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Abstract

The Ising chain with kinetic constraints provides many examples of totally irreversible zero-
temperature dynamics leading to metastability with an exponentially large number of attractors.
In most cases, the constrained zero-temperature dynamics can be mapped onto a model of ran-
dom sequential adsorption. We provide a brief didactic review, based on the example of the
constrained Glauber-Ising chain, of the exact results on the dynamics of these models and on
their attractors that have been obtained by means of the above mapping. The Riviera model
introduced recently by Puljiz et al. behaves similarly to the kinetically constrained Ising chains.
This totally irreversible deposition model however does not enjoy the shielding property charac-
terising models of random sequential adsorption. It can therefore neither be mapped onto such
a model nor (in all likelihood) be solved by analytical means. We present a range of novel
results on the attractors of the Riviera model, obtained by means of an exhaustive enumer-
ation for smaller systems and of extensive simulations for larger ones, and put these results
in perspective with the exact ones which are available for kinetically constrained Ising chains.

1 Introduction

The slow non-equilibrium dynamics of a broad
variety of systems, including structural glasses,
spin glasses and granular media, has often been
modelled in terms of the motion of a particle
in a multi-dimensional energy landscape with a
great many valleys separated by barriers [1]. In
mean-field models, barrier heights diverge in the
thermodynamic limit, and so valleys become truly
metastable states [2–4]. For finite-dimensional sys-
tems with short-range interactions, barrier heights

and valley lifetimes remain finite at any finite tem-
perature, so that metastability becomes a matter
of time scales [5–10].

Zero-temperature dynamics may also lead to
metastability, in the broad sense that the sys-
tem does not reach its ground state. Focussing
for definiteness our attention onto spin models
on finite-dimensional lattices, zero-temperature
dynamics is known to lead to metastability in
several instances. The two-dimensional ferromag-
netic Ising model under zero-temperature Glauber
dynamics may end in configurations with one or
more frozen-in stripes [11, 12], whose statistics has
been described via crossing probabilities in critical
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2 From the Ising chain to the Riviera model

percolation [13, 14]. On higher-dimensional lat-
tices, the pattern of possible attractors is richer,
including configurations with stochastic blink-
ers, i.e., clusters of spins which flip forever [11,
15]. The ferromagnetic spin chain under Glauber
dynamics [16] reaches its ground state according
to the coarsening paradigm [17], whereas zero-
temperature Kawasaki dynamics yields metasta-
bility, in the sense that the energy of the
blocked (or jammed) configurations reached by
the dynamics is extensively above the ground-
state energy [18, 19]. Spin chains endowed with
zero-temperature single-spin-flip dynamics may
also manifest metastability, at least in the follow-
ing in two instances. In the presence of random
ferromagnetic couplings, the spin chain has an
exponentially large number of metastable config-
urations [20, 21]. On the other hand, preventing
energy-preserving spin flips, and more gener-
ally imposing kinetic constraints, often leads to
metastability. The latter situation is considered in
detail below.

Kinetically constrained models have been
introduced as the simplest systems of all exhibit-
ing aging and many other features of the phe-
nomenology of glassy dynamics [22]. For a broad
range of one-dimensional kinetically constrained
Ising models, zero-temperature dynamics exhibits
metastability in the strong sense, with an expo-
nentially large number of attractors, which are
blocked (or jammed) configurations [23–36]. These
attractors often have a simple local characteriza-
tion in terms of forbidden patterns. As a conse-
quence, the configurational entropy S(E) [37, 38],
such that the number of attractors at fixed energy
density E grows as

N (E) ∼ exp(NS(E)), (1)

can be determined exactly, either by a direct
combinatorial approach, by the transfer-matrix
method used hereafter, or by a more recent
renewal method [39], depending on the model.

Extended stochastic dynamical systems such
as the above kinetically constrained models, hav-
ing an exponentially large number of attractors,
are usually strongly non ergodic. In particular,
the energy density E∞ at the end of the dynam-
ics, where the system has settled into one of
the many attractors which are at its disposal,
depends continuously on the energy density E0

of the initial state. One is then entitled to ask
more detailed questions concerning the dynami-
cal weights of attractors. If the system is launched
from a random initial configuration with energy
density E0, does it sample all attractors with
energy density E∞ with equal weights, i.e., with a
flat measure, or, on the contrary, do the shape and
size of the attraction basin of every single attrac-
tor matter? This question has been first addressed
for slowly compacting granular matter. In this
context, the assumption that the system explores
its phase space with a flat measure is referred to
as the Edwards hypothesis [40–43] (see [44] for a
recent review).

The one-dimensional kinetically constrained
Ising models investigated in [23–36] have the
remarkable property that their zero-temperature
dynamics can be mapped onto a model of ran-
dom sequential adsorption (RSA) or cooperative
sequential adsorption (CSA) [45–47], where iden-
tical objects are deposited sequentially and irre-
versibly on a substrate. These models are exten-
sions of two well-known historical examples, the
dimer deposition model on the chain solved by
Flory [48] and the parking model on the contin-
uous line solved by Rényi [49]. The constrained
Ising chain reviewed in Section 2 maps onto
Flory’s dimer deposition model. One-dimensional
RSA and similar models enjoy a peculiar property
dubbed shielding: the deposition of any elemen-
tary object splits the line into two half-lines whose
future evolutions are independent from each other.
The latter property ensures the exact solvability
of this class of models, by means of a common
analytical approach based on considering empty
intervals. Many quantities concerning the dynam-
ics of the system and its attractors can be derived
in this way. Let us mention the dependence of
the final energy density E∞ on the initial one E0,
which manifests the strong non-ergodicity of the
dynamics, and the peculiarities of connected corre-
lation functions, which generically exhibit oscilla-
tions and, more importantly, a superexponential,
inverse-factorial fall-off. These results have estab-
lished in particular that the Edwards hypothesis
is in general not exactly valid for one-dimensional
kinetically constrained models.

The goal of the present paper is to revisit
the theory of one-dimensional spin models with
kinetic constraints from a didactic viewpoint, and
to use this body of knowledge to shed some



Springer Nature 2021 LATEX template

From the Ising chain to the Riviera model 3

new light onto the Riviera model introduced
recently [50]. The setup of this paper is as follows.
In Section 2 we consider in detail the prototyp-
ical example of the kinetically constrained Ising
chain, which can be mapped onto Flory’s dimer
deposition model. We successively review the var-
ious a priori statistical ensembles of attractors
(Section 2.2) and the exact results that can be
derived on the dynamics of the model and on the
statistics of its attractors (Section 2.3). Section 3 is
devoted to the Riviera model. The latter model is
a one-dimensional variant, introduced recently by
Puljiz et al. [50], of a two-dimensional irreversible
deposition model introduced earlier by the same
authors [51, 52]. Houses are sequentially built on
an infinite array of pre-drawn plots along a beach,
with the constraint that every house should enjoy
the sunlight from at least one of the side direc-
tions. In other words, at least one of the two
neighboring plots of each house should remain for-
ever unbuilt. The strand is initially empty. New
houses are successively introduced until a blocked
configuration is reached. The above dynamical
rule couples both neighboring sites of any occu-
pied one. The Riviera model therefore does not
enjoy the shielding property. The ensuing lack
of exact solvability has observable consequences,
including the exponential decay of the connected
occupation correlation. We shall first consider the
various a priori statistical ensembles of attrac-
tors (Section 3.2), and then present two kinds
of results on the statistics of attractors, namely
exact results obtained by enumeration on small
systems (Section 3.3), and numerical results in
the thermodynamic limit of very large systems
(Section 3.4). Section 4 contains a discussion of
our main findings.

2 The kinetically constrained
Ising chain

2.1 Generalities

The reduced Hamiltonian of the ferromagnetic
Ising chain reads

H = −
∑

n

σnσn+1, (2)

where σn = ±1 are classical Ising spins living on
the sites of the infinite chain.

To set the stage, the Ising chain is endowed
with single-spin-flip dynamics, where each spin
is flipped in continuous time at a rate w(δH)
depending only on the energy difference caused by
the flip,

δH = 2σn(σn−1 + σn+1) ∈ {−4, 0,+4}. (3)

Imposing detailed balance at inverse tempera-
ture β gives one single relation between the three
rates, namely

w(+4) = e−4βw(−4). (4)

At zero temperature, we have w(+4) = 0,
expressing that spin flips which would increase the
energy are suppressed. Choosing time units such
that w(−4) = 1, zero-temperature dynamics is
therefore entirely characterized by the rate w(0)
of energy-conserving flips. For generic values of
the latter rate, the model exhibits coarsening [17].
This is in particular the case for the historical
example of Glauber dynamics [16], corresponding
to w(0) = 1/2. The typical size of ferromagnet-
ically ordered domains grows asymptotically as
L(t) ∼

√
t, and so the energy density above the

ground-state energy falls off as 1/
√
t.

Energy-conserving flips are suppressed for the
particular choice w(0) = 0. The descent dynamics
thus obtained defines the kinetically constrained
Ising chain. The only possible flips are those
involving isolated spins:

−+− → −−−, +−+ → +++. (5)

Isolated spins therefore flip once during their
whole history, whereas other spins never flip.
This is one of the simplest kinetically constrained
models, which has been investigated at length
in [31–36]. The main outcomes of these works will
be reviewed in this section.

The descent dynamics of the constrained Ising
chain can be recast as follows. We consider the
dual lattice, where original bonds are mapped onto
dual sites, and we encode satisfied (resp. unsatis-
fied) bonds as occupied (resp. empty) dual sites:

• : τn = σnσn+1 = +1,

◦ : τn = σnσn+1 = −1,
(6)
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so that the Hamiltonian (2) reads

H = −
∑

n

τn. (7)

The spin flips (5) translate to

◦◦ → ••. (8)

The constrained dynamics is thus mapped onto
the dimer deposition model. The latter model,
which has been first solved by Flory [48], is the
simplest among all models in the RSA class.
Attractors of the constrained Ising chain are in
one-to-one correspondence with blocked configu-
rations of the dimer deposition model. The energy
density E of the Ising chain is related to the
particle density ρ of the dimer model as

E = 1− 2ρ. (9)

We shall focus our attention onto the two-point
energy correlation function

Cn = 〈τ0τn〉 . (10)

2.2 Statistical ensembles of

attractors

In terms of the dimer deposition model, the attrac-
tors are all the configurations where empty sites
are isolated. Equivalently, in terms of the Ising
chain, there are no isolated spins. The statistical
ensemble where all attractors are equally prob-
able, according to a flat Edwards measure, is
referred to as the full a priori ensemble, whereas
the ensemble consisting of all attractors with
fixed energy density E with equal weights is the
microcanonical a priori ensemble.

2.2.1 Transfer-matrix formalism

As usual in statistical physics, instead of consid-
ering the microcanonical ensemble at fixed energy
density E, it is advantageous to introduce the
canonical ensemble defined by introducing an
effective inverse temperature β conjugate to the
Hamiltonian H. For a finite chain of N sites, we
thus introduce the partition function

ZN =
∑

C

e−βH(C), (11)

where the sum runs over all blocked configura-
tions C of a system ofN sites. The partial partition
functions Z•

N and Z◦
N , defined by assigning fixed

values to the occupation of the rightmost site,
obey linear recursions of the form

(
Z•
N+1

Z◦
N+1

)

= T

(
Z•
N

Z◦
N

)

, (12)

involving the 2× 2 transfer matrix

T =

(
eβ eβ

e−β 0

)

. (13)

The eigenvalues of T read

λ± =
1

2

(

eβ ±
√

4 + e2β
)

. (14)

An associated bi-orthogonal set of left and right
eigenvectors, such that

L± ·R± = 1, L± ·R∓ = 0, (15)

reads

L± =

(
λ± eβ

)

λ2
± + 1

, R± =

(
λ±

e−β

)

. (16)

2.2.2 Configurational entropy

The configurational entropy S(E) introduced
in (1) can be derived from the transfer-matrix for-
malism as follows. In the thermodynamic limit of
a very large system size N , we have

ZN ≈
∫

N (E)e−βNEdE

∼
∫

eN(S(E)−βE)dE

∼ eN lnλ+(β). (17)

We thus find that S(E) is the Legendre transform
of ln λ+(β), i.e.,

S(E) = lnλ+(β) + βE, (18)

with

β =
dS

dE
, E = −d lnλ+

dβ
. (19)

The above relations are germane to the usual ther-
modynamic ones between internal energy E and
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free energy F = E − TS. Using (14), we obtain
the expressions

E = − eβ√
4 + e2β

, eβ = − 2E√
1− E2

, (20)

and

S(E) =
1

2
(1− E) ln(1 − E)

− 1

2
(1 + E) ln(1 + E)

+ E ln(−2E). (21)

The configurational entropy S(E) is plotted
against the energy density E in Figure 1. It van-
ishes at both endpoints Emin = −1 and Emax = 0.
Its maximum, corresponding to β = 0, namely

S⋆ = ln

√
5 + 1

2
≈ 0.481212, (22)

is reached for

E⋆ = −
√
5

5
≈ −0.447214. (23)

The above number is therefore the a priori most
probable value of the energy density of an attrac-
tor of the Ising chain.

-1 -0.8 -0.6 -0.4 -0.2 0
E

0

0.1

0.2

0.3

0.4

0.5

S(
E

)

Fig. 1 Configurational entropy S(E) of the constrained
Ising chain, as given in (21), against energy density E of
attractors (blocked configurations). Vertical dashed line: a
priori energy density E⋆ yielding the maximum configura-
tional entropy S⋆ (see (22), (23)).

Another interpretation of the configurational
entropy S(E) is as follows. The a priori prob-
ability P (E) of observing in the full statistical

ensemble a blocked configuration with an atypical
energy density E 6= E⋆ is given by a large-
deviation formula of the form

P (E) ∼ exp(−NΣ(E)), (24)

where the a priori large-deviation function reads

Σ(E) = S⋆ − S(E). (25)

This quantity is positive and vanishes quadrati-
cally in the vicinity of E = E⋆.

2.2.3 Correlation function

The expression Cn,mic of the two-point correlation
introduced in (10) in the microcanonical a priori

ensemble at fixed energy density E can also be
derived from the transfer-matrix formalism. We
have for n ≥ 0

Cn,mic = lim
M,N→∞

trTMETnETN

trTM+n+N
, (26)

i.e.,

Cn,mic =
L+ ·ETnER+

λn
+

,

= (L+ · ER+)
2 (27)

+ (L+ · ER−)(L− · ER+)

(
λ−

λ+

)n

.

According to the equivalence between statistical
ensembles, the transfer matrix T, its largest eigen-
value λ+, and the associated eigenvectors L+ and
R+ are evaluated at the effective inverse temper-
ature β related to the energy density E by (20).
The diagonal matrix

E =

(
−1 0

0 1

)

(28)

is the energy operator.
Using (14), (15), (16), as well as

L± · ER± = ±E, L± · ER∓ = 1± E, (29)

we are left with the simple result

Cn,mic = E2 + (1− E2)

(

−1 + E

1− E

)n

. (30)
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The disconnected part of the above correlation
is the square of the energy density E, as should
be. The connected part exhibits exponentially
damped oscillations.

2.3 Exact results on dynamics and

attractors

In this section we review, on the example of the
constrained Ising chain whose dynamics can be
mapped onto the dimer deposition model [31–36],
the approach yielding exact analytical results on
the dynamics and the attractors of RSA models
in one dimension (see [45–47] for reviews).

We consider a factorized initial state where
each variable τn is chosen at random as

τn = −1 (◦) with prob. p,

τn = +1 (•) with prob. 1− p,
(31)

so that the energy density of the Ising chain and
the particle density of the dimer model read

E(0) = E0 = 2p− 1, ρ(0) = ρ0 = 1− p. (32)

In particular, p = 1 corresponds to the dimer
system being initially empty, whereas p = 1/2 cor-
responds to an infinite-temperature initial state
for the Ising chain.

2.3.1 Energy density

The temporal evolution of thermodynamic quan-
tities such as the energy density E(t) can be
derived by analytical means by using the shield-
ing property of one-dimensional RSA and germane
problems, implying that the densities of empty
intervals obey closed evolution equations. In terms
of the dimer deposition model, let

pℓ(t) = Prob(• ◦ · · · ◦
︸ ︷︷ ︸

ℓ

•) (33)

denote the density per unit length at time t of
intervals consisting of exactly ℓ consecutive empty
sites, with ℓ ≥ 1, so that we have

E(t) = 1− 2ρ(t), ρ(t) = 1−
∑

ℓ≥1

ℓpℓ(t). (34)

The probabilities pℓ(t) obey evolution equations
which can be derived as follows. Clusters of length

ℓ = 1 are inactive, whereas a new dimer can be
deposited at (ℓ−1) places on a cluster of length ℓ ≥
2. We thus arrive to the coupled linear differential
equations

dpℓ(t)

dt
= −(ℓ− 1)pℓ(t) + 2

∑

k≥ℓ+2

pk(t) (35)

for ℓ ≥ 1, with initial condition

pℓ(0) = (1− p)2pℓ. (36)

Inserting an Ansatz of the form pℓ(t) = a(t)z(t)ℓ

into (35) yields two differential equations for z(t)
and a(t). We thus obtain

pℓ(t) = (1− pe−t)2 exp(2p(e−t − 1))pℓe−(ℓ−1)t,
(37)

and so

E(t) = 2p exp(2p(e−t − 1))− 1,

ρ(t) = 1− p exp(2p(e−t − 1)). (38)

In the limit of infinitely long times, only inac-
tive intervals of length ℓ = 1 survive, as should be.
Their limiting density reads

p1(t → ∞) = pe−2p, (39)

and so

E∞ = 2pe−2p − 1, ρ∞ = 1− pe−2p (40)

are respectively the final energy and particle den-
sities in the blocked configurations.

For an initially empty system (p = 1), the
final density (or coverage) of the dimer deposition
model reads

ρ∞ = 1− e−2 ≈ 0.864664. (41)

This is the celebrated result of Flory [48].
Using (32) and (40), the final energy den-

sity E∞ of the constrained Ising chain can be
expressed as a function of its initial energy den-
sity E0, namely

E∞ = (E0 + 1)e−E0−1 − 1. (42)

The final energy E∞ is plotted against E0 in
Figure 2. It is significantly lower than the a priori
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value (23), and lower than E0, as should be. Fur-
thermore, it exhibits a non-monotonic dependence
on E0. Near the ground-state energy (E0 → −1),
we have E∞ − E0 ≈ (E0 + 1)2. The final energy
increases to the maximal value

E∞ = e−1 − 1 ≈ −0.632120 (43)

for E0 = 0, i.e., an infinite-temperature initial
state, and then decreases to the value

E∞ = 2e−2 − 1 ≈ −0.729329 (44)

for E0 = 1, i.e., an antiferromagnetically ordered
initial state.

-1 -0.5 0 0.5 1
E

0

-1

-0.8

-0.6

-0.4

E
∞

Fig. 2 Final energy density E∞ of the constrained Ising
chain, as given in (42), against initial energy density E0.
Oblique dashed line: diagonal (E∞ = E0). Horizontal
dashed line: a priori value (23).

2.3.2 Energy correlation function

The temporal evolution of the two-point corre-
lation introduced in (10) can also be obtained
by using the shielding property. The derivation
involves the following one-cluster and two-cluster
functions

cn(t) = Prob(◦ · · · ◦
︸ ︷︷ ︸

n

),

dm,k,n(t) = Prob(◦ · · · ◦
︸ ︷︷ ︸

m

· · ·
︸︷︷︸

k

◦ · · · ◦
︸ ︷︷ ︸

n

), (45)

where the contents of the middle interval of
length k is unspecified. The above functions obey

the coupled linear equations

dcn(t)

dt
= −(n− 1)cn(t)− 2cn+1(t), (46)

ddm,k,n(t)

dt
= −(m+ n− 2)dm,k,n(t)

−dm+1,k,n(t)− dm,k,n+1(t)

−dm+1,k−1,n(t)− dm,k−1,n+1(t),

with appropriate initial and boundary conditions.
Skipping details, we mention the expression of

the final connected correlation (n ≥ 1) [35]:

Cn,∞ − E2
∞ = 2pe−2p (−2p)n

n!

− 4p2e−2p
∑

m≥n

(−2p)m

m!
. (47)

This result exhibits the generic features of con-
nected correlations in RSA model already men-
tioned in the Introduction [45–47], including oscil-
lations and, more importantly, an inverse-factorial
fall-off. This peculiar kind of superexponential
decay seems to have been evidenced first in [53]
(see [54, 55] for alternative derivations).

Figure 3 shows a comparison between the final
connected correlation Cn,∞ − E2

∞, given by (47),
and its counterpart Cn,mic − E2

∞ in the a pri-

ori microcanonical ensemble at fixed energy E
(see (30)). In order for the comparison to be fair,
the exact final energy E∞ has been used to define
the a priori ensemble. Data corresponding to an
infinite-temperature initial state, i.e., p = 1/2 or
E0 = 0, so that E∞ is given by (43), are plot-
ted on a logarithmic scale against distance n.
The microcanonical ensemble correctly predicts
C0,mic = C0,∞ = 1, by construction, as well as
C1,mic = C1,∞ = −2E∞ − 1. The two datasets
cross each other between distances 5 and 6. The
superexponential decay of the exact correlations
is clearly visible.

2.3.3 Dynamical entropy

The above method can be further extended to
derive an exact expression for the full dynamical
entropy function Σ∞(E), such that the probability
P∞(E) of observing a final blocked configuration
with an atypical energy density E 6= E∞ is given
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0 2 4 6 8 10 12 14
n

-30

-25

-20

-15

-10

-5

0
ln

 |C
n-E

∞
2 |

Fig. 3 Comparison between the final connected corre-
lation Cn,∞ − E2

∞
, given by (47) (red symbols) and its

counterpart Cn,mic − E2
∞

in the a priori microcanoni-
cal ensemble at fixed energy E (see (30)) (aligned blue
symbols). Data are plotted on a logarithmic scale against
distance n. They correspond to p = 1/2 or E0 = 0, and
so E∞ is given by (43). Full (resp. empty) symbols denote
positive (resp. negative) connected correlations.

by a large-deviation formula of the form

P∞(E) ∼ exp(−NΣ∞(E)). (48)

The calculations involved in the derivation
of dynamical large-deviation functions in RSA
models [35, 36, 56] are more intricate that
those exposed in Sections 2.3.1 (energy density)
and 2.3.2 (energy correlation).

Skipping every detail, we mention that the
dynamical entropy of the constrained Ising chain
is given by the following parametric form [35]:

Σ∞ = ln z +
(1 + (2p− 1)z)2 − (1 − z)2e4pz

4pz2e2pz(2(1− p) + (2p− 1)z)

× ln
1 + (2p− 1)z + (1 − z)e2pz

1 + (2p− 1)z − (1 − z)e2pz
,

E =
(1 + (2p− 1)z)2 − (1 − z)2e4pz

2pz2e2pz(2(1− p) + (2p− 1)z)
− 1, (49)

where the parameter z runs between zero and a
positive maximal value zc such that

1 + (2p− 1)zc + (1− zc)e
2pzc = 0. (50)

The dynamical entropy Σ∞(E) is positive, van-
ishes quadratically in the vicinity of E = E∞, and
has finite limits at both endpoints, namely

Σ∞(−1) = ln zc,

Σ∞(0) = −1

2
ln(p(1 − p)). (51)

Figure 4 shows a comparison between the dynami-
cal entropy Σ∞(E) given in (49), for p = 1/2, cor-
responding to E0 = 0, i.e., an infinite-temperature
initial state, and the a priori large-deviation func-
tion Σ(E), given in (25). Both quantities are
plotted against the energy density E. Their end-
point values read Σ∞(−1) = ln zc ≈ 0.245659,
Σ∞(0) = ln 2 ≈ 0.693147, Σ(−1) = Σ(0) = S⋆ ≈
0.481211.

-1 -0.8 -0.6 -0.4 -0.2 0
E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Σ(
E

),
  Σ

∞
(E

)

Fig. 4 Red curve: dynamical entropy Σ∞(E) given
in (49) for p = 1/2, corresponding to E0 = 0, i.e., an
infinite-temperature initial state. Blue curve: a priori large-
deviation function Σ(E) given in (25). Both quantities are
plotted against the energy density E.

3 The Riviera model

3.1 Definition

The Riviera model is the one-dimensional vari-
ant introduced recently by Puljiz et al. [50] of
a two-dimensional irreversible deposition model
introduced earlier by the same authors [51, 52].
Houses are sequentially built on plots of equal sizes
along an infinitely long beach, to be viewed as
the sites of an infinite chain, with the constraint
that every house should enjoy the sunlight from
at least one of the side directions. In other words
at least one of the two neighboring plots of each
house should remain forever unbuilt. The strand
is initially empty. New houses are introduced until
a block configuration is reached. Here is a blocked
configuration on a system of length 40, comprising
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25 houses (•) and 15 empty plots (◦):

••◦••◦••◦••◦••◦•◦••◦•◦•◦••◦◦••◦•◦••◦••◦•

As already announced in the Introduction, the
one-dimensional Riviera model does not enjoy the
shielding property. Indeed, any newly built house
imposes the constraint that at least one of the two
neighboring plots should remain forever unbuilt.
This constraint couples both semi-infinite systems
on either side of the new house. The Riviera model
can therefore neither be mapped onto an RSA
model, nor (in all likelihood) be solved by ana-
lytical means. Hereafter we first investigate the
a priori statistical ensembles of blocked configu-
rations, and then present two kinds of results on
the statistics of attractors, namely exact results
obtained by enumeration on small systems, and
numerical results in the thermodynamic limit of
very large systems.

The basic dynamical variable is the occupa-
tion ηn of plot number n:

• : ηn = 1,

◦ : ηn = 0.
(52)

We shall be mostly interested in the final particle
density (or coverage) of the model when it has
reached one of the many attractors which are at
its disposal,

ρ∞ = 〈η0〉∞ , (53)

and in the final occupation correlation

Cn,∞ = 〈η0ηn〉∞ . (54)

3.2 Statistical ensembles of

attractors

The attractors of the Riviera model are the
blocked configurations where no new house can be
built. They admit a local description in terms of
two (possibly overlapping) local patterns:

◦••◦, •◦•. (55)

In line with Section 2.2, the statistical ensem-
ble where all attractors are equally probable, irre-
spective of their particle density ρ, is referred to
as the full a priori ensemble, whereas the ensem-
ble consisting of all attractors with fixed density ρ
is the microcanonical a priori ensemble.

3.2.1 Transfer-matrix formalism

Along the lines of Section 2.2, we introduce the
Hamiltonian

H = −
∑

n

ηn, (56)

as well as the canonical ensemble defined by
introducing an effective inverse temperature β
conjugate to H.

The structure of the local patterns (55) leads
us to introduce six partial partition functions,
defined by assigning to the occupations of the
three rightmost sites their six different permitted
values. These obey the linear recursion











Z◦◦•
N+1

Z◦•◦
N+1

Z◦••
N+1

Z•◦◦
N+1

Z•◦•
N+1

Z••◦
N+1











= T











Z◦◦•
N

Z◦•◦
N

Z◦••
N

Z•◦◦
N

Z•◦•
N

Z••◦
N











(57)

involving the 6× 6 transfer matrix

T =











0 0 0 x 0 0

0 0 0 0 1 0

x 0 0 0 x 0

0 0 0 0 0 1

0 x 0 0 0 x

0 0 1 0 0 0











, (58)

with the notation

x = e−β . (59)

An equivalent transfer-matrix formalism has been
investigated in [50].

The characteristic equation of the transfer
matrix T reads

λ6 − xλ4 − x2(λ3 + λ2) + x3 = 0. (60)

This equation admits the rational parametrization

x =
(u− 1)4(u+ 1)2

u3
, (61)

λ =
(u− 1)2(u+ 1)

u
. (62)

For any fixed x, (61) yields six values of u, and (62)
yields the corresponding six eigenvalues λa of T.
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We denote by La and Ra the left and right eigen-
vectors associated with λa, normalized so as to
have La ·Rb = δab.

The parametrization (61), (62) implies the fol-
lowing symmetry. Changing u into 1/u leaves x
invariant and changes λ into x/λ. Therefore, for
any fixed x, if λ is an eigenvalue of T, correspond-
ing to the parameter u, x/λ is another eigenvalue,
corresponding to the parameter 1/u. The transfer
matrix T has degenerate eigenvalues in two cases:
x = 0, where the six eigenvalues collapse to the
origin, and

xc =
256

27
≈ 9.481481, (63)

where T has a pair of twice degenerate complex
eigenvalues. In the most relevant range x < xc,
the structure of the spectrum of T is shown in
Figure 5. The largest eigenvalue λ1 and the small-
est one λ2 = x/λ1 are real positive, whereas
the four other eigenvalues λ3, . . . , λ6 form two
complex conjugate pairs, with negative real parts
and common modulus

√
x. For x > xc, one

pair of complex eigenvalues have modulus less
than

√
x, whereas the other pair has modulus

greater than
√
x.

12

3

4

6

5

Fig. 5 Structure of the spectrum of the transfer matrix
T for x < xc. Red symbols: eigenvalues λa labelled by
a = 1, . . . , 6. The blue circle centered at the origin with
radius

√
x contains the four complex eigenvalues.

3.2.2 Statistics of finite systems

Before we investigate the configurational entropy
and correlations in the thermodynamic limit, let
us focus our attention onto finite systems.

The number NN,M of distinct blocked config-
urations comprising M houses on a finite system

of N sites can be derived from the transfer-matrix
formalism as follows. The partition function

ZN (x) =
∑

M

NN,MxM (64)

is given by the linear combination correspond-
ing to open boundary conditions at both ends
of the partial partition functions obeying the
recursion (57). Some algebra yields the expression

ZN (x) = Lopen.T
NRopen, (65)

with

Lopen =
(
0 0 1 0 1 1

)
,

Ropen =
(
0 0 0 0 0 1

)T
, (66)

where the superscript T denotes transposition.
The total number of distinct blocked configura-
tions on a system of size N reads

NN =
∑

M

NN,M = ZN (1). (67)

The partition functions ZN(x) and the num-
bers NN obey the linear recursions

ZN+6(x) − xZN+4(x) − x2(ZN+3(x) + ZN+2(x))

+ x3ZN(x) = 0 (68)

and

NN+6 −NN+4 −NN+3 −NN+2 +NN = 0, (69)

as a consequence of the characteristic equa-
tion (60).

An elegant presentation of the above results
in terms of their generating series has been given
in [50]. With the present notations, we have

Z(x, y) =
∑

M,N

NN,MxMyN

=
∑

N≥0

ZN(x)yN

= Lopen.(1− yT)−1Ropen (70)

=
1 + xy + x(x− 1)y2 + x2y3 − x3y5

1− xy2 − x2(y3 + y4) + x3y6
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and

z(y) =
∑

N≥0

NNyN

= Z(1, y)

=
1 + y + y3 − y5

1− y2 − y3 − y4 + y6
. (71)

The above results have also been put in perspec-
tive with several combinatorial problems in [50]. In
particular, the numbers NN of blocked configura-
tions count a class of permutations with strongly
restricted displacements. They are listed in the
OEIS under reference A080013 [57] (see also [58]).

Table 1 gives the expression of the partition
function ZN(x) and the total number NN of
blocked configurations for sizes N up to 14. The
last line means that, on a system of N = 14 sites,
there are altogether 91 distinct blocked configu-
rations, among which 50 have M = 8 houses, 40
have M = 9 and a single one has M = 10, namely
••◦••◦••◦••◦••.

N ZN (x) NN

0 1 1
1 x 1

2 x2 1
3 3x2 3
4 x2 + 2x3 3
5 3x3 + x4 4
6 6x4 6
7 6x4 + 3x5 9
8 x4 + 10x5 + x6 12
9 6x5 + 10x6 16

10 20x6 + 4x7 24
11 10x6 + 22x7 + x8 33
12 x6 + 30x7 + 15x8 46
13 10x7 + 49x8 + 5x9 64
14 50x8 + 40x9 + x10 91

Table 1 Partition functions ZN (x) of finite systems of
N sites, for N up to 14. The quantity NN = ZN (1) is the
total number of distinct blocked configurations on a
system of size N .

The mean particle density ρN,⋆ in the a priori

ensemble where all blocked configurations of the
finite system of size N are equally probable reads

ρN,⋆ =
1

NZN

(
dZN

dx

)

x=1

. (72)

The rational values of the a priori densities ρN,⋆

will be given in Table 3, for N up to 14, together
with their dynamical analogues ρN,∞, defined
in (89).

3.2.3 Configurational entropy

The configurational entropy S(ρ) is given
by (18), (19), up to the replacement of the energy
density E by the particle density ρ, and of λ+

by the largest eigenvalue λ1 of T. With the
parametrization (61), (62), λ1 is reached for u
real in the range 1 < u < +∞. We thus obtain
the following parametric representation of the
configurational entropy:

ρ =
2u2 + u+ 1

D
, (73)

S =
A

D
, (74)

A = u(3u+ 1) lnu

− (u2 − 1) ln((u − 1)2(u+ 1)), (75)

D = 3u2 + 2u+ 3. (76)

The configurational entropy S(ρ) is plotted in
Figure 6 against the particle density ρ. It vanishes
at the endpoints ρmin = 1/2 and ρmax = 2/3,
respectively corresponding to the periodic pat-
terns •◦•◦•◦ · · · and ••◦••◦••◦ · · · The maximum
of the configurational entropy,

S⋆ ≈ 0.337377, (77)

is reached for β = 0, i.e., x = 1. The corresponding
values of u and ρ read

u⋆ ≈ 1.963553, ρ⋆ ≈ 0.577203. (78)

The above value of ρ⋆ represents the most proba-
ble particle density in the full a priori statistical
ensemble.

3.2.4 Correlation function

The expression Cn,mic of the occupation correla-
tion introduced in (54) in the microcanonical a
priori ensemble at fixed density ρ can be derived
from the transfer-matrix formalism along the lines
of Section 2.2.
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0.5 0.55 0.6 0.65 0.7
ρ

0

0.1

0.2

0.3

0.4
S(

ρ)

Fig. 6 Configurational entropy S(ρ) of the Riviera model,
as given in (74), against particle density ρ of blocked
configurations. Vertical dashed line: most probable den-
sity ρ⋆ yielding the maximum configurational entropy S⋆

(see (77), (78)).

In analogy with (27), we have for n ≥ 0

Cn,mic =
Bn

λn
+

, (79)

with

Bn = L1 ·YTnYR1 (80)

=

6∑

a=1

(L1 ·YRa)(La ·YR1)λ
n
a . (81)

Here again, the transfer matrix T and its eigenval-
ues and eigenvectors are evaluated at the effective
inverse temperature β related to the density ρ
by (59), (61), (73). The diagonal matrix

Y =











1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0











(82)

is the occupation operator. We have consistently
L1 ·YR1 = ρ, so that the term with a = 1 in (81)
yields the expected disconnected component of the
correlation, namely ρ2.

The expression (80) for the numerators Bn

implies that they obey the same linear recursion
as the partition functions ZN(x) (see (68)), i.e.,

Bn+6 − xBn+4 − x2(Bn+3 +Bn+2)

+ x3Bn = 0. (83)

With the parametrization (61), (62), the recur-
sion (83) translates to a recursion relation for the
microcanonical correlations Cn,mic themselves:

u3Cn+6,mic − u2Cn+4,mic

− (u− 1)2(u+ 1)Cn+3,mic

− uCn+2,mic + Cn,mic = 0. (84)

The above recursion allows one to determine
recursively the correlations at all distances from
the following first six values

C0,mic = ρ =
2u2 + u+ 1

D
,

C1,mic =
u2

D
,

C2,mic =
u(u+ 1)

D
,

C3,mic =
2u2 − 1

D
,

C4,mic =
u3 + 2u+ 1

uD
,

C5,mic =
(u2 + u− 1)2

u2D
, (85)

which can be derived from (79), (80) by means of
computer algebra. The denominator D has been
given in (76).

The numerators of the first four correlations
in (85) are quadratic in u. These quantities there-
fore obey two linear identities, which can be
written as

C2 = 3ρ− 2C1 − 1,

C3 = 2ρ+ C1 − 1. (86)

All ‘mic’ subscripts have been suppressed in the
above equations for the following reason. These
identities have been derived within the micro-
canonical framework, irrespective of the parame-
ter u, i.e., irrespective of the mean density ρ. It will
be shown below that these are constitutive iden-
tities, which ensue from the mere structure of the
blocked configurations. In particular, the above
identities hold for the final correlations Cn,∞.

The large-distance behavior of the connected
correlation is dominated by the terms with a =
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3, . . . , 6 in (81), involving the four complex eigen-
values of T. The phases of the latter eigenvalues
are generically not rationally related to π. The
connected correlations therefore exhibit everlast-
ing quasiperiodic oscillations, whose hull falls off
exponentially as

Cn,mic − ρ2 ∼ e−µn. (87)

For x < xc, the structure of the spectrum shown
in Figure 5 implies

µ = ln
λ1√
x
=

1

2
lnu. (88)

3.3 Exact results on the attractors

of finite systems

In the dynamics of the Riviera model, sites (i.e.,
plots of land) are visited in a random sequential
order. The totally irreversible rules of the model
ensure that a house may be built at a given site
only at the first time this site is visited, whereas
any subsequent visit is doomed to be sterile.

For an initially empty finite system of N sites,
the attractor reached by a given realization of
the process therefore only depends on the order
in which the various sites are visited for the first
time. It is advantageous to encode this order-
ing by a permutation σ of the N site labels
(i = 1, . . . , N), such that site σ1 is visited first,
and so on, until site σN is visited last. There
are N ! distinct permutations, and therefore N !
equally probable distinct realizations of the Riv-
iera process. It is natural to define the dynamical
weightW (C) of each attractor C as being the num-
ber of permutations for which the system ends
up in the blocked configuration C. An analogous
approach based on uniform random permutations
has already been used in earlier work [59].

For moderate values of the system size N ,
the N ! permutations can be enumerated and the
corresponding dynamics be run by means of a
computer routine, yielding the dynamical weights
of all attractors of the model, and therefore the
exact values of all observables defined in terms
of those attractors. In particular, the mean final
particle density on a system of size N reads

ρN,∞ =
1

N N !

∑

C

W (C)M(C), (89)

where the sum runs over all blocked configura-
tions C of size N , W (C) is the dynamical weight
of C defined above, and M(C) is the number of
occupied sites (i.e., houses) in C.

Table 2 gives the dynamical weights W (C) of
all attractors of the Riviera model, as obtained
by means of the above enumeration approach,
ordered by increasing values of system size N and
number M of occupied sites, for N up to 8. The
numbers of attractors at fixedN andM agree with
the expressions of the partition functions given in
Table 1.

The exact rational values of the a priori densi-
ties ρN,⋆, defined in (72) in terms of the partition
functions ZN , and of the final densities ρN,∞,
defined in (89) in terms of the dynamical weights
W (C), are given in Table 3 and plotted against
1/N in Figure 7 for system sizes N up to 14,
the largest system size for which the systematic
enumeration approach has been carried out.

0 0.05 0.1 0.15 0.2 0.25
1/N

0.56

0.6

0.64

0.68

0.72

ρ N
,*

,  
ρ N

,∞

Fig. 7 Blue symbols: a priori densities ρN,⋆ defined
in (72). Red symbols: final densities ρN,∞ defined in (89).
Data are taken from Table 3 and plotted against 1/N , for
sizes N ranging from 4 to 14. Arrows: respective limits ρ⋆
given in (78) and ρ∞ given in Table 4. Dashed lines: guides
to the eye demonstrating the asymptotic 1/N convergence
of both datasets.

The complexity of the expressions of the final
densities increases much faster than that of the
a priori ones. This testifies the non-triviality of
the dynamics of the Riviera model. Except for the
system sizes N = 1, 2, 3 and 6, where all attrac-
tors have the same numbers of houses, respectively
M = 1, 2, 2 and 4, the final density ρN,∞ is larger
than the a priori one by a few percent. This means
that the dynamics of the Riviera model is able to
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N M C W (C)
1 1 • 1

2 2 •• 2

3 2 ◦•• 2

••◦ 2
•◦• 2

4 2 ◦••◦ 4

4 3 •◦•• 10
••◦• 10

5 3 ◦••◦• 22
•◦••◦ 22
•◦•◦• 16

5 4 ••◦•• 60

6 4 ◦••◦•• 142
••◦••◦ 142

•◦•◦•• 106
••◦•◦• 106
•◦••◦• 144
••◦◦•• 80

7 4 ◦••◦◦•• 280
••◦◦••◦ 280

◦••◦•◦• 318
•◦•◦••◦ 318
◦••◦••◦ 364
•◦•◦•◦• 272

7 5 •◦••◦•• 1158

••◦••◦• 1158
••◦•◦•• 892

8 4 ◦••◦◦••◦ 1120

8 5 ◦••◦•◦•• 3114
••◦•◦••◦ 3114
◦••◦••◦• 3496
•◦••◦••◦ 3496
•◦•◦•◦•• 2386
••◦•◦•◦• 2386
•◦•◦••◦• 2768
•◦••◦•◦• 2768

•◦••◦◦•• 2464
••◦◦••◦• 2464

8 6 ••◦••◦•• 10744

Table 2 Dynamical weights W (C) of all attractors of
the Riviera model, ordered by increasing values of system
size N and number M of occupied sites, for N up to 8.

reach on average slightly more compact configura-
tions than a flat ensemble. We shall come back to
this point in the Discussion.

For very large system sizes, the a priori den-
sities ρN,⋆ converge to the exactly known limit ρ⋆
given in (78), whereas the final densities ρN,∞ con-
verge to the limit ρ∞, given in Table 4, which is
only known through extensive numerical simula-
tions. Figure 7 demonstrates that both datasets
exhibit some irregular behavior for the smaller

N ρN,⋆ ρN,∞

1 1 1
2 1 1
3 2/3 2/3
4 2/3 17/24
5 13/20 7/10
6 2/3 2/3
7 13/21 2921/4410
8 5/8 8801/13440

9 5/8 7559/11664
10 37/60 38921/60480
11 74/121 2340323/3659040
12 14/23 152397907/239500800
13 39/64 6410910971/10118908800
14 55/91 61139821/96864768

Table 3 Exact rational values of the a priori densities
ρN,⋆ defined in (72), and of the final densities ρN,∞

defined in (89), for system sizes N up to 14.

sizes, and smoothly converge to their respective
limits as 1/N .

3.4 Numerical results in the

thermodynamic limit

We end our investigation of the attractors of
the Riviera model by describing the outcomes
of extensive numerical simulations on systems of
sizesN = 100 and 200, comprising a total of 3.1012

sites. We have measured the final occupation cor-
relation Cn,∞ for distances n up to 13, beyond
which the connected correlation is too small to be
measured accurately.

Before we present numerical results, we wish
to emphasize that the mean particle density and
nearest-neighbor occupation correlation, i.e.,

C0,∞ = ρ∞, C1,∞, (90)

can serve as a basis to express the main local
observables characterizing the blocked configura-
tions. First of all, the two local densities and the
four nearest-neighbor correlations read

〈•〉∞ = ρ∞,

〈◦〉∞ = 1− ρ∞,

〈••〉∞ = C1,∞,

〈•◦〉∞ = 〈◦•〉∞ = ρ∞ − C1,∞,

〈◦◦〉∞ = C1,∞ − 2ρ∞ + 1. (91)
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Using the above expressions, we can prove that
the identities (86) are constitutive to the model,
by using only the local structure of the blocked
configurations, as given by the patterns (55), as
well as their translational invariance. We have
indeed

C2,∞ = 〈•◦•〉∞
= 〈•◦〉∞ − 〈•◦◦〉∞
= 〈•◦〉∞ − 〈◦◦〉∞
= 3ρ∞ − 2C1,∞ − 1,

C3,∞ = 〈•◦◦•〉∞ + 〈••◦•〉∞ + 〈•◦••〉∞
= 〈◦◦〉∞ + 2 〈••◦•〉∞
= 〈◦◦〉∞ + 2(〈•◦•〉∞ − 〈◦•◦〉∞)

= 2ρ∞ + C1,∞ − 1. (92)

The densities ρ∞(•) and ρ∞(••) of clusters of
one and two consecutive occupied sites (houses)
and the densities ρ∞(◦) and ρ∞(◦◦) of clusters of
one and two consecutive empty sites read

ρ∞(•) = ρ∞ − 2C1,∞,

ρ∞(••) = C1,∞,

ρ∞(◦) = 3ρ∞ − 2C1,∞ − 1,

ρ∞(◦◦) = C1,∞ − 2ρ∞ + 1. (93)

The total density of clusters of occupied (or
empty) sites therefore reads

ρ∞(cl) = ρ∞(•) + ρ∞(••)
= ρ∞(◦) + ρ∞(◦◦)
= 〈•◦〉∞ = 〈◦•〉∞
= ρ∞ − C1,∞. (94)

Table 4 gives the numerical values of the
two basic observables introduced in (90), as
well as those of the local observables given
in (91), (93), (94). In these and subsequent numer-
ical values, statistical errors are estimated to be
of the order of 10−6, i.e., one unit in the last
significant digit.

Let us turn to the comparison of numerical
data to the predictions of the a priori ensembles.
The final density ρ∞ ≈ 0.600385 (see Table 4)
is larger than the most probable density ρ⋆ ≈
0.577203 in the full a priori ensemble (see (78))

ρ∞ 0.600385
C1,∞ 0.237565

〈•〉
∞

0.600385
〈◦〉

∞
0.399615

〈••〉
∞

0.237565
〈•◦〉

∞
0.362820

〈◦◦〉
∞

0.036795

ρ∞(•) 0.125255
ρ∞(••) 0.237565
ρ∞(◦) 0.326025
ρ∞(◦◦) 0.036795
ρ∞(cl) 0.362820

Table 4 Numerical values of the two basic observables
introduced in (90) and of all local observables given
in (91), (93), (94).

by a small but significant amount,

ρ∞ − ρ⋆ ≈ 0.023182. (95)

It is interesting to observe that ρ⋆ is slightly
below the middle of the range [1/2, 2/3] of per-
mitted densities, namely ρmid = 7/12 ≈ 0.583333,
whereas ρ∞ is slightly larger than ρmid. These
inequalities are rather general. We shall come
back to this point in the Discussion (see (99) and
Table 6).

The microcanonical a priori ensemble of
blocked configurations whose mean density equals
the final density ρ∞ corresponds to the fol-
lowing values of the parameters u and x
(see (61), (73), (76)):

u∞ ≈ 2.574600, x∞ ≈ 4.602640. (96)

The small density difference (95) translates into
a sizeable difference between x∞ and the value
of x maximizing the configurational entropy, i.e.,
x⋆ = 1 by construction. We nevertheless have
x∞ < xc (see (63)). The correlation Cn,mic in
the microcanonical ensemble at density ρ∞ can
be readily obtained for all distances n by insert-
ing the value of u∞ given in (96) into the initial
values (85) and the recursion (84).

Table 5 presents a comparison between the
numerical values of the final correlationsCn,∞ and
the exact microcanonical ones Cn,mic for distances
n = 1, 2 and 3, where correlations obey the iden-
tities (86). The differences Cn,∞−Cn,mic, given in
the last column, are very small. More importantly,
they are found to be proportional to +1, −2 and
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+1, in agreement with the identities (86). This
parameter-free agreement to all significant digits
provides a quantitative check of the accuracy of
our numerical results.

n Cn,∞ Cn,mic Cn,∞ − Cn,mic

1 0.237565 0.236440 +0.001125
2 0.326025 0.328275 −0.002250
3 0.438335 0.437210 +0.001125

Table 5 Numerical values of the final correlations
Cn,∞, exact microcanonical correlations Cn,mic, and
differences Cn,∞ − Cn,mic, for distances n = 1, 2 and 3,
where correlations obey the identities (86).

Figure 8 shows a comparison between the final
connected correlation Cn,∞ − ρ2∞ (numerical val-
ues, red symbols) and its counterpart Cn,mic−ρ2∞
in the microcanonical ensemble at density ρ∞
(exact values, blue symbols). Data are plotted
on a logarithmic scale against distance n. Full
(resp. empty) symbols denote positive (resp. neg-
ative) connected correlations. The microcanonical
connected correlations exhibit everlasting irregu-
lar oscillations on this logarithmic scale, whose
hull falls off exponentially with decay rate (inverse
correlation length)

µmic =
1

2
lnu∞ ≈ 0.472847 (97)

(blue dashed line), as predicted in (88). The final
connected correlations exhibit smaller oscillations,
except for an outlier at distance 5. These oscilla-
tions seem to be damped on this logarithmic scale,
in the sense that their amplitude exhibits a slow
decay, at variance with the microcanonical ones.
Their hull is observed to fall off roughly twice
faster, with an apparent decay rate

µ∞ ≈ 0.81 (98)

(red dashed line). The observed period three in the
signs of final connected correlations is probably a
transient phenomenon with no intrinsic meaning.

4 Discussion

The goal of the present paper was twofold. We
have given a concise review of the theory of one-
dimensional spin models with kinetic constraints,

0 4 8 12 16 20
n

-16
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0

ln
 |C

n-ρ
2 |

Fig. 8 Comparison between the final connected correla-
tion Cn,∞ − ρ2

∞
(numerical values, red symbols) and its

counterpart Cn,mic − ρ2
∞

in the microcanonical a priori

ensemble at fixed density ρ∞ (exact values, blue symbols).
Data are plotted on a logarithmic scale against distance n.
Full (resp. empty) symbols denote positive (resp. negative)
connected correlations. The blue dashed line has the exact
slope (97). The red dashed with slope 0.81 is the outcome
of a least-square fit.

exemplified by the case of the constrained Ising
chain, and put this body of knowledge in perspec-
tive with a range of novel results on the Riviera
model introduced recently by Puljiz et al. [50].

This work has evidenced that there are both
significant analogies and differences between the
one-dimensional kinetically constrained models
whose fully irreversible zero-temperature dynam-
ics can be mapped onto an RSA model, and the
Riviera model, whose fully irreversible dynamics
does not enjoy the characteristic shielding prop-
erty of those RSA models. It is worth noticing
that the bilateral avatar of the Riviera model,
defined by the requirement that both neighboring
plots of each house should remain forever unbuilt,
amounts to a deposition model with excluded
volume described in [45]. The latter model is
equivalent to the dimer deposition model on the
dual lattice. It therefore belongs to the above class
of kinetically constrained models.

Among the common features shared by the
Riviera model and the class of RSA models, we
wish to underline that the final particle den-
sity ρ∞, i.e., the particle density of the attractors
reached by the dynamics, is slightly different from
the most probable density ρ⋆ in the full a pri-

ori ensemble of blocked configurations. One can
therefore speak of a universally weak violation of
the Edwards flatness hypothesis. In most cases we
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Number Model ρmin ρmax ρmid ρ⋆ ρ∞
1 Riviera 0.5 0.666666 0.583333 0.577203 0.600385

2 Dimers 0.666666 1 0.833333 0.822991 0.864664

3 Ising-Glauber 0.5 1 0.75 0.723607 0.816060

4 Ising-Kawasaki 0.333333 1 0.666666 0.618420 0 .637043

5 Paramagnetic Ising 0.5 1 0.75 0.723607 0 .696734

Table 6 Various characteristic densities for the Riviera model and four kinetically constrained Ising chains whose
dynamics can be mapped onto an RSA model: ρmin and ρmax are the endpoints of the range of permitted densities, ρmid

is the midpoint of the latter range, ρ⋆ is the most probable density in the full a priori statistical ensemble, ρ∞ is the final
density of the attractors of the irreversible dynamics launched from a prescribed initial state, be it either empty or
corresponding to infinite temperature (see text for details). All data obey the inequalities (99), except the last two entries
of the rightmost column (slanted numbers).

have

ρ⋆ < ρmid < ρ∞, (99)

where ρmid = (ρmin + ρmax)/2 is the midpoint of
the range of permitted densities. The above rule
of thumb expresses that the statistical ensemble
tends to favor lower-density blocked configura-
tions, whereas the dynamics tends to favor higher-
density blocked configurations. This is illustrated
by Table 6, giving the values of ρmin, ρmax, ρmid,
ρ⋆ and ρ∞ for the Riviera model and four charac-
teristic one-dimensional kinetic spin models whose
zero-temperature dynamics can be mapped onto
an RSA model. The detailed contents of Table 6
are as follows. Model 1 is the Riviera model, inves-
tigated extensively in Section 3. The exact value of
ρ⋆ and the numerical value of ρ∞ are respectively
given in (78) and in Table 4. For the four subse-
quent models, both ρ⋆ and ρ∞ are known exactly.
Model 2 is the problem of dimer deposition. The
value of ρ⋆ is not related to (23), because here
the system is assumed to be initially empty [56].
The value of ρ∞ is the celebrated result of Flory
(see (41)). The last three models concern the Ising
chain with an infinite-temperature initial state.
Model 3 is the ferromagnetic Ising chain with
kinetically constrained zero-temperature Glauber
dynamics, investigated extensively in Section 2
(see (23) and (43), with E = 1 − 2ρ). Model 4
is the ferromagnetic Ising chain with kinetically
constrained zero-temperature Kawasaki dynam-
ics [26–30], whereas model 5 is the paramagnetic
Ising chain in a uniform magnetic field subjected
to zero-temperature either symmetrically or asym-
metrically constrained dynamics [23–25]. In the

last two cases, the final density ρ∞ (slanted num-
bers) is smaller than ρmid and therefore does not
obey the inequality (99).

The most salient qualitative difference between
the Riviera model and the kinetically constrained
models in the RSA class concerns their final cor-
relation functions. This unlikeness was somewhat
to be expected, since the Riviera model does
not enjoy the shielding property. The numerical
data shown in Figure 8 strongly suggest that the
connected correlation function Cn,∞ − ρ2∞ falls
off exponentially, with a decay rate µ ≈ 0.81
(see (98)). This observed exponential decay is in
stark contrast with the superexponential, inverse-
factorial decay of connected correlations that is
universally met in one-dimensional RSA mod-
els. Exponentially decaying correlations are rather
viewed as a characteristic of either thermal or
otherwise equilibrated systems. From this view-
point the Riviera model thus appears as a chimera
with, on the one hand, a fully irreversible dynam-
ics leading to metastability with an exponentially
large number of attractors and, on the other hand,
exponentially decaying correlations germane to
those observed at thermal equilibrium.
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