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3Université Paris-Saclay, CEA DAM DIF, Laboratoire en Informatique Haute Performance pour le Calcul et

la Simulation, 91297 Arpajon, France.

September 20, 2023

Abstract

Monotonicity is very important in most applications solving elliptic problems. Many schemes preserving
positivity has been proposed but are at most second-order convergent. Besides, in general, high-order
schemes do not preserve positivity. In the present paper, we propose an arbitrary-order monotonic method
for elliptic problems in 2D. We show how to adapt our method to the case of a discontinuous and/or tensor-
valued diffusion coefficient, while keeping the order of convergence. We assess the new scheme on several
test problems.
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1 Introduction

This paper describes a follow-up of two recently published works [6, 7]. In the former work, we designed a monotonic
and arbitrary-order numerical method for an elliptic equation in 1D. In the latter one, we showed that the approach
used in 1D extends to second-order accurate methods in 2D. Our goal in this paper is to propose the first arbitrary-order
monotonic method for elliptic problems in 2D.

The model we consider is 
−∇ · (κ∇ū) + λū = f in Ω,

ū = gD on ΓD,

κ∇ū · n = gN on ΓN ,

(1)

where Ω is a bounded open domain of R2 with ∂Ω = ΓD ∪ ΓN (ΓD ∩ ΓN = ∅), and n ∈ R2 is the outgoing unit normal
vector. The data are such that f ∈ L2(Ω), gD ∈ H

1/2(ΓD), gN ∈ L2(ΓN ), λ ∈ R+ (if λ = 0, then |ΓD| > 0), and
κ ∈ L∞(Ω). The tensor-valued diffusion coefficient κ satisfies the uniform ellipticity condition:

∀x ∈ Ω, ∀ξ ∈ R2, κmin‖ξ‖2 ≤ ξtκ(x)ξ. (2)

where κmin is a strictly positive coefficient. Under the above conditions, one can prove (using Lax-Milgram Lemma in
the spirit of [19], Chapter 6) that system (1) has a unique solution in H1(Ω) which satisfies a positiveness principle, i.e.
if f ≥ 0 and g ≥ 0, then ū ≥ 0. One often refers to monotonicity in the literature for this principle.

For the applications we have in mind, such as inertial confinement fusion simulations, we need to be able to solve
problem (1) on (almost) arbitrary meshes. The reason for this is twofold. First, the domain Ω can be very distorted.
Second, problem (1) is coupled to the incompressible Euler system, which is descretized using a Lagrangian finite volume
scheme (see [13, 24, 27]). We thus have no control on the quality of the mesh. Further, a fundamental property of the
hydrodynamics scheme is to be conservative, in order to reproduce as precisely as possible singular solutions, such as
shocks. Thus, the diffusion scheme applied to (1) should be conservative too, in order to preserve this property. As a
consequence, monotonicity cannot be recovered by merely truncating negative values: such a strategy is incompatible
with conservativity.

This is why a large amount of work has been devoted to the design of monotone schemes since the seminal works
of [5, 26]. Among other publications, let us cite recent works [11, 12, 30, 32, 34, 36, 37, 40] and references therein about
this topic. However, none of these methods is arbitrarily high-order accurate. The most advanced work in this direction
is [37], which achieved third-order accuracy.

Some methods are particularly well-suited for achieving arbitrary high-order for elliptic problems. Let us cite for
instance the finite-element method [14], the Virtual Element method [4], the Discontinuous Galerkin method [15], and
the Hybrid High-Order method [16]. However, very few (see [2, 3, 10, 35] and references therein) can enforce the posi-
tiveness of the unknown without imposing severe constraints on the mesh, and none of them achieve a convergence order
higher than two. Another reason for not using these methods in our context, is that their coupling with other models
can be problematic since the degrees of freedom of the different discrete operators approximations do not match.

This work proposes the first arbitrary-order monotonic scheme for the elliptic equation (1). The diffusion coefficient
can be tensor-valued and/or discontinuous. We show that we preserve the arbitrary high-order accuracy even with a
discontinuous diffusion coefficient as long as discontinuities are known and coincide with edges of the mesh. We recall
the main steps of the proposed method (see also [7]):

1. Integration of the equation over each cell of the mesh.

2. Transformation of this surface integral into a sum of fluxes using the divergence theorem.

3. Approximation of the fluxes using a Gauss quadrature rule on each edge of the cell.

4. Taylor expansion of the solution ū in the neighborhood of each Gauss quadrature point of each edge along two
independent privileged directions in order to obtain an approximation of ∇ū involving the values of ū and its
derivatives at certain suitably chosen points, in this case the center of mass and vertices of the cell.

5. Using this Taylor expansion, estimation of (κ∇ū) · n = (∇ū) · (κtn).

6. Calculation of the values of ū at vertices by a polynomial interpolation formula in the neighborhood of the Gauss
quadrature points of each cell edge.

7. Calculation of the values of derivatives of ū at centers of mass and vertices of the neighboring cells by differentiating
this polynomial interpolation.

8. Transformation of the scheme into a monotonic non-linear two-point flux approximation.
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9. Resolution of the non-linear system by the Picard iteration method.

The paper is structured as follows. Definitions and notations are given in Section 2. The proposed arbitrarily
high-order Finite-Volume method is described in Section 3. Then, we explain how the scheme is modified to enforce the
monotonicity in Section 4. In Section 5, we prove some nice properties of the method. Finally the arbitrary high-order
accuracy and the monotonicity of the method are assessed in Section 6 on some classical benchmarks including cases
with anisotropic and discontinuous diffusion coefficients.

2 Definitions and notations

• i •j

•r

•
s

`•x`

•g

ni`

Figure 1: Example of a mesh with our notations.

Given an arbitrary mesh the cells of which are numbered from 1 to n, consider a cell denoted i and its neighbor j
(see Figure 1). The center of mass of i (resp. j) is denoted by xi (resp. xj), their common edge is ` and the vertices
of ` are xr and xs. The position of the center of the edge ` is x`. We denote by xg a Gauss quadrature point located
on the edge `. The length of ` is |`| and the volume of a cell i is Vi. The normal vector ni` is the unit vector which is
orthogonal to the edge ` and outgoing for the cell i. We define h = min

`
|`|.

Given v = (vi) a vector in Rn we will denote respectively its Euclidian, L2 and L∞ norms by

‖v‖ =

(
n∑
i=1

v2
i

)1/2

, ‖v‖2 =

(
n∑
i=1

Viv
2
i

)1/2

, ‖v‖∞ = max
1≤i≤n

|vi|

and we use the notation v > 0 (resp. v ≥ 0) if, for all i, vi > 0 (resp. vi ≥ 0).

3 Finite volume formulation

To simplify the presentation we suppose that κ is isotropic : κ = κI, with κ > κmin. It is worth noting that the full
anisotropic case can be immediately dealt with by remarking that (κ∇ū) · n = (∇ū) · (κtn) and by replacing n by κtn
in what follows. Moreover we assume that the discontinuities of κ coincide with edges of the mesh.

3.1 Approximation of the interior fluxes

The first step to design a finite volume scheme consists in integrating (1) on cell i

−
∫
i

∇ · κ∇ū+

∫
i

λū =

∫
i

f.

Thanks to the divergence formula we obtain

−
∑
`∈i

∫
`

κ∇ū · n +

∫
i

λū =

∫
i

f. (3)

Using a k-th order accurate Gauss’s quadrature formula for approximating the flux through the edge `
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F̄` =

∫
`

κ∇ū · n

we have

−
∑
`∈i

|`|
∑
g∈`

ωgκ(xg) (∇ū) (xg) · ni` +

∫
i

λū =

∫
i

f +O(hk),

where ωg and xg are respectively the weights and the points of the quadrature. Thus we have to approximate

κ(xg) (∇ū) (xg) · ni`.
Suppose that ū ∈W 1,∞(Ω) and denote :

Np
q =

1

p!

(
p

q

)
=

1

q!(p− q)! .

A Taylor expansion at order k in the neighborhood of xg gives

ū(x) = ū(xg) + (x− xg) ·∇ū(xg) +

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)(x− xg)q(y − yg)p−q +O

(
‖x− xg‖k+1

)
. (4)

Denote by ūi the mean value of u in cell i

ūi =
1

Vi

∫
i

ū(x)dx.

Integrating (4) on cells i, j and dividing respectively by their volume Vi, Vj provides

ūi = ū(xg) + (xi − xg) ·∇ū(xg) +
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
i

(x− xg)q(y − yg)p−qdx+O
(
hk+1

)
,

ūj = ū(xg) + (xj − xg) ·∇ū(xg) +
1

Vj

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
j

(x− xg)q(y − yg)p−qdx+O
(
hk+1

)
.

hence

(xg − xi) ·∇ū(xg) = ū(xg)− ūi + r̄gi,

(xj − xg) ·∇ū(xg) = ūj − ū(xg) + r̄gj

with

r̄gi =
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
i

(x− xg)q(y − yg)p−qdx+O
(
hk+1

)
,

r̄gj = − 1

Vj

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

∫
j

(x− xg)q(y − yg)p−qdx+O
(
hk+1

)
Using respectively x = xr and x = xs in the Taylor expansion (4), we obtain

ū(xr) = ū(xg) + (xr − xg) ·∇ū(xg) +

k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)(xr − xg)q(yr − yg)p−q +O

(
hk+1

)
,

ū(xs) = ū(xg) + (xs − xg) ·∇ū(xg) +
k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)(xs − xg)q(ys − yg)p−q +O

(
hk+1

)
.

Subtracting these equalities gives

(xs − xr) ·∇ū(xg) = ū(xs)− ū(xr) + r̄rs

with
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r̄rs = −
k∑
p=2

p∑
q=0

Np
q

∂pū

∂xq∂yp−q
(xg)

(
(xs − xg)q(ys − yg)p−q − (xr − xg)q(yr − yg)p−q

)
+O

(
hk+1

)
.

Thus, we have the system 
∇ū(xg) · (xg − xi) = ū(xg)− ūi + r̄gi,

∇ū(xg) · (xj − xg) = ūj − ū(xg) + r̄gj ,

∇ū(xg) · (xs − xr) = ū(xs)− ū(xr) + r̄rs.

(5)

We can decompose the unit normal vector ni` both in the basis ((xg − xi), (xs − xr)) and ((xj − xg), (xs − xr))

ni` = αgi
xg − xi
‖xg − xi‖

+ βgi
xs − xr
‖xs − xr‖

= αgj
xj − xg
‖xj − xg‖

+ βgj
xs − xr
‖xs − xr‖

with

αgi =
‖xg − xi‖

(xg − xi) · ni`
≥ 0, (6)

βgi =
‖xs − xr‖ni` · (xg − xi)

⊥

(xs − xr) · (xg − xi)⊥
(7)

and

αgj =
‖xj − xg‖

(xj − xg) · ni`
≥ 0,

βgj =
‖xs − xr‖ni` · (xj − xg)

⊥

(xs − xr) · (xj − xg)⊥
.

Thus, we have the expression of the gradient in the direction of the normal vector seen by the cell i, j, respectively
denoted by ∇ū(xg)i · ni`, ∇ū(xg)j · ni`

∇ū(xg)i · ni` = αgi
∇ū(xg) · (xg − xi)

‖xg − xi‖
+ βgi

∇ū(xg) · (xs − xr)

‖xs − xr‖
, (8)

∇ū(xg)j · ni` = αgj
∇ū(xg) · (xj − xg)

‖xj − xg‖
+ βgj

∇ū(xg) · (xs − xr)

‖xs − xr‖
,

that is to say, using (5)

∇ū(xg)i · ni` = αgi
ū(xg)− ūi + r̄gi
‖xg − xi‖

+ βgi
ū(xs)− ū(xr) + r̄rs

‖xs − xr‖
, (9)

∇ū(xg)j · ni` = αgj
ūj − ū(xg) + r̄gj
‖xj − xg‖

+ βgj
ū(xs)− ū(xr) + r̄rs

‖xs − xr‖
, (10)

If κ is continuous on a Gauss point xg of an edge ` we define

κgi = κgj = κ(xg)

while if it is not we define

κgi = lim
x∈i→xg

κ(x), κgj = lim
x∈j→xg

κ(x).

Thanks to the continuity of the flux

κgi∇ū(xg)i · ni` = κgj∇ū(xg)j · ni`,
we obtain

ū(xg) =
1

κgiαgi

‖xg−xi‖
+

κgjαgj

‖xj−xg‖

( κgjαgj
‖xj − xg‖

(ūj + r̄gj) +
κgiαgi
‖xg − xi‖

(ūi − r̄gi)

+
κgjβgj
‖xs − xr‖

(ū(xs)− ū(xr) + r̄rs)−
κgiβgi
‖xs − xr‖

(ū(xs)− ū(xr) + r̄rs)
)
.

Inserting this value into (9) or (10) results in
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κgi∇ū(xg)i · ni` = κgj∇ū(xg)j · ni` =

(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
(ūj − ūi + r̄gj + r̄gi)

+

(
κgiκgjαgiβgj‖xj − xg‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(ū(xs)− ū(xr) + r̄rs)

+

(
κgiκgjαgjβgi‖xg − xi‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(ū(xs)− ū(xr) + r̄rs).

Let us assume that we have at our disposal an approximation u = (ui)1≤i≤n of ū = (ūi)1≤i≤n. From u we can find a
high-order polynomial approximation Pi(x) of ū in each cell i while respecting the discontinuity lines of the diffusion
coefficient κ (see Section 3.3). So, the numerical flux F`(u) is defined by

F`(u) = |`|
∑
g∈`

ωg

[(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
(uj − ui + rgj(u) + rgi(u))

+

(
κgiκgjαgiβgj‖xj − xg‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pj(xs)− Pj(xr) + sgj(u))

+

(
κgiκgjαgjβgi‖xg − xi‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pi(xs)− Pi(xr) + sgi(u))

]
with 

rgi(u) =
1

Vi

k∑
p=2

p∑
q=0

Np
q

∂pPi
∂xq∂yp−q

(xg)

∫
i

(x− xg)q(y − yg)p−qdx,

rgj(u) = − 1

Vj

k∑
p=2

p∑
q=0

Np
q

∂pPj
∂xq∂yp−q

(xg)

∫
j

(x− xg)q(y − yg)p−qdx,

sgi(u) = −
k∑
p=2

p∑
q=0

Np
q

∂pPi
∂xq∂yp−q

(xg)
(
(xs − xg)q(ys − yg)p−q − (xr − xg)q(yr − yg)p−q

)
,

sgj(u) = −
k∑
p=2

p∑
q=0

Np
q

∂pPj
∂xq∂yp−q

(xg)
(
(xs − xg)q(ys − yg)p−q − (xr − xg)q(yr − yg)p−q

)
.

(11)

Finally we obtain in a more compact form the following approximation of the flux through the edge `

F`(u) = γ`(uj − ui) + r`(u) (12)

with 

γ` = |`|
∑
g∈`

ωg

(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
≥ 0,

r`(u) = |`|
∑
g∈`

ωg

[(
κgiκgjαgiαgj

‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj

)
(rgi(u) + rgj(u))

+

(
κgiκgjαgjβgi‖xg − xi‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pi(xs)− Pi(xr) + sgi(u))

+

(
κgiκgjαgiβgj‖xj − xg‖

‖xs − xr‖ (‖xj − xg‖κgiαgi + ‖xg − xi‖κgjαgj)

)
(Pj(xs)− Pj(xr) + sgj(u))

]
.

3.2 Approximation of the boundary fluxes

In this section we use the boundary conditions to estimate the boundary fluxes.

3.2.1 Neumann boundary condition

Integrating the Neumann boundary condition on an edge ` ⊂ ΓN , we have∫
`

κ∇ū · n =

∫
`

gN ,

6



that is to say

F̄` = |`|
∑
g∈`

ωggN (xg) +O(hk),

we thus impose this equation on the numerical flux

F`(u) = |`|
∑
g∈`

ωggN (xg).

3.2.2 Dirichlet boundary condition

Taking into account the Dirichlet boundary condition ū(xg) = gD(xg) in (9) we have, for g ∈ ` ⊂ ΓD,

∇ū(xg) · ni` = αgi
gD(xg)− ūi + r̄gi
‖xg − xi‖

+ βgi
ū(xs)− ū(xr) + r̄rs

‖xs − xr‖
.

By mimicking the expression of this exact flux, the numerical one is defined by

F`(u) = |`|
∑
g∈`

ωgκg

(
αgi

‖xg − xi‖
(gD(xg)− ui + rgi(u)) +

βgi
‖xs − xr‖

(Pi(xs)− Pi(xr) + sgi(u))

)
with rgi(u) and sgi(u) given in (11). In a more compact form we have

F`(u) = −γ`ui +
∑
g∈`

(
ωgκgαgi|`|
‖xg − xi‖

gD(xg)

)
+ r`(u)

with 
γ` =

∑
g∈`

(
ωgκgαgi|`|
‖xg − xi‖

)
≥ 0,

r`(u) = |`|
∑
g∈`

ωgκg

(
αgi

‖xg − xi‖
rgi(u) +

βgi
‖xs − xr‖

(Pi(xs)− Pi(xr) + rrs(u))

)
.

3.3 High-order reconstruction by interpolation

For a polynomial of degree k, we have to calculate

(k + 1)(k + 2)

2

coefficients, so at least (k + 1)(k + 2) neighboring cells of the cell are required for stability purpose [17, 23]. When it is
possible, the stencil will be centered on the cell, but the closer the cell is to the boundary or the discontinuity of κ, the
more the stencil will be shifted in order to not to cross the discontinuity.

•i

•

• •i

•

•

•

•

•

Figure 2: Construction of the stencil for the cell i with a discontinuity (in red)
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To be more precise, the construction of the stencil Si = {0, ..., p} associated with a cell i is illustrated on Figure 2. For
the sake of simplicity, we have assumed that the cells involved in the stencil have been renumbered. First the cell i itself
(in blue) is added to the stencil and then we add the cells that share, at least, an edge with the cell i (in yellow). If the
number of cells we have already selected is not sufficient (in our case, (k+ 1)(k+ 2) cells for a polynomial of order k), we
add the cells that have, at least, an edge linked to the cells that we have just been added to the stencil (in green) and
so on until we have enough cells. In all the above process, we impose that the stencil does not cross any discontinuity
of κ (see Figure 2).

Let u0, ..., up denote the p+ 1 values of u used for the calculation, with p ≥ 2. The polynomial is of the form

P (x) =

k∑
m=0

k−m∑
n=0

am,n(u)(x− xi)m(y − yi)n.

The coefficients of the polynomial P (x) are assumed to satisfy

1

Vj

∫
j

P (x)dx = uj , ∀j ∈ Si.

This leads to the following system


1

1

V0

∫
0

(x− xi)
1

V0

∫
0

(y − yi) . . .
1

V0

∫
0

(x− xi)k
1

V0

∫
0

(y − yi)k

...
...

...
. . .

...

1
1

Vp

∫
p

(x− xi)
1

Vp

∫
p

(y − yi) . . .
1

Vp

∫
p

(x− xi)k
1

Vp

∫
p

(y − yi)k


︸ ︷︷ ︸

=:M



a0,0

a1,0

a0,1

...
ak,0
a0,k


︸ ︷︷ ︸

=:a

=

 u0

...
up


︸ ︷︷ ︸

=:d

.

Since the matrix M has more rows than columns we have to use the least square method so that the vector a is computed
as the solution to the linear system: MtMa = Mtd. We use the Givens method (see [22] p.206 and following) to solve
the least-square problem.

In this process, we do not enforce the continuity of u at the vertices. Indeed, a priori, Pj(xs) 6= Pi(xs) for i 6= j.

4 Monotonicity

A method borrowed from [36, 21, 39, 20] and developed in the framework of 2D diffusion on arbitrary meshes can be
used to make the scheme monotonic. The flux (12) can be rewritten as follows

F`(u) = γ`(uj − ui) + r`(u)+ − r`(u)−

with

r`(u)+ =
|r`(u)|+ r`(u)

2
≥ 0 and r`(u)− =

|r`(u)| − r`(u)

2
≥ 0.

Let us assume that u > 0, the flux then reads as

F`(u) =

(
γ` +

r`(u)+

uj

)
uj −

(
γ` +

r`(u)−

ui

)
ui

and the coefficients
(
γ` + r`(u)+

uj

)
and

(
γ` + r`(u)−

ui

)
are positive. We end up with a two-point flux, which is very

favorable for the resolution of the system. However note that this system is non-symmetric and non-linear since its
coefficients depend on u.

4.1 Matrix form

The scheme reads as

−
∑
`∈i

F`(u) + λiViui = Vifi. (13)

Consider a mesh the cells of which are numbered from 1 to n. Denoting
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u = (ui)1≤i≤n, b = (bi)1≤i≤n, A = (Aij)1≤i,j≤n,

we can write (13) as the matrix-vector product

A(u)u = b, (14)

with 
Aii(u) =

∑
`∈i,` 6∈ΓN

(
γ` +

r`(u)−

ui

)
+ Viλi,

Aij(u) = −
∑
`∈i∩j

(
γ` +

r`(u)+

uj

)
i 6= j

(15)

and

bi = Vifi +
∑

`∈i,`∈ΓD

r`(u)+ +
∑
g∈`

(
ωgκgαgi|`|
‖xg − xi‖

)
gD(xg)

+
∑

`∈i,`∈ΓN

|`|
∑
g∈`

ωggN (xg). (16)

Remark 4.1. Assuming that f ≥ 0 and g ≥ 0, all the components of the right hand side b are non-negative. Assuming
moreover that f and g are not both identically zero, then at least one component of b is positive.

4.2 Picard iteration method

In order to solve (14) we use a Picard iteration method. We start with an initial guess u0 > 0, compute the matrix
A(u0) and solve A(u0)u1 = b. Repeating this process, we build a sequence (uν) that, if it converges to a positive
vector, tends to a solution of the scheme. We stop the algorithm when the difference uν+1 − uν between two successive
iterates is small enough. To summarize, the following algorithm is used

ν = 0

A(u0)u1 = b

While
‖uν+1 − uν‖2
‖uν‖2

> µ

A(uν)uν+1 = b

ν = ν + 1.

(17)

Unfortunately, we are unable to prove that the above algorithm converges. Nevertheless, we prove in Section 5.3 below
that the scheme is well defined at each iteration of the algorithm, as soon as the initial guess u0 is positive.

5 Properties

5.1 Conservation

By construction note that the scheme is conservative.

Proposition 5.1. Assume that u > 0 and consider homogeneous Neumann boundary conditions, then the scheme
defined by (13) is conservative, that is to say

n∑
i=1

Viλiui =

n∑
i=1

Vifi.

Indeed it satisfies the equality

n∑
i=1

(
−
∑
`∈i

F`(u)

)
= 0.

9



5.2 Monotonicity

Consider the definition of an M-matrix (see for instance [29])

Definition 5.2. An n×n matrix A that can be expressed in the forme A = sI−B, where B = (bij)1≤i,j≤n with bij ≥ 0,
1 ≤ i, j ≤ n, and s ≥ ρ(B), the maximum of the moduli of the eigenvalues of B, is called an M-matrix.

We use the following lemma

Lemma 5.3. A matrix A = (Aij)1≤i,j≤n is an M-matrix if it satisfies the following inequalities

∀i 6= j, Aij ≤ 0, and ∀i,
n∑
j=1

Aij ≥ 0.

Moreover, if the last inequality is strict, we say that A is a strict M-matrix.

Proposition 5.4. Assume that u > 0. Then the matrice A defined by (15) is such that At is a strict M-matrice.

Proof. The matrix A satisfies

∀i 6= j, Aij ≤ 0 and ∀j,
n∑
i=1

Aij > 0.

Indeed we have, for all j

n∑
i=1

Aij =

n∑
i=1

 ∑
`∈i,`/∈ΓN

(
γ` +

r`(u)−

ui

)
−
∑
`∈i∩j

(
γ` +

r`(u)+

uj

)+ λjVj .

Thanks to Proposition 5.1, only the boundary terms and the mass term remain, for all j

n∑
i=1

Aij =

n∑
i=1

∑
`∈(i∩ΓD)

(
γ` +

r`(u)−

ui

)
+ λjVj > 0.

Theorem 5.5. Assume that f > 0 and g > 0. Let A and b be defined by (15)-(16). Then A−1b = u ≥ 0.

Proof. As At is a strict M-matrix A is invertible and its inverse has only non-negative entries (see for example [33],
Corollary 3.20). In view of Remark 4.1, the right hand side is non-negative, hence u = A−1b ≥ 0.

Remark 5.6. The scheme preserves positivity if the inversion of the linear system is exact. The above proof assumes
that the matrix M−1 is calculated exactly. Obviously, in practice, this is not the case. In the tests we have carried
out, the error is small enough not to affect the calculations. However, in rare cases, the inversion of the matrix led to a
solution with negative components, causing the calculation to stop. This error can be reduced by working on the condition
number of the matrix or on methods for solving linear systems, which is a perspective.

5.3 Well-posedness of the Picard iteration method

Proposition 5.7. Assume that f ≥ 0, g ≥ 0, and either ‖f‖L2(Ω) > 0 or ‖g‖L2(∂Ω) > 0. Assume moreover that u0 > 0.
Then, the algorithm (17) defines a sequence (uν)ν≥0 such, that for all ν, uν > 0.

To prove this property, we need to introduce the concept of irreducible matrix: see [33, Definition 1.15].

Definition 5.8. An n× n matrix A is reducible if there exits an n× n permutation matrix P such that

PAPt =

[
A11 A12

0 A22

]
,

where A11, A12, A22 are respectively r × r, r × (n− r) and (n− r)× (n− r) sub-matrices with 1 ≤ r < n. If no such
permutation matrix exists, then A is irreducible.

The matrice A defined by (15) is irreducible thanks to the following Lemma (see [33, Theorem 1.17]).

Lemma 5.9. To any n × n matrix A we associate the graph of nodes 1, 2, ..., n and of directed edges connecting xi to
xj if Aij 6= 0. Then A is irreducible if and only if for any pair i 6= j there exists a chain of edges that allows to go from
xi to xj,

Ai,k1 6= 0→ Ak1,k2 6= 0→ · · · → Akm,j 6= 0.
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With these definitions we can make use of the following theorem (see [33], Corollary 3.20).

Theorem 5.10. If A is an irreducible strict M-matrix, then it is invertible and, for all i, j (1 ≤ i, j ≤ n), (A−1)ij > 0.

We are now in position to prove Proposition 5.7.

Proof of Proposition 5.7. We argue by induction on the index ν. We assume that uν > 0. Hence (A(uν))t is a strict
M -matrix (see Proposition 5.4). It is easy to check that (A(uν))t is also irreducible. Thus, applying Theorem 5.10,
(A(uν))t is invertible and all the entries of (A(uν))−t are positive. Consequently, all the entries of (A(uν))−1 are
positive. Using Remark 4.1, we know that all components of b are non-negative. Moreover, because of the assumption
that either ‖f‖L2(Ω) > 0 or ‖g‖L2(∂Ω) > 0, at least one component of b is positive. We thus have, for all i (1 ≤ i ≤ n)

uν+1
i =

n∑
j=1

(A(uν))−1
ij bj > 0,

since all terms of this sum are non-negative, with one at least that does not vanish.

Proposition 5.7 shows that the condition uν > 0 remains satisfied during the Picard iteration method, which allows to
define A(uν) for all ν ≥ 0.

6 Numerical experiments

Given Ω =]0, 1[2, κ a diffusion coefficient and g a function defined on ∂Ω, consider Problem (1) with λ = 0 and ΓN = ∅{
−∇ · (κ∇ū) = f in Ω,

ū = g on ∂Ω.
(18)

In addition to Cartesian meshes we will use the two following types of meshes (see Figure 3):

1. deformed meshes, the deformation of which from the Cartesian mesh is given by

(x, y)→ (x+ 0.1 sin(2πx) sin(2πy), y + 0.1 sin(2πx) sin(2πy)),

2. randomly deformed meshes, the deformation of which from the unit Cartesian mesh with cells of size ∆x is given
by

(x, y)→ 0.1(x, y) + 0.9(x+ 0.45a∆x, y + 0.45b∆x),

where a, b are random numbers distributed according to the uniform law on [−1, 1].

(a) A deformed mesh (b) A randomly deformed mesh

Figure 3: Examples of deformed meshes.

The L2-error on the solution and the L2-error on the fluxes used in the following tests are respectively given by
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‖u− ū‖2
‖ū‖2

,

∑
`

F`(u)− |`|
∑
g∈`

ωgκg∇ū(xg) · ni`

21/2

∑
`

|`|∑
g∈`

ωgκg∇ū(xg) · ni`

21/2
,

We also use the H1 semi-norm error defined by

‖∇hu−∇ū‖2
‖∇ū‖2

,

where

‖∇ū‖2 =

(∑
i

Vi ‖∇ū(xi)‖2
)1/2

, ‖∇hu−∇ū‖2 =

(∑
i

Vi ‖∇Pi(xi)−∇ū(xi)‖2
)1/2

,

Pi being the polynomial obtained by reconstruction with the approximated values of the solution u.

For all the tests, the stopping criterion µ and the initial guess u0 of the fixed-point algorithm (17) are µ = 10−12 and
u0
i = 1, ∀i. We use the linear solver GMRES with the preconditioner ILU (see [28], Chapter 7.4) with the convergence

criterion is 10−14.

6.1 Numerical accuracy assessment

In this section we present numerical results for diffusion problems of type (18) with analytical solutions. The first (resp.
second) case involves a discontinuous (resp. anisotropic) diffusion coefficient. Numerical convergence rates are evaluated
using the L2 norm of the solution as well the L2 norm of the fluxes and the H1 semi-norm. We perform a convergence
study for these problems with a sequence of successively refined deformed meshes as that shown in Figure 3a. For the
sake of brevity we present only the results on this type of mesh. We obtain similar results on randomly deformed meshes
as that shown on Figure 3b. We will also skip the case of continuous scalar diffusion coefficient, as it is simpler than the
discontinuous and anisotropic cases.

6.1.1 Discontinuous diffusion coefficient

Recall that we have assumed the possible discontinuities of the diffusion coefficient κ coincide with edges of the mesh.
Given

κ(x) =


1 if x ≤ 1

2

2 if x >
1

2

, f(x) = 2π2 cos(πx) cos(πy) + 20, g(x) = 0,

the function

ū(x) =


cos(πx) cos(πy)− 10x2 + 12 if x ≤ 1

2
,

1

2
cos(πx) cos(πy)− 5x2 +

43

4
if x >

1

2
,

is solution to (18). Results are summarized in Figure 4 which shows that all schemes are k-th-order accurate in the
L2 norm of the solution as well the L2 norm of the fluxes and the H1 semi-norm. We can note that there is a
superconvergence for odd orders.

We see that, even if ∇ū is discontinuous in this problem, we are able to achieve an arbitrary order of accuracy. The
by point for this is to design a stencil that do not cross discontinuities of κ, as explained in Section 3.3.

6.1.2 Anisotropic diffusion coefficient

Given

κ(x) =

(
1 0
0 2

)
, f(x) = 3π2 sin(πx) sin(πy), g(x) = 0,

the function ū(x) = sin(πx) sin(πy) is solution to (18). Results are summarized in Figure 5 which shows that all schemes
are k-th-order accurate in the L2 norm, the L2 norm of the fluxes and the H1 semi-norm. We can note that there is
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Figure 4: L2-error on the solution (top left), L2-error on the fluxes (top right) and H1 semi-norm error (bottom left)
for problem of Section 6.1.1.

a superconvergence for odd orders. Of course, similar results have been obtained for a scalar-valued diffusion coefficient κ.

Scheme Number of cells per direction Number of iterations Execution time (ratio)

Order 1 168 172 1
Order 2 212 180 2.33
Order 3 31 132 0.10
Order 4 31 120 0.20
Order 5 19 103 0.20
Order 6 14 124 0.26
Order 7 16 143 1.08
Order 8 10 154 0.78

Table 1: Minimum number of cells to reach a precision on the L2-error of 10−5 with the time of execution and the
number of iterations of the fixed point algorithm for order 1 to 8 for problem of Section 6.1.2.
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Figure 5: L2-error on the solution (top left), L2-error on the fluxes (top right) and H1 semi-norm error (bottom left)
for problem of Section 6.1.2.

Scheme Number of cells per direction Number of iterations Execution time (ratio)

Order 3 323 135 1
Order 4 343 135 2.49
Order 5 93 122 0.56
Order 6 76 134 0.73
Order 7 46 90 0.52
Order 8 40 76 0.62
Order 9 30 75 0.75

Table 2: Minimum number of cells to reach a precision on the L2-error of 10−9 with the time of execution and the
number of iterations of the fixed point algorithm for order 3 to 9 for problem of Section 6.1.2.

Table 1 (resp. Table 2) gives the minimum number of cells per direction required to achieve an accuracy of 10−5 (resp.
10−9) on the L2-error, with the number of iterations of the fixed point algorithm and the time of execution. As expected,
the number of cells needed to achieve the desired precision (first column) is a decreasing function of the order. The
second column gives the number of fixed point iterations required to satisfy the stagnation criterion. This number is
either constant or decreasing with the order, which is not intuitive and is a good point. The more interesting column
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is the last one giving the total computational cost of the method. This computational time is a trade-off between the
algorithmic complexity and the precision of the method, which both increase with the order. We notice that, in general,
execution time decreases as the order increases. For a large error setpoint value (10−5), the optimal choice of scheme
is the third-order one. However, when decreasing the error setpoint value (10−9) higher-order schemes perform better,
and the optimal order becomes seven. We anticipate that small values of the error setpoint will favor the highest orders.
We obtain speed-ups of factors up to ten in term of computational time to reach the desired precision. We also observed
that odd orders perform better than even orders. This confirms what we notice on Figures 4 and 5: a super-convergence
is achieved for odd orders. We also observe a somewhat spectral convergence: for a fixed mesh size, the error decreases
as k grows.

6.2 Monotonicity assessment

We propose a challenging benchmark borrowed from [38] to compare a non-monotonic scheme, which can give nonpositive
solutions (in this case the usual DDFV scheme), with our monotonic high-order scheme which always gives nonnegative
solutions. For this test we have used Cartesian meshes.

6.2.1 Tensor-valued coefficient κ and square domain with a square hole

Consider the square domain with a square hole Ω =]0, 1[2\
[

4
9
, 5

9

]2
, f(x) = 0 in Ω and g(x) = 0 (resp. g(x) = 2) on the

external (resp. internal) boundary. We choose

κ =

(
cos θ sin θ
− sin θ cos θ

)(
1 0
0 104

)(
cos θ − sin θ
sin θ cos θ

)
, θ =

π

6
.

Figure 6: Numerical solution obtained with the DDFV scheme on a highly refined mesh (1310720 cells of size ∆x =
1/1152).

Monotonic scheme Minimum Maximum

Order 1 1.3e− 28 1.96
Order 2 1.0e− 21 1.96
Order 3 1.7e− 27 1.98
Order 4 3.9e− 30 1.97
Order 5 1.1e− 27 1.97
Order 6 4.3e− 27 1.98
Order 7 7.9e− 25 1.98
Order 8 5.4e− 21 1.98

Table 3: Minimum and maximum of the numerical solution to the problem of section 6.2.1 for a Cartesian mesh with
2000 cells of size ∆x = 1/45.

We compare the results obtained with the monotonic high-order schemes on a Cartesian mesh with 2000 cells of size
∆x = 1/45. The stopping criterion of the fixed point algorithm is µ = 10−12, except for order 6 for which µ = 10−10
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(a) First-order (b) Second-order

(c) Third-order (d) Fourth-order

(e) Fifth-order (f) Sixth-order

Figure 7: Numerical solutions obtained with monotonic schemes of order 1 to 6 for a Cartesian mesh (2000 cells of size
1/45).

and for order 7, 8 for which µ = 10−6 to reduce the computing time.

As explained in Remark 5.6, the precision of the inversion of the linear system sometimes leads to negative entries in
the solution vector u. In general, this can be fixed by using the result of a low-order calculation as the initial guess of
the high-order calculation. This procedure is also favorable regarding the computation time. It significantly reduces the
overall cost of the simulation. However, we encountered one case for which this fix was not sufficient. For the test of
order 5, for a Cartesian mesh with 86 cells per direction, we did not manage to run the simulation. We think that this
is a severe issue for this kind of methods which is in general not addressed in the papers. In the near future, we intend
to work on the linear system inversion.

Even for a highly refined mesh (1310720 squares of size ∆x = 1/1152) the solution obtained with the usual (non-
monotonic) DDFV scheme (see Figure 6) has negative values up to −2.11 × 10−3. On the other hand the high-order
solutions obtained with the monotonic scheme remain always positive whatever the order: see Figure 7 and Table 3
which gives the minimum and the maximum of each solution calculated with a Cartesian mesh (2000 cells of size 1/45),
up to order 6. We also observe on Figure 7 that the solution for k = 3 is closer to the converged solution (see 6) than
the solution for k = 1. This is reminiscent of the spectral convergence we pointed out in Section 6.1.
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6.2.2 Fokker-Planck type diffusion equation

This benchmark is a simplified version of the one from [25]. Given Ω =] − 50, 50[2, T = 250, v = (vx, vy) the velocity
variable and V = (−20, 20) the averaged velocity, we are looking for the distribution function ū = ū(v, t), solution to
the simplified Fokker-Planck equation

∂ū

∂t
−∇v (κ∇vū) = 0 in Ω× [0, T ],

κ∇vū · n = 0 on ∂Ω× [0, T ],

ū(0) = ū0 in Ω,

(19)

where the diffusion coefficient κ = κ(v) and the initial condition ū0 are given by

κ(v) = I− 1

‖v‖2 v ⊗ v, ū0(v) =
1

π
exp(−‖v −V‖2). (20)

Note that the full Fokker-Planck equation would read as

∂ū

∂t
+ ∇v · (vū)−∇v (κ∇vū) = 0.

The diffusion coefficient κ defined by (20) is degenerated: it does not satisfy (2), hence the theoritical results of the
preceding Sections do not apply to the present case. It follows in particular that the well-posedness of the fixed-point
algorithm (see Section 5.3) is no longer ensured. However, ū should remain positive, and the non-monotonic DDFV
scheme produces non-physical negative values. We will see that our monotonic scheme fixes it. This diffusion tensor
correspond to a degenerate diffusion problem along the circle of radius ‖v‖.
The backward Euler scheme is used for time integration.

Figure 8: DDFV solution to (19) at time T = 250 on the Cartesian mesh of 200× 200 cells.

Scheme Minimum of the solution Maximum of the solution

DDFV scheme −2.48e− 4 1.04e− 2
Monotonic scheme of order 1 1.5e− 23 2.8e− 3
Monotonic scheme of order 2 7.5e− 22 2.9e− 3
Monotonic scheme of order 3 1.1e− 18 5.0e− 3
Monotonic scheme of order 4 2.5e− 22 4.3e− 3
Monotonic scheme of order 5 7.8e− 23 5.7e− 3
Monotonic scheme of order 6 2.3e− 20 5.8e− 3

Table 4: Minimum and maximum of the numerical solution to the problem of section 6.2.2 for the Cartesian mesh with
200 cells per direction.
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To limit the calculation time, the stopping criterion of the fixed point algorithm is µ = 10−5. Figure 9 displays the
numerical solutions obtained with the Cartesian mesh of 2002 cells. Table 4 gives the minima and maxima of the DDFV
solution and the numerical solution obtained with the monotonic schemes up to order 6. We observe that the minima of
the solutions to monotonic schemes always remain non negative, as expected. Compared to the solutions obtained with
the DDFV scheme, given by Figures 8 and the solutions obtained by the monotonic DDFV schemes, given in [7], the
monotonic arbitrary order schemes are more diffusive (in the radial direction). However, we can note that the higher is
the order, the less diffusive (in the radial direction) is the scheme.

(a) Solution obtained with the
monotonic scheme of order 1

(b) Solution obtained with the
monotonic scheme of order 2

(c) Solution obtained with the
monotonic scheme of order 3

(d) Solution obtained with the
monotonic scheme of order 4

(e) Solution obtained with the
monotonic scheme of order 5

(f) Solution obtained with the
monotonic scheme of order 6

Figure 9: Numerical solutions obtained with monotonic schemes of order 1 to 6 for a Cartesian mesh with 200 cells per
direction for problem of Section 6.2.2
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7 Concluding remarks

This paper proposes an arbitrary-order monotonic Finite Volume scheme for the elliptic problem (1) on general 2D
meshes. The new non-linear method we have detailed here is arbitrary-order convergent even for anisotropic and/or
discontinuous diffusion coefficients on deformed meshes. Furthermore it allows to deal with all boundary conditions
(Dirichlet, Neumann). This scheme uses a polynomial reconstruction involving values in neighboring cells to evaluate
the secondary unknowns at the Gauss quadrature points. We have adapted the non-linear process from [36] to enforce
monotonicity. We have assessed numerically both its accuracy and monotonicity.

Numerical performance could be improved. Indeed, the convergence of the fixed-point algorithm is not guaranteed
and may be very slow. This is observed in particular in test cases where the classical DDFV scheme gives negative
solutions. Techniques for accelerating this fixed point could be explored, such as Anderson acceleration (see [31, 1]) or
the ε-algorithm (see [9, 8]).

The next step is to extend the method to non-linear diffusion (with a diffusion coefficient depending on the unknown)
and to arbitrary order unsteady diffusion, taking inspiration from [18] for example. The extension of the scheme to the
three-dimensional case, based on the same ideas, is the subject of ongoing works.
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