducible. Thus, applying Theorem 5.7,
(A(uν))t is invertible and all the entries of (A(uν))−t are positive. Consequently, all the entries of (A(uν))−1 are
positive. Using Remark 4.3, we know that all components of b are non-negative. Moreover, because of the assumption
that either ‖f‖L2(Ω) > 0 or ‖g‖L2(∂Ω) > 0, at least one component of b is positive. We thus have, for all i (1 ≤ i ≤ n)

uν+1
i =

n∑
j=1

(A(uν))−1
ij bj > 0,

since all terms of this sum are non-negative, with one at least that does not vanish.

Proposition 5.4 shows that the condition uν > 0 remains satisfied during the Picard iteration method, which allows to
define A(uν) for all ν ≥ 0.

Remark 5.8. The scheme preserves positivity if the inversion of the linear system is exact. The above proof assumes
that the solution of the system Au = b is calculated exactly. Obviously, in practice, this is not the case, hence, the
numerical solution may be negative. In the tests we have carried out, the error is small enough not to produce negative-
valued solution. However, in rare cases, the inversion of the system led to a solution with negative components, causing
the calculation to stop (see for example Section 6.2.1 below). This error can be reduced by working on the condition
number of the matrix or on methods for solving linear systems, which is a perspective. Besides, these issues are related
to the implementation (and not the scheme itself). Further work is required to improve robustness.

5.2 Conservation

Proposition 5.9. Assume that u0 > 0 and consider homogeneous Neumann boundary conditions, then the scheme
defined by (16) is conservative at each fixed-point iteration, that is to say

∀ν,
n∑
i=1

Viλu
ν+1
i =

n∑
i=1

Vifi.

Proof. Owing to Proposition 5.4, we know that ∀ν, uν is well defined and positive. The sum can be rewritten by inverting
the sum on the cells and on the faces. Besides, the sum can be separated into boundary terms and non-boundary-terms

n∑
i=1

(
−
∑
`∈i

Fi`(uν ,uν+1)

)
= −

∑
`∈Γ

Fi`(uν ,uν+1)−
∑
`/∈Γ

(
Fi`(uν ,uν+1) + Fj`(uν ,uν+1)

)
.

According to (22), we have
Fi`(uν ,uν+1) + Fj`(uν ,uν+1) = 0,

for inner faces. In addition,
Fi`(uν ,uν+1) = 0,

for boundary faces. Thus, the scheme is conservative at each fixed-point iteration.
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6 Numerical experiments

Given Ω =]0, 1[2, κ a diffusion coefficient and g a function defined on ∂Ω, consider Problem (1) with λ = 0 and ΓN = ∅{
−∇ · (κ∇ū) = f in Ω,

ū = g on ∂Ω.
(23)

In addition to Cartesian meshes we will use the two following types of meshes (see Figure 4):

1. deformed meshes, the deformation of which from the Cartesian mesh is given by

(x, y)→ (x+ 0.1 sin(2πx) sin(2πy), y + 0.1 sin(2πx) sin(2πy)),

2. randomly deformed meshes, the deformation of which from the unit Cartesian mesh with cells of size ∆x is given
by

(x, y)→ 0.1(x, y) + 0.9(x+ 0.45a∆x, y + 0.45b∆x),

where a, b are random numbers distributed according to the uniform law on [−1, 1].

In the tests, we use a sequence of successively refined deformed or randomly deformed meshes. In such a process, the
deformations are applied independently on each level of refinement.

(a) A deformed mesh (b) A randomly deformed mesh

Figure 4: Examples of deformed meshes.

The L2-error on the solution and the L2-error on the fluxes used in the following tests are respectively given by

‖u− ū‖2
‖ū‖2

,

∑
`

Fi`(u)− |`|
∑
g∈`

ωgκg∇ū(xg) · ni`

21/2

∑
`

|`|∑
g∈`

ωgκg∇ū(xg) · ni`

21/2
,

where we recall that ū is defined by (5). Numerically, an approximation of order k is required to compute ūi.

We also use the H1 semi-norm error defined by

‖∇hu−∇ū‖2
‖∇ū‖2

,

where

‖∇ū‖2 =

(∑
i

Vi ‖∇ū(xi)‖2
)1/2

, ‖∇hu−∇ū‖2 =

(∑
i

Vi ‖∇Pi(xi)−∇ū(xi)‖2
)1/2

,
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Pi being the polynomial obtained by reconstruction with the approximated values of the solution u.

For all the tests, the stopping criterion ε and the initial guess u0 of the fixed-point algorithm (20) are ε = 10−12 and
u0
i = 1, ∀i. We use the linear solver GMRES with the preconditioner ILU (see [38], Chapter 7.4) with the convergence

criterion is 10−14.

6.1 Numerical accuracy assessment

In this section we present numerical results for diffusion problems of type (23) with analytical solutions. The first (resp.
second) case involves a discontinuous (resp. anisotropic) diffusion coefficient. Numerical convergence rates are evaluated
using the L2 norm of the solution as well the L2 norm of the fluxes and the H1 semi-norm. We perform a convergence
study for these problems with a sequence of successively refined deformed meshes as that shown in Figure 4a. For the
sake of brevity we present only the results on this type of mesh. We obtain similar results on randomly deformed meshes
as that shown on Figure 4b. We will also skip the case of continuous scalar diffusion coefficient, as it is simpler than
the discontinuous and anisotropic cases. We present some tests with Dirichlet boundary conditions and λ = 0 but we
obtained similar results with Neumann boundary conditions and/or λ 6= 0.

6.1.1 Discontinuous diffusion coefficient

Recall that we have assumed the possible discontinuities of the diffusion coefficient κ coincide with edges of the mesh.
Given

κ(x) =


1 if x ≤ 1

2

2 if x >
1

2

, f(x) = 2π2 cos(πx) cos(πy) + 20, g(x) = 0,

the function

ū(x) =


cos(πx) cos(πy)− 10x2 + 12 if x ≤ 1

2
,

1

2
cos(πx) cos(πy)− 5x2 +

43

4
if x >

1

2
,

is solution to (23). Results are summarized in Figure 5 which shows that all schemes are k-th-order accurate in the L2

norm of the solution as well the L2 norm of the fluxes and the H1 semi-norm. We can note that there is a superconver-
gence for odd orders.

We see that, even if ∇ū is discontinuous in this problem, we are able to achieve an arbitrary order of accuracy. The
point for this is to design a stencil that do not cross discontinuities of κ, as explained in Section 3.3.

6.1.2 Anisotropic diffusion coefficient

Given

κ(x) =

(
1 0
0 2

)
, f(x) = 3π2 sin(πx) sin(πy), g(x) = 0,

the function ū(x) = sin(πx) sin(πy) is solution to (23). Results are summarized in Figure 6 which shows that all schemes
are k-th-order accurate in the L2 norm, the L2 norm of the fluxes and the H1 semi-norm. We can note that there is
a superconvergence for odd orders. Of course, similar results have been obtained for a scalar-valued diffusion coefficient κ.

Table 1 (resp. Table 2) gives the minimum number of cells per direction required to achieve an accuracy of 10−5 (resp.
10−9) on the L2-error, with the number of iterations of the fixed point algorithm and the time of execution. As expected,
the number of cells needed to achieve the desired precision (first column) is a decreasing function of the order. The second
column gives the number of fixed point iterations required to satisfy the stagnation criterion. This number has the same
order of magnitude whatever the order. It tends to be decreasing with respect to the order k for small values of k, then
increases again. This may sound counter-intuitive but it is a good point. The more interesting column is the last one
giving the total computational cost of the method. This computational time is a trade-off between the algorithmic com-
plexity and the precision of the method, which both increase with the order. We notice that, in general, execution time
decreases as the order increases. For a large error setpoint value (10−5), the optimal choice of scheme is the third-order
one. However, when decreasing the error setpoint value (10−9) higher-order schemes perform better, and the optimal
order becomes seven. Note that, in Table 2, we have omitted the first and second order lines, because it is too demanding
in computational resources to achieve this precision. We anticipate that small values of the error setpoint will favor the
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Figure 5: L2-error on the solution (top left), L2-error on the fluxes (top right) and H1 semi-norm error (bottom left)
for problem of Section 6.1.1.

Scheme Number of cells per direction Number of iterations Execution time (ratio)

k= 1 168 98 1.00
k= 2 212 116 2.61
k= 3 31 61 0.08
k= 4 31 56 0.16
k= 5 19 46 0.16
k= 6 14 57 0.21
k= 7 16 70 0.94
k= 8 10 80 0.70

Table 1: Minimum number of cells to reach a precision on the L2-error of 10−5 with the time of execution and the
number of iterations of the fixed point algorithm for order 1 to 8 for problem of Section 6.1.2.

highest orders. We obtain speed-ups of factors up to ten in term of computational time to reach the desired precision.
We also observed that odd orders perform better than even orders. This confirms what we notice on Figures 5 and 6:
a super-convergence is achieved for odd orders. We also observe that for a fixed mesh size, the error decreases as k grows.
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Figure 6: L2-error on the solution (top left), L2-error on the fluxes (top right) and H1 semi-norm error (bottom left)
for problem of Section 6.1.2.

Scheme Number of cells per direction Number of iterations Execution time (ratio)

k= 3 323 135 1.00
k= 4 343 135 2.50
k= 5 93 122 0.55
k= 6 76 134 0.75
k= 7 46 90 0.54
k= 8 40 76 0.64
k= 9 30 75 0.76

Table 2: Minimum number of cells to reach a precision on the L2-error of 10−9 with the time of execution and the
number of iterations of the fixed point algorithm for order 3 to 9 for problem of Section 6.1.2.

Table 3 gives the L2-error on a deformed mesh of 32× 32 cells with the time of execution and the number of iterations
of the fixed point algorithm for order 1 to 9. As expected, the L2-error is globally a decreasing function of the order
(with some exceptions for even orders), while execution time increases with the order. Besides, the number of iterations
of the fixed point algorithm increases with the order but at a very slow rate. We can see that, for this mesh, increasing
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Scheme L2-error Number of iterations Execution time (ratio)

k = 1 2.30 × 10−3 46 1.00
k = 2 4.00 × 10−3 55 1.62
k = 3 8.81 × 10−5 62 4.69
k = 4 8.10 × 10−5 58 9.45
k = 5 3.65 × 10−6 63 33.96
k = 6 9.47 × 10−7 67 66.80
k = 7 1.56 × 10−7 70 208.45
k = 8 4.05 × 10−8 67 361.07
k = 9 4.53 × 10−9 78 936.57

Table 3: L2-error on a deformed mesh of 32 × 32 cells with the time of execution and the number of iterations of the
fixed point algorithm for order 1 to 9 for problem of Section 6.1.2.

the order quickly reduces the error.

6.2 Positivity preserving assessment

We propose a challenging benchmark borrowed from [53] to compare a non-positivity preserving scheme, which can give
nonpositive solutions (in this case the usual DDFV scheme), with our positivity preserving high-order scheme which
always gives nonnegative solutions. For this test we have used Cartesian meshes.

6.2.1 Tensor-valued coefficient κ and square domain with a square hole

Consider the square domain with a square hole Ω =]0, 1[2\
[

4
9
, 5

9

]2
, f(x) = 0 in Ω and g(x) = 0 (resp. g(x) = 2) on the

external (resp. internal) boundary. We choose

κ =

(
cos θ sin θ
− sin θ cos θ

)(
1 0
0 104

)(
cos θ − sin θ
sin θ cos θ

)
, θ =

π

6
.

Figure 7: Numerical solution obtained with the DDFV scheme on a highly refined mesh (1310720 cells of size ∆x =
1/1152).

We compare the results obtained with the positivity preserving high-order schemes on a Cartesian mesh with 2000 cells
of size ∆x = 1/45. The stopping criterion of the fixed point algorithm is ε = 10−12, except for order 6 for which
ε = 10−10 and for order 7, 8 for which ε = 10−6 to reduce the computing time.

As explained in Remark 5.8, the precision of the inversion of the linear system sometimes leads to negative entries in
the solution vector u. In general, this can be fixed by using the result of a low-order calculation as the initial guess of
the high-order calculation. This procedure is also favorable regarding the computation time. It significantly reduces the
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Positivity preserving scheme Minimum Maximum

Order 1 3.5 × 10−28 1.96
Order 2 1.8 × 10−21 1.96
Order 3 5.8 × 10−27 1.98
Order 4 1.3 × 10−29 1.97
Order 5 4.1 × 10−27 1.97
Order 6 1.4 × 10−26 1.98
Order 7 2.9 × 10−24 1.98
Order 8 3.4 × 10−19 1.98

Table 4: Minimum and maximum of the numerical solution to the problem of section 6.2.1 for a Cartesian mesh with
2000 cells of size ∆x = 1/45.

overall cost of the simulation. However, we encountered one case for which this fix was not sufficient. For the test of
order 5, for a Cartesian mesh with 86 cells per direction, we did not manage to run the simulation. We think that this
is a severe issue for this kind of methods which is in general not addressed in the papers. However, as suggested by a
reviewer, adding a time evolution term to our problem, and achieving the steady state of the problem

∂ū

∂t
−∇ · (κ∇ū) = 0 in Ω× [0, T ],

ū = gD on ∂Ω× [0, T ],

ū(0) = 1 in Ω,

instead of solving (1) with a small enough time step, solves our convergence issue. This trick allows us to complete
all the simulations we run. An example is shown in Figure 9. However, we are not able to predict a priori the time
step required to complete the simulation. This is why, in the near future, we plane to work on the linear system inversion.

Even for a highly refined mesh (1310720 squares of size ∆x = 1/1152) the solution obtained with the usual (non-positivity
preserving) DDFV scheme (see Figure 7) has negative values up to −2.1 × 10−3. On the other hand the high-order
solutions obtained with the positivity preserving scheme remain always positive whatever the order: see Figure 8 and
Table 4 which gives the minimum and the maximum of each solution calculated with a Cartesian mesh (2000 cells of
size 1/45), up to order 6. We also observe on Figures 8 and 9 that the solution for k = 3 is closer to the converged
solution (see Figure 7) than the solution for k = 1. This is reminiscent of the convergence with respect to the order we
pointed out in Section 6.1.

6.2.2 Fokker-Planck type diffusion equation

This benchmark is a simplified version of the one from [32]. Given Ω =]− 50, 50[2 and T = 250, we are looking for the
function ū = ū(x, t), solution to the simplified Fokker-Planck equation1



∂ū

∂t
−∇ · (κ∇ū) = 0 in Ω× [0, T ],

κ∇ū · n = 0 on ∂Ω× [0, T ],

ū(0) = ū0 in Ω,

(24)

where the diffusion coefficient κ = κ(x) and the initial condition ū0 are given by

κ(x) = I− 1

‖x‖2 x⊗ x, ū0(x) =
1

π
exp(−‖x− xo‖2)

1The full Fokker-Planck equation would read as

∂ū

∂t
+ ∇ · (xū) −∇ · (κ∇ū) = 0.
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(a) First-order (b) Second-order

(c) Third-order (d) Fourth-order

(e) Fifth-order (f) Sixth-order

Figure 8: Numerical solution to the problem of section 6.2.1 obtained with positivity preserving schemes of order 1 to 6
for a Cartesian mesh (2000 cells of size 1/45).

with xo = (−20, 20). Note that κ is degenerated: it does not satisfy (2), hence the theoretical results of the preceding
Sections do not apply to the present case. It follows in particular that the well-posedness of the fixed-point algorithm
(see Section 5.1) is no longer ensured. However, ū should remain positive, and the non-positivity preserving DDFV
scheme produces non-physical negative values. We will see that our positivity preserving scheme fixes it. This diffusion
tensor correspond to a degenerate diffusion problem along the circle of radius 20

√
2. The existence and uniqueness of a

solution in W 1,∞([0 T ],W 2,∞(Ω)) is nevertheless proven in this context: see [33, 29, 41].
The backward Euler scheme is used for time integration. To limit the calculation time, the stopping criterion of the fixed
point algorithm is ε = 10−5. Figure 11 displays the numerical solutions obtained with the Cartesian mesh of 2002 cells.
Table 5 gives the minima and maxima of the DDFV solution and the numerical solution obtained with the positivity
preserving schemes up to order 6. We observe that the minima of the solutions to positivity preserving schemes always
remain non negative, as expected. Compared to the solutions obtained with the DDFV scheme, given by Figures 10
and the solutions obtained by the positivity preserving DDFV schemes, given in [7], the positivity preserving arbitrary
order schemes are more diffusive. However, we can note that the higher is the order, the less diffusive is the scheme.
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(a) First-order (b) Second-order

(c) Third-order (d) Fourth-order

(e) Fifth-order (f) Sixth-order

Figure 9: Numerical solutions obtained with positivity preserving schemes of order 1 to 6 for a Cartesian mesh (cells of
size 1/90). Simulations at order 5 and 6 are obtained in reaching the steady state of an unsteady problem.

7 Concluding remarks

This paper proposes an arbitrary-order positivity preserving Finite Volume scheme for the elliptic problem (1) on general
2D meshes. The new non-linear method we have detailed here is arbitrary-order convergent even for anisotropic and/or
discontinuous diffusion coefficients on deformed meshes. Furthermore it allows to deal with all boundary conditions
(Dirichlet, Neumann). This scheme uses a polynomial reconstruction involving values in neighboring cells to evaluate
the secondary unknowns at the Gauss quadrature points. We have adapted the non-linear process from [51] to enforce
positivity preservation. We have assessed numerically both its accuracy and positivity preservation.

Numerical performance could be improved. Indeed, the convergence of the fixed-point algorithm is not guaranteed
and may be very slow. This is observed in particular in test cases where the classical DDFV scheme gives negative
solutions. Techniques for accelerating this fixed point could be explored, such as Anderson acceleration (see [1, 45]) or
the ε-algorithm (see [9, 10]). We highlight the fact that these issues are related to the implementation (and not the
scheme itself). Further work is required to improve robustness.

The next step is to extend the method to non-linear diffusion (with a diffusion coefficient depending on the unknown)
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Figure 10: DDFV solution to problem (24) at time T = 250 on the 200× 200 cells Cartesian mesh.

Scheme Minimum of the solution Maximum of the solution

DDFV −2.48 × 10−4 1.04 × 10−2

Positivity preserving order 1 2.0 × 10−26 0.28 × 10−2

Positivity preserving order 2 1.6 × 10−26 0.29 × 10−2

Positivity preserving order 3 6.6 × 10−24 0.50 × 10−2

Positivity preserving order 4 3.2 × 10−27 0.43 × 10−2

Positivity preserving order 5 1.7 × 10−27 0.57 × 10−2

Positivity preserving order 6 2.3 × 10−20 0.58 × 10−2

Table 5: Minimum and maximum of the solution to the problem of section 6.2.2 at time T = 250 on the 200× 200 cells
Cartesian mesh.

and to arbitrary order unsteady diffusion, taking inspiration from [24] for example. The extension of the scheme to the
three-dimensional case, based on the same ideas, is the subject of ongoing works.
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(a) First-order (b) Second-order

(c) Third-order (d) Fourth-order

(e) Fifth-order (f) Sixth-order

Figure 11: Numerical solutions to problem (24) at time T = 250 obtained with positivity preserving schemes of order 1
to 6 for a Cartesian mesh with 200 cells per direction
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