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A renewal approach to configurational entropy in one dimension

We introduce a novel approach, inspired from the theory of renewal processes, to determine the configurational entropy of ensembles of constrained configurations of particles on the one-dimensional lattice. The proposed method can deal with all local rules involving only the lengths of clusters of occupied and empty sites. Within this scope, this method is both more systematic and easier to implement than the transfer-matrix approach. It is illustrated in detail on the k-mer deposition model and on ensembles of trapped Rydberg atoms with blockade range b.

Introduction

A variety of complex systems, including spin glasses, structural glasses and granular matter, are known to possess many metastable states at low enough temperature and/or high enough density [1,2,[START_REF] Mézard | Spin Glass Theory and Beyond[END_REF][START_REF] Götze | [END_REF]5,6,7]. These metastable states are usually defined by dynamical considerations. They have been given various names in different contexts, including valleys, pure states, quasi-states and inherent structures. The number N (N, E) of metastable states with energy density E usually grows exponentially with the system size N , as

N (N, E) ∼ exp(N S(E)), (1.1) 
where S(E) is the configurational entropy, or complexity, of the system [8,9]. The one-dimensional geometry is a convenient playground to investigate the statistics of these metastable states. There, metastability only takes place at zero temperature, and valleys typically consist of single blocked configurations. A broad range of one-dimensional kinetic spin models possess an exponentially large number of blocked configurations, which identify with the attractors of zero-temperature dynamics. This class includes pristine models, such as the ferromagnetic Ising chain with Kawasaki dynamics [10,11], disordered models, such as the Ising spin glass with single-spin-flip dynamics [12,13], and a class of kinetically constrained spin models [14,15,16,17,18,19,20,21,22] and of related lattice gas models [23,24,25,26,27]. The zero-temperature dynamics of these kinetically constrained models is fully irreversible. In most cases, it can be mapped onto RSA (random sequential adsorption) or CSA (cooperative sequential adsorption) models, where objects are deposited sequentially on an initially empty substrate [28,29,[START_REF] Krapivsky | A Kinetic View of Statistical Physics[END_REF]. This mapping brings several simplifications. Blocked configurations often have a local characterization in terms of forbidden patterns. The configurational entropy counting the latter configurations can be determined either by a direct combinatorial reasoning [17,[START_REF] Dean | [END_REF]32,33,34,35] or by using the transfer-matrix approach [20,22]. The dynamics of this class of models can also be solved exactly by an analytical approach based on considering empty intervals (see [36,[START_REF] Krapivsky | Jamming and metastability in one dimension: from the kinetically constrained Ising chain to the Riviera model[END_REF] for overviews). These models are strongly non-ergodic. The energy density E ∞ at the end of the zero-temperature dynamical process, where the system is blocked in one of its many attractors, depends continuously on the energy density E 0 of the initial state. For the most probable infinite-temperature initial state (E 0 = 0), the final energy density E ∞ is slightly different from the most probable one E ⋆ , which maximizes the configurational entropy S(E). This testifies a weak violation of the flatness hypothesis originally formulated by Edwards for slowly compacting granular matter (see [START_REF] Baule | [END_REF] for a recent review).

The physics of ultracold atoms provides another motivation for investigating the configurational entropy S(ρ) of statistical ensembles of particles defined by local constraints, where ρ now denotes the particle density. Trapped Rydberg atoms provide a promising experimental playground for quantum information processing, quantum computation and quantum simulation [39]. The strong interactions between Rydberg atoms generate a blockade, preventing the excitation of further Rydberg atoms in some vicinity of an already existing one [40,41,42,43,44,45]. Under certain conditions, the Rydberg blockade yields patterns of atoms, either on periodic optical lattices or on more complex graphs and networks, which are somehow similar to the blocked configurations of RSA models [46]. A simple setting is that of a one-dimensional optical lattice, where each lattice site occupied by a Rydberg atom must have at least b empty sites on either side [35]. The integer b ≥ 1 is referred to as the blockade range of the model. The problem with blockade range b = 1 on more complex graphs amounts to counting the 'maximal independent sets' on the underlying graph. This combinatorial task is known to be a hard NP-complete one in general [47]. Quite recently, experimental systems of Rydberg atoms have been demonstrated to be able to find maximal independent sets in some geometries [48,49].

The present paper has been elaborated concomitantly with the work by Došlić et al. [START_REF] Došlić | Complexity function of jammed configurations of Rydberg atoms[END_REF]. Here, our main goal is to introduce a novel exact method to determine the configurational entropy S(ρ) of statistical ensembles of constrained configurations of particles on the one-dimensional lattice defined by local rules. This approach, inspired from the theory of renewal processes, provides an alternative to the usual methods recalled above, based either on direct combinatorial reasoning or on the transfer-matrix approach. The usage of the renewal approach is however limited to constraints involving the lengths of clusters of occupied and empty sites. Within this scope, it is more systematic and easier to implement than both other methods. The renewal approach itself is described in section 2. Section 3 is devoted to the analysis of quantities pertaining to the thermodynamic limit, including the cumulants of the number of particles and the configurational entropy. Fully explicit expressions are presented in section 4 for three simple statistical ensembles. The main focus is then on the k-mer deposition model and on assemblies of trapped Rydberg atoms with blockade range b. Both models are essentially equivalent to each other, with k = b + 1. They are respectively investigated in sections 5 and 6. A brief discussion is given in section 7. Two appendices are respectively devoted to an extension of the renewal approach to several species of particles, and to a reminder on the transfer-matrix formalism.

Renewal approach

Within the present approach, a configuration C is a sequence of particles (i.e., occupied sites, noted •) and holes (i.e., empty sites, noted •) on the half-infinite one-dimensional chain. The basic variables are the lengths i 1 , j 1 , i 2 , j 2 , . . . of the clusters of contiguous occupied and empty sites. The configuration thus reads

C = • • • • • i1 • • • • • j1 • • • • • i2 • • • • • j2 • • • (2.1)
if the first site is occupied, and

C = • • • • • j1 • • • • • i1 • • • • • j2 • • • • • i2 • • • (2.2)
if the first site is empty. We define a statistical ensemble of configurations by putting the following constraints on the (mutually independent) cluster lengths:

• the lengths i 1 , i 2 , . . . of clusters of occupied sites belong to some set I of integers.

• the lengths j 1 , j 2 , . . . of clusters of empty sites belong to some set J of integers.

The first quantity of interest is the total number N N of configurations C N on a finite system of length N . It is understood that the rightmost cluster ends exactly at site N . In other words, at variance with the usual approach to renewal processes in continuous time, no overhang is permitted.

We have

N N = i1∈I δ i1,N + i1∈I j1∈J δ i1+j1,N + i1∈I j1∈J i2∈I δ i1+j1+i2,N + • • • + j1∈J δ j1,N + j1∈J i1∈I δ j1+i1,N + j1∈J i1∈I j2∈J δ j1+i1+j2,N + • • • , (2.3) 
where the first two and last two lines respectively correspond to (2.1) and (2.2). An efficient way of resumming the above series is suggested by a formal analogy with the theory of renewal processes [START_REF] Cox | Renewal Theory[END_REF][START_REF] Cox | The Theory of Stochastic Processes[END_REF][START_REF] Feller | An Introduction to Probability Theory and its Applications 2[END_REF] (see [START_REF] Godrèche | [END_REF]55] for presentations by physicists). Introduce the generating series

I(z) = i∈I z i , J(z) = j∈J z j , (2.4) 
associated with the sets I and J encoding the definition of the statistical ensemble.

The generating series of the numbers of configurations,

N (z) = N ≥0 N N z N , (2.5) 
then reads

N (z) = 1 + N I (z) + N J (z), N I (z) = I(z) + I(z)J(z) + I(z)J(z)I(z) + • • • , N J (z) = J(z) + J(z)I(z) + J(z)I(z)J(z) + • • • (2.6)
The initial term N 0 = 1 is somehow conventional, whereas N I (z) and N J (z) are in correspondence with (2.1) and (2.2). These series obey the 'renewal equations'

N I (z) = I(z)(1 + N J (z)), N J (z) = J(z)(1 + N I (z)).
(2.7)

Solving the above linear equations, we obtain our first key result:

N (z) = (1 + I(z))(1 + J(z)) 1 -I(z)J(z) . (2.8) 
The second quantity of interest is the number N N,M of configurations on a system of length N , comprising exactly M particles, i.e., M occupied sites and N -M empty ones. This quantity is advantageously encoded in the partition function

Z N (x) = N M=0 N N,M x M , (2.9) 
obtained by attributing a positive weight x to each particle. We have therefore

x M = Z N (x) Z N (1) , (2.10) 
where brackets denote an average over all configurations C N of length N . The partition function reads alternatively

Z N (x) = CN x M(CN ) , (2.11) 
where the sum runs over all configurations C N , with

M (C N ) = i 1 + i 2 + • • • (2.12)
being the number of particles in the configuration C N . In analogy with (2.6), the generating series of the partition functions, namely

Z(z, x) = N ≥0 Z N (x)z N = N ≥0 N M=0 N N,M z N x M , (2.13) 
reads

Z(z, x) = 1 + I(xz) + I(xz)J(z) + I(xz)J(z)I(xz) + • • • + J(z) + J(z)I(xz) + J(z)I(xz)J(z) + • • • (2.14)
We thus obtain our second key result:

Z(z, x) = (1 + I(xz))(1 + J(z)) 1 -I(xz)J(z) . (2.15) 
For x = 1, where all configurations have the same weight, we have

Z(z, 1) = N (z), (2.16) 
and therefore

Z N (1) = N N = N M=0 N N,M , (2.17) 
as should be.

The expressions (2.8) and (2.15) hold in full generality. They are the most useful in the rational case where both generating series

I(z) = A I (z) B I (z) , J(z) = A J (z) B J (z) (2.18)
are rational functions of z. The expressions (2.8) and (2.15) then read

N (z) = C(z) D(z) , (2.19) 
where

C(z) = (A I (z) + B I (z))(A J (z) + B J (z)), D(z) = B I (z)B J (z) -A I (z)A J (z) (2.20)
are polynomials in z, and

Z(z, x) = C(z, x) D(z, x) , (2.21) 
where

C(z, x) = (A I (xz) + B I (xz))(A J (z) + B J (z)), D(z, x) = B I (xz)B J (z) -A I (xz)A J (z) (2.22)
are polynomials in z and x. We have consistently C(z) = C(z, 1) and D(z) = D(z, 1). The complexity of an ensemble can be measured by the degree ∆ of the polynomial D(z), which coincides with the degree in z of D(z, x). In particular, as a consequence of (2.19), the total numbers N N of configurations obey a linear recursion with constant integer coefficients, whose number of terms is at most ∆ + 1. Explicit examples will be given in (4.17) and (5.13).

The rational class encompasses a panoply of ensembles. If I is a finite set, I(z) is a polynomial in z. If I = {b, 2b, 3b, . . .} is the sublattice of index b, we have

I(z) = z b 1 -z b .
(2.23)

The rational class therefore comprises all cases where the sets I and J are either finite sets, sublattices, or any finite unions of such sets. From now on, we restrict ourselves to this rational class of ensembles.

Thermodynamic limit

The above approach provides an efficient framework to investigate the distribution of the number M of particles in the thermodynamic limit of very large systems.

In the simplest cases, the renewal approach also gives access to the full finite-size combinatorics encoded in the numbers N N,M (see section 4).

Cumulants of number of particles

A first side of the problem concerns the cumulants of the number M of particles in a very large system of size N .

The rational expression (2.21) of the generating series Z(z, x) implies an asymptotic exponential behavior of the partition function Z N (x) at large N , namely

Z N (x) ∼ z 0 (x) -N , (3.1) 
where z 0 (x) is the nearest zero of the polynomial D(z, x), i.e., that with smallest modulus among the ∆ zeros. Since the weight x is real, the partition functions Z N (x) are positive, and so z 0 (x) is real and positive. Depending on x, z 0 (x) may be either smaller or larger than unity. Setting

x = e β , (3.2) 
where β is a fictitious inverse temperature, being either positive or negative, the identity (2.10) yields

e βM ∼ e N F (β) , (3.3) 
where the configurational free energy F (β) reads

F (β) = ln z ⋆ -ln z 0 (e β ), z ⋆ = z 0 (1). (3.4)
We assume that the problem is non-trivial, in the sense that at least one of the sets I and J contains more than one point. The free energy then has a full 'hightemperature' power-series expansion of the form

F (β) = n≥1 c n n! β n . (3.5)
As a consequence of (3.3), all cumulants of M grow linearly with the system size N , as

M n c ≈ c n N. (3.6)
In particular, the mean and the variance of the particle number grow as

M ≈ c 1 N, M 2 c = M 2 -M 2 ≈ c 2 N. (3.7)
The first cumulant amplitude c 1 is nothing but the most probable density ρ ⋆ (see (3.17)), as should be.

Configurational entropy

Let us turn to the asymptotic growth of the number N N,M of configurations C N of a system of size N comprising M particles, i.e., M occupied sites. This number is expected on general grounds to scale as (see (1.1))

N N,M ∼ exp(N S(ρ)), (3.8) 
where the microcanonical configurational entropy S(ρ) is a function of the particle density

ρ = M N . (3.9) 
The total number N N of configurations C N on a system of size N therefore also grows exponentially, as

N N ∼ e N S⋆ , S ⋆ = max ρ S(ρ). (3.10) 
The value ρ ⋆ of the density where the microcanonical entropy S(ρ) reaches its maximum S ⋆ represents the most probable density in the thermodynamic limit.

The configurational entropy S(ρ) can be derived as follows. The partition function Z N (x) can be estimated by using (2.9), (3.1) and (3.8). We thus obtain Z N (x) ∼ e N [S(ρ)+ρ ln x] dρ ∼ e -N ln z0(x) .

(3.11)

The saddle-point method yields

ln z 0 (x) = -max ρ [S(ρ) + ρ ln x]. (3.12) 
This equality expresses that the functions S(ρ) and ln z 0 (x) are Legendre transforms of each other. We have therefore

S(ρ) = -ln z 0 (x) -ρ ln x, (3.13) 
with

ρ = - d ln z 0 d ln x = - x z 0 dz 0 dx = x ∂D/∂x z ∂D/∂z z=z0(x) . (3.14) 
We have alternatively, using (3.2) and (3.4),

S(ρ) = -ln z ⋆ + F (β) -βρ, ρ = dF dβ . (3.15)
The maximal entropy S ⋆ is reached for x = 1, i.e., β = 0, as should be, since this is the case where all configurations C N have equal weights. We have

S ⋆ = -ln z ⋆ . (3.16)
The series expansion (3.5) ensures that the corresponding density reads

ρ ⋆ = c 1 , (3.17) 
and that S(ρ) departs quadratically from its maximum S ⋆ , as

S(ρ) ≈ S ⋆ - (ρ -ρ ⋆ ) 2 2c 2 . (3.18)
Another interpretation of the configurational entropy S(ρ) is as follows. The probability P N (ρ) of observing a configuration C N with an atypical density ρ = ρ ⋆ is given by a large-deviation formula of the form

P N (ρ) ∼ exp(-N Σ(ρ)), (3.19) 
where the large-deviation function reads

Σ(ρ) = S ⋆ -S(ρ). (3.20) 
Using (3.15) and (3.16), we have alternatively

Σ(ρ) = βρ -F (β). (3.21)
The large-deviation function is positive, and vanishes quadratically in the vicinity of ρ ⋆ , according to (see (3.18))

Σ(ρ) ≈ (ρ -ρ ⋆ ) 2 2c 2 . (3.22)

Three simple cases

The complexity of a statistical ensemble has been argued to be dictated by the degree ∆ of the polynomial D(z). In this section we illustrate the above general results on the only three examples (up to symmetries) where either ∆ = 1 (Section 4.1) or ∆ = 2 (Sections 4.2 and 4.3). These examples essentially exhaust all cases where fully explicit expressions can be obtained, either for finite systems or in the thermodynamic limit.

Flat ensemble

The first and simplest ensemble is the flat one, where all cluster lengths are equally permitted. Equivalently, each site of the lattice is independently either occupied or empty. We have I = J = {1, 2, 3, . . .}, so that

I(z) = J(z) = z 1 -z . (4.1)
The formula (2.8) reads

N (z) = 1 1 -2z , (4.2) 
so that

N N = 2 N . (4.3)
The formula (2.15) reads

Z(z, x) = 1 1 -(1 + x)z . (4.4)
This is the only instance where the polynomials

D(z) = 1 -2z, D(z, x) = 1 -(1 + x)z (4.5)
have degree ∆ = 1 in z. The expression (4.4) yields

N N,M = N M , (4.6) 
where M ranges from 0 to N . Asymptotic expressions in the thermodynamic limit are also simple. We have

z 0 (x) = 1 1 + x , (4.7) 
so that (3.4) yields

F (β) = ln 1 + e β 2 = β 2 + ln cosh β 2 . (4.8)
We have therefore

ρ ⋆ = c 1 = 1 2 , (4.9) 
in agreement with particle-hole symmetry, whereas all higher-order odd cumulants vanish. The even cumulant amplitudes are given by

c n = 2 n -1 n B n , (4.10) 
where B n are the Bernoulli numbers, i.e.,

c 2 = 1 4 , c 4 = - 1 8 , c 6 = 1 4 , c 8 = - 17 16 , etc. (4.11) 
The formula (3.14) implies that x and z 0 (x) can be expressed as rational functions of the density ρ:

x = ρ 1 -ρ , z 0 (x) = 1 -ρ, (4.12) 
so that (3.13) yields the explicit expression

S(ρ) = -ρ ln ρ -(1 -ρ) ln(1 -ρ) (4.13)
for 0 < ρ < 1. The above formula coincides with the well-known expression for the entropy of mixing. It is the largest possible value for the configurational entropy S(ρ) of an ensemble consisting of occupied and empty sites. In particular,

S ⋆ = ln 2 ≈ 0.693147, (4.14) 
in agreement with (4.3). This is the largest possible value for the entropy S ⋆ .

Isolated empty sites

This second ensemble is defined by the condition that empty sites are isolated. The dual ensemble where occupied sites are isolated is simply obtained from the present one by changing M to N -M , and ρ to 1ρ. These two ensembles have already been considered in several contexts, including the attractors of repulsion processes [56] and packings of disks in narrow channels [57,58].

In the present case we have I = {1, 2, 3, . . .} and J = {1}, so that

I(z) = z 1 -z , J(z) = z. (4.15)
The formula (2.8) reads

N (z) = 1 + z 1 -z -z 2 , (4.16) 
implying that the numbers N N obey the recursion

N N = N N -1 + N N -2 , (4.17) 
defining the Fibonacci numbers

F n = 1 √ 5 1 + √ 5 2 n - 1 - √ 5 2 n .
(4.18)

These integers are listed in entry A000045 of the OEIS [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF], together with many formulas and references. The initial values N 0 = 1, N 1 = 2 lead to

N N = F N +2 . (4.19)
The formula (2.15) reads

Z(z, x) = 1 + z 1 -xz -xz 2 .
(4.20)

The polynomials

D(z) = 1 -z -z 2 , D(z, x) = 1 -xz -xz 2 (4.21)
have degree ∆ = 2 in z. The expression (4.20) yields after some algebra

N N,M = M + 1 N -M . (4.22)
The minimal value of M is either N/2 (if N is even) or (N -1)/2 (if N is odd), whereas its maximal value is N . Asymptotic expressions in the thermodynamic limit are also simple. We have

z 0 (x) = x(x + 4) -x 2x , (4.23) 
so that (3.4) yields

F (β) = β + ln 1 + √ 1 + 4e -β 1 + √ 5 , (4.24) 
and so

ρ ⋆ = c 1 = 5 + √ 5 10 ≈ 0.723606, (4.25) 
and

c 2 = √ 5 25 , c 3 = √ 5 125 , c 4 = - √ 5 125
, etc. (

Even though the polynomial D(z, x) is quadratic in z, both x and z 0 (x) can be expressed as rational functions of the density ρ:

x = (2ρ -1) 2 ρ(1 -ρ) , z 0 (x) = 1 -ρ 2ρ -1 , (4.27) 
so that (3.13) yields the explicit expression

S(ρ) = -(2ρ -1) ln(2ρ -1) -(1 -ρ) ln(1 -ρ) + ρ ln ρ (4.28)
for 1/2 < ρ < 1. In particular,

S ⋆ = ln 1 + √ 5 2 ≈ 0.481211, (4.29) 
in agreement with (4.19).

Even particle clusters

This third ensemble is defined by the condition that all clusters of particles (i.e., of occupied sites) have even lengths. We have I = {2, 4, 6, . . .} and J = {1, 2, 3, . . .}, so that

I(z) = z 2 1 -z 2 , J(z) = z 1 -z . (4.30)
The formula (2.8) reads

N (z) = 1 1 -z -z 2 , (4.31) 
implying that the numbers of configurations are again given by Fibonacci numbers:

N N = F N +1 . (4.32)
The formula (2.15) reads

Z(z, x) = 1 1 -z -x 2 z 2 .
(4.33)

The polynomials

D(z) = 1 -z -z 2 , D(z, x) = 1 -z -x 2 z 2 (4.34)
have degree ∆ = 2 in z. The number M of particles is necessarily even. The expression (4.33) yields after some algebra

N N,M = N -1 2 M 1 2 M . (4.35) 
The minimal value of M is 0, whereas its maximal value is either N (if N is even) or N -1 (if N is odd). Asymptotic expressions in the thermodynamic limit are also simple. We have

z 0 (x) = √ 1 + 4x 2 -1 2x 2 , ( 4.36) 
so that (3.4) yields

F (β) = ln 1 + √ 1 + 4e 2β 1 + √ 5 , (4.37) 
and so

ρ ⋆ = c 1 = 5 - √ 5 5 ≈ 0.552786, (4.38) 
and

c 2 = 4 √ 5 25 , c 3 = - 8 √ 5 125 , c 4 = - 16 √ 5 125
, etc. (4.39)

Here again, both x 2 and z 0 (x) can be expressed as rational functions of the density ρ:

x 2 = ρ(2 -ρ) 4(1 -ρ) 2 , z 0 (x) = 2(1 -ρ) 2 -ρ , (4.40) 
so that (3.13) yields the explicit expression 

S(ρ) = 1 2 (2 -ρ) ln(2 -ρ) -(1 -ρ) ln(2(1 -ρ)) - 1 

S(ρ)

(1) for 0 < ρ < 1. In particular,

(3) (2) 
S ⋆ = ln 1 + √ 5 2 ≈ 0.481211, (4.42) 
in agreement with (4.32), is the same as in the previous ensemble (see (4.29)).

Figure 1 shows plots of the configurational entropy S(ρ) against the particle density ρ, for the three simple ensembles investigated in section 4.

k-mer deposition model

In this section we investigate the problem of the deposition of k-mers, i.e., clusters of k particles, starting from an empty lattice [START_REF] González | [END_REF]61,62]. This is a prototypical example of the class of RSA models discussed in the Introduction (see [28,29,[START_REF] Krapivsky | A Kinetic View of Statistical Physics[END_REF] for reviews). The integer k ≥ 2 is the only parameter of the model, with k = 2 corresponding to dimers, k = 3 to trimers, and so on. Our aim is to investigate the statistical ensemble of the blocked (or jammed) configurations, where no single k-mer can be inserted any more. These configurations consist of sequences of contiguous k-mers, separated by clusters of empty sites whose length is at most k -1. Figure 2 shows a typical blocked configuration of the trimer problem, together with the corresponding configuration of Rydberg atoms with blockade range b = 2 (see section 6).

The statistical ensemble of blocked configurations of k-mers has been studied by combinatorial methods [33,34,35]. It is investigated by yet another approach in [START_REF] Došlić | Complexity function of jammed configurations of Rydberg atoms[END_REF].

General theory

The ensemble of blocked configurations can be described in terms of independent clusters, and therefore studied by the renewal approach, with I = {k, 2k, 3k, . . .} being the sublattice of index k, whereas J = {1, 2, . . . , k -1}. We have therefore

I(z) = z k 1 -z k , J(z) = z -z k 1 -z . ( 5.1) 
The formulas (2.8) and (2.15) respectively read

N (z) = 1 -z k 1 -z -z k + z 2k , (5.2) 
Z(z, x) = 1 -z k 1 -z -x k z k + x k z 2k .
(5.

3)

The first of these results was derived by a purely combinatorial approach in [34]. The numerators and denominators of (5.2) and (5.3) have the common root z = 1. As a consequence, the degree of the denominators

D(z) = 1 -z -z k + z 2k , D(z, x) = 1 -z -x k z k + x k z 2k (5.4) 
can be reduced to ∆ = 2k -1.

The relationship between the parameter x and the smallest root z 0 (x) of the polynomial D(z, x) takes the form

x k = 1 -z 0 (x) z 0 (x) k (1 -z 0 (x) k )
.

(5.5)

The expression (3.14) for the density ρ therefore reads

ρ = k(1 -z 0 (x))(1 -z 0 (x) k ) k + (1 -k)z 0 (x) -2kz 0 (x) k + (2k -1)z 0 (x) k+1 .
(5.6)

The expression (3.13) for the configurational entropy simplifies to

S(ρ) = -(1 -ρ) ln z 0 (x) + ρ k ln 1 -z 0 (x) k 1 -z 0 (x) , (5.7) 
where ρ varies between the extremal values

ρ min = k 2k -1 , ρ max = 1. (5.8)
The maximum of the configurational entropy reads S ⋆ =ln z ⋆ (see (3.16)), where z ⋆ = z 0 (1) obeys D(z ⋆ ) = 0 (see (5.4)), i.e., This expression can be obtained either from (5.5) and (5.6), or by using the definition (3.4) and the expansion (3.5) of the configurational free energy F (β). The second approach yields the higher cumulant amplitudes c n as well. We mention here the expression of the variance amplitude for further reference:

c 2 = k 2 z k ⋆ (1 -z k ⋆ )(z 2 ⋆ -z k+1 ⋆ + z 2k+1 ⋆ -k 2 z 3k ⋆ ) (z ⋆ + kz k ⋆ -2kz 2k ⋆ ) 3
.

(5.11)

The above expressions somehow simplify in the case of dimers (k = 2) and in the regime where k is very large. These two situations are studied in detail below.

The case of dimers (k = 2)

The general theory simplifies as follows in the case of dimers. First, (2.8) reads

N (z) = 1 + z 1 -z 2 -z 3 ,
(5.12)

implying that the total numbers N N of configurations obey the recursion

N N = N N -2 + N N -3 , (5.13) 
defining the Padovan numbers P N . These integers are listed in entry A000931 of the OEIS [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF], together with many formulas and references. The initial values N 0 = N 1 = N 2 = 1 exactly lead to

N N = P N . (5.14) 
The recursion (5.13) and its solution (5.14) were obtained by combinatorial approaches in [33,35].

The case of dimers is also the only situation where (5.5) and (5.6) yield rational expressions for x 2 and z 0 (x) in terms of the density ρ:

x 2 = (3ρ -2) 3 4ρ(1 -ρ) 2 , z 0 (x) = 2(1 -ρ) 3ρ -2 .
(5.15)

As a consequence, (5.7) translates to

S(ρ) = - 1 2 (3ρ -2) ln(3ρ -2) -(1 -ρ) ln(2(1 -ρ)) + 1 2 ρ ln ρ, (5.16) 
where the density ρ varies between ρ min = 2/3 and ρ max = 1. The quantity z ⋆ = z 0 (1) obeys the cubic equation

z 3 ⋆ + z 2 ⋆ -1 = 0, (5.17) 
and so

z ⋆ = 1 6 (100 + 12 √ 69) 1/3 + (100 -12 √ 69) 1/3 -2 ≈ 0.754877 (5.18)
is the reciprocal of the so-called plastic number

φ = 1 6 (108 + 12 √ 69) 1/3 + (108 -12 √ 69) 1/3 ≈ 1.324717, (5.19) 
obeying

φ 3 -φ -1 = 0, (5.20) 
and describing the asymptotic growth of Padovan numbers: P N ∼ φ N . We have

S ⋆ = -ln z ⋆ = ln φ ≈ 0.281199, ρ ⋆ = 2(z ⋆ + 1) 3z ⋆ + 2 = 2(3z 2 ⋆ + z ⋆ + 7) 23 ≈ 0.822991, c 2 = 4(29z 2 ⋆ + 2z ⋆ -9) 529 ≈ 0.068318. (5.21)
The first expression of ρ ⋆ has been derived from (5.15), whereas the second one has been obtained by reducing the first one by means of the definition (5.17) of z ⋆ . The expression of c 2 has been derived from (5.11) by the same procedure. Any rational expression in z ⋆ can indeed be reduced to a quadratic polynomial.

The regime of large k

The theory also simplifies for large k. There, a scaling regime where z 0 (x) is close to unity dictates both the behavior of the cumulant amplitudes c n and the form of the configurational entropy S(ρ) in the vicinity of its maximum S ⋆ . In order to explore this regime, we set

z 0 (x) = exp - u(x) k . (5.22)
Terms of relative order 1/k will be consistently neglected throughout the following.

The key equations (5.5), (5.6) and (5.7) respectively simplify to

x k ≈ 1 k u(x)e u(x) , (5.23) 
ρ ≈ u(x) u(x) + 1 , (5.24) 
S(ρ) ≈ 1 k u(x) u(x) + 1 1 + ln k u(x)
.

(5.25)

The last two relations can be combined to give

S(ρ) ≈ ρ k 1 + ln k(1 -ρ) ρ . (5.26) 
Let us consider first the maximum S ⋆ of the configurational entropy and the corresponding value ρ ⋆ of the particle density. The most direct approach consists in setting x = 1 in (5.23). We thus find that u ⋆ = u(1) obeys u ⋆ e u⋆ ≈ k, (5.27) whereas (5.24) and (5.25) respectively become

ρ ⋆ ≈ u ⋆ u ⋆ + 1 , (5.28) S ⋆ ≈ u ⋆ k .
(5.29)

The solution to (5.27) reads u ⋆ ≈ W (k), (5.30) in terms of the Lambert W function. To leading order as k is very large, we have

u ⋆ ≈ ln k, (5.31) 
and therefore

ρ ⋆ ≈ 1 - 1 ln k , (5.32) S ⋆ ≈ ln k k .
(5.33)

The above estimates involving logarithmic factor will be commented and illustrated at the end of this section. For the time being, let us show that they can be turned into full asymptotic expansions in inverse powers of ln k. Introducing the notations

λ = ln k, µ = ln λ = ln ln k, (5.34) 
and setting

u ⋆ = λ -µ + ε, (5.35) 
the expression (5.27) translates to .36) This equation can be solved by iteration, yielding the expansion

ε ≈ -ln 1 + ε -µ λ . ( 5 
ε ≈ µ λ + µ(µ -2) 2λ 2 + µ(2µ 2 -9µ + 6) 6λ 3 + • • • (5.37)
Inserting (5.35), (5.37) into (5.28), (5.29), we obtain the expansions

ρ ⋆ ≈ 1 - 1 λ - µ -1 λ 2 - µ 2 -3µ + 1 λ 3 - 2µ 3 -11µ 2 + 12µ -2 2λ 4 + • • • , (5.38) 
S ⋆ ≈ 1 k λ -µ + µ λ + µ(µ -2) 2λ 2 + µ(2µ 2 -9µ + 6) 6λ 3 + • • • . (5.39)
All terms of the above asymptotic expansions can be trusted. The present approach indeed neglects corrections of relative order 1/k, which are exponentially small in λ.

Conversely, (5.27), (5.28) and (5.29) can be thought of as all-order resummations of the above asymptotic expansions. The shape of the entropy S(ρ) in the vicinity of its maximum S ⋆ can be investigated by simplifying the expression (5.26) in the regime where 1ρ is proportional to 1/λ. This scaling is suggested by the estimate (5.32) of ρ ⋆ . Introducing the variable

ξ = λ(1 -ρ), (5.40) 
we recover from (5.26) the first two terms of the expansion (5.39) of S ⋆ , as well as a scaling expression for the large-deviation function Σ(ρ) = S * -S(ρ) to leading order in λ, namely

Σ(ρ) ≈ Φ(ξ) k , (5.41) 
where the scaling function reads

Φ(ξ) = ξ -1 -ln ξ. (5.42)
This function vanishes for ξ * = λ(1ρ ⋆ ) = 1, in agreement with (5.32) and with the first two terms of (5.38), around which it behaves quadratically as

Φ(ξ) ≈ (ξ -1) 2 2 , (5.43) so that Σ(ρ) ≈ λ 2 (ρ -ρ ⋆ ) 2 2k , (5.44) 
in agreement with (3.18), and with (5.50) to leading order in λ.

The behavior of the cumulant amplitudes c n can also be investigated along the same lines. Setting

β = σ k , i.e., x = exp σ k , (5.45) 
where the parameter σ is independent of k, (5.23) becomes u(x)e u(x) ≈ ke σ , (5.46) hence u(x) ≈ W (ke σ ).

(5.47)

The configurational free energy introduced in (3.4) reads

F (β) ≈ u(x) -u ⋆ k .
(5.48)

Expanding u(x) in powers of σ and identifying coefficients with (3.5), we obtain

c 1 = ρ ⋆ ≈ u ⋆ u ⋆ + 1
(5.49) (see (5.28), (5.32), (5.38)), as well as

c 2 ≈ ku ⋆ (u ⋆ + 1) 3 ≈ k λ 2 1 + 2µ -3 λ + 3µ 2 -11µ + 6 λ 2 + • • • , (5.50) c 3 ≈ - k 2 u ⋆ (2u ⋆ -1) (u ⋆ + 1) 5 ≈ - 2k 2 λ 3 1 + 6µ -11 2λ + 12µ 2 -50µ + 35 2λ 2 + • • • , (5.51)
and so on. To leading order in λ, all cumulant amplitudes scale as

c n -δ n1 ≈ (-1) n (n -1)! k n-1 λ n .
(5.52)

Inserting the above leading-order estimate into (3.5) and summing the series, we obtain a scaling formula for the configurational free energy, namely

F (β) ≈ β - 1 k ln λ + kβ λ .
(5.53)

The expression (3.15) then yields Let us now comment and illustrate the above results. The most striking feature of the large-k regime is the occurrence of logarithms in the leading-order estimates (5.32) and (5.33). These logarithmic corrections originate in the following peculiar feature of the large-k regime. The length of any cluster of empty sites between two sequences of k-mers may take a very large number (k -1) of different values. This proliferation of the possible numbers of consecutive empty sites affects the renewal formalism as follows. In the naive scaling regime where x k and z k are of order unity, I(xz) remains of order unity, whereas J(z) grows proportionally to k. This fundamental dissymmetry between occupied and empty sites manifests itself by the presence of a factor k in the right-hand side of (5.27), whose solution scales as (5.31). It is therefore at the origin of the observed logarithmic corrections to scaling. The slow convergence of the most probable density ρ ⋆ to the largest possible density ρ max = 1 is the foremost consequence of this mechanism.

ρ ≈ 1 - 1 λ + kβ . ( 5 
Figure 3 shows plots of the configurational entropy S(ρ), multiplied by k, against the particle density ρ for a broad range of values of k, equally spaced on a logarithmic scale. The heights of the maxima kS ⋆ (black symbols) are roughly equidistant, in agreement with the prediction (5.33). For modest values of k, the entropy curves are roughly symmetric. Accordingly, the most probable densities ρ ⋆ are not far from the middle of the interval of values of ρ, i.e., ρ mid = 3/4. The asymptotic prediction (5.32) for the most probable density ρ ⋆ implies that the entropy curves eventually become very asymmetric for very large values of k, with their maxima approaching the upper edge of the interval at logarithmic speed. This asymmetry is indeed observed to set in very slowly.

Figure 4 shows the maximal entropy S ⋆ , multiplied by k and plotted against ln k. The values of kS ⋆ (red) are compared to the all-order large-k estimate u ⋆ (see (5.29), (5.30)) (blue). The latter estimate converges very fast to the data, in agreement with the expectation that this convergence is in 1/k, roughly speaking, i.e., exponentially fast at the scale of the plot.

Figure 5 shows the most probable density ρ ⋆ plotted against ln k. This density (red) exhibits a non-monotonic dependence on k. More details will be given in the discussion of figure 6. The data are compared to the all-order large-k estimate (see (5.28), (5.30)) (blue). The accuracy of the latter estimate is far less impressive than for S ⋆ (see figure 4). Figure 6 presents a comparison between the a priori (or static) density of the problem of k-mers, i.e., the most probable density ρ ⋆ of the statistical ensemble of blocked configurations investigated above (red), and the final (or dynamical) density ρ ∞ of the blocked configurations reached by the deposition dynamics starting from an empty lattice (blue). The dynamical density is exactly known for all values of k [START_REF] González | [END_REF]61,62,35]:

ρ ∞ = k 1 0 exp -2 k-1 j=1
1y j j dy.

(

For k = 2, we recover the result by Flory for the dimer deposition problem [63]:

ρ ∞ = 1 -e -2 ≈ 0.864664.
(5.56)

The modest range (k ≤ 40) used in figure 6 allows a good visibility of the following traits. The dynamical density ρ ∞ is a monotonically decreasing function of k, whereas the static density ρ ⋆ exhibits a non-monotonic dependence on k, reaching its minimum ρ ⋆ ≈ 0.758316 for k = 9, as already noticed in [34]. Both particle densities cross between 15 and 16. As a consequence, for k ≤ 15 we have ρ ∞ > ρ ⋆ , as in most common RSA and related models [START_REF] Krapivsky | Jamming and metastability in one dimension: from the kinetically constrained Ising chain to the Riviera model[END_REF], whereas the reverse inequality ρ ∞ < ρ ⋆ holds for k ≥ 16. For large k, the dynamical density converges to the celebrated Rényi parking constant [64]:

R = ∞ 0 exp -2 y 0 1 -e -x
x dx dy ≈ 0.747597, (5.57) describing the final density of the blocked configurations for the RSA of unit intervals on the continuous line. The corrections to the above limit have been shown [61] to be given by a power series in inverse powers of k:

ρ ∞ = R + R 1 k + R 2 k 2 + • • • , (5.58) 
with R 1 ≈ 0.216181, R 2 ≈ 0.036255. The convergence of ρ ∞ to its limit R (horizontal dashed line) is much faster than the logarithmically slow convergence of ρ ⋆ to the limit ρ max = 1.

Rydberg atoms

This section is devoted to configurations of assemblies of trapped ultracold Rydberg atoms. In the simple one-dimensional setting described in the introduction, Rydberg atoms are viewed as particles occupying the sites of a one-dimensional optical lattice, with a constraint stemming from the Rydberg blockade, namely that each occupied site must have at least b empty sites on either side. The integer b ≥ 1 is referred to as the blockade range of the model. Our aim is to investigate the ensemble of all blocked configurations, where no single atom can be inserted any more [35,[START_REF] Došlić | Complexity function of jammed configurations of Rydberg atoms[END_REF].

A blocked configuration consists of isolated occupied sites (the Rydberg atoms) separated by clusters of empty sites whose length is at least b, in order to obey the blockade constraint, and at most 2b, since an extra Rydberg atom could be inserted in the middle of an empty range of size 2b + 1. On a finite sample with open boundary conditions, there can be at most b empty sites on the left of the first occupied one and at most b empty sites on the right of the last occupied one. Blocked configurations of Rydberg atoms can therefore be described in terms of independent clusters. Within the renewal approach of section 2, clusters of occupied and empty sites respectively correspond to I = {1} and J = {b, b + 1, . . . , 2b}. The renewal approach must however be complemented in order to take boundary conditions into account, namely the presence of empty sites near both endpoints, whose numbers belong to the set B = {0, 1, . . . , b}. The associated generating series read

I(z) = z, J(z) = z b (1 -z b+1 ) 1 -z , B(z) = 1 -z b+1 1 -z . (6.1) 
The formula (2.8) becomes

N (z) = 1 + B(z)I(z)B(z) + B(z)I(z)J(z)I(z)B(z) + • • • = 1 + I(z)(B(z) 2 -J(z)) 1 -I(z)J(z) . (6.2)
Similarly, the formula (2.15) becomes

Z(z, x) = 1 + I(xz)(B(z) 2 -J(z)) 1 -I(xz)J(z) . (6.3) 
Using (6.1), the expressions (6.2) and (6.3) read explicitly

N (z) = 1 -z + z 2 -z b+1 -z b+2 + z 2b+2 (1 -z)(1 -z -z b+1 + z 2b+2 ) , (6.4) 
Z(z, x) = 1 + (x -2)z + z 2 -xz b+1 -xz b+2 + xz 2b+2 (1 -z)(1 -z -xz b+1 + xz 2b+2 ) . (6.5) 
These rational expressions are not singular at z = 1, so that their denominators actually read

D(z) = 1 -z -z b+1 + z 2b+2 , D(z, x) = 1 -z -xz b+1 + xz 2b+2 . (6.6)
These denominators do not depend on the specific boundary conditions. This is to be expected, as they encode the properties of the system in the thermodynamic limit. They can be mapped onto the denominators of the k-mer problem (see (5.4)) by setting

k = b + 1, (6.7) 
and changing x into x k .

Figure 2 (see section 5) demonstrates the equivalence underlying the above observation at the level of single configurations. A Rydberg atom followed by b empty sites (to its right) can be mapped onto a k-mer, where b and k are related by (6.7). The numbers M RA of Rydberg atoms and M of particles in the k-mer problem, and the corresponding densities ρ RA and ρ, are therefore related by .8) The mapping between k-mers and Rydberg atoms with blockade range b is however not unique. For instance, a k-mer can equally well represent a Rydberg atom preceded by b empty sites (to its left). As a consequence of this non-uniqueness, the equivalence between both models does not exactly hold on finite systems with prescribed boundary conditions. This explains why the denominators (6.6) and (5.4) are simply related to each other, as observed above, whereas the full generating series (6.4), (6.5) are not simply related to (5.2), (5.3). All results derived in section 5 concerning the k-mer problem in the thermodynamic limit apply mutatis mutandis to blocked configurations of Rydberg atoms on the formally infinite chain. Hereafter we focus our attention onto two quantities which are more specific to the latter problem.

M RA = M k , ρ RA = ρ k . ( 6 
The first observable of interest is the mean distance B between successive Rydberg atoms along the chain, measured in lattice spacings. In the statistical ensemble of blocked configurations, this mean distance reads The second observable of interest is the so-called Mandel Q parameter [65]:

B = 1 (ρ RA ) ⋆ = k ρ ⋆ , (6.9 
B = b 1 + 1 λ + µ λ 2 + µ(µ -1) λ 3 + • • • , (6.10) 
Q = M 2 RA c M RA -1. (6.12)
This parameter is commonly used in quantum optics and atomic physics. It provides a measure of the deviation with respect to a Poissonian distribution, for which Q = 0. In the present case, the Mandel Q parameter has a well-defined value in the thermodynamic limit, which only depends on b, namely (see (3.7)) Quantities in the right-hand side again pertain to the k-mer problem, studied in section 5. The above Q parameter is given in table 1 up to b = 10, and plotted against b in figure 8 up to b = 40. It turns out that Q is always near Q min = -1, and has a very weak non-monotonic dependence on b, with a maximum at b = 2. This observation is in qualitative agreement with various experiments on Rydberg atoms, where rather large negative values of Q have been reported, testifying strongly sub-Poissonian statistics [39,41,43,44]. The asymptotic estimate of Q at large b, namely (see (5.35), (5.37), (5.49), (5.50)) is however too large (i.e., too far from Q min ) to be visible in figure 8. It is altogether of little practical use, except for extremely large b.

Q = c 2 kc 1 -1. ( 6 
Q ≈ 1 (u ⋆ + 1) 2 -1 = -1 + 1 λ 2 + 2(µ -1) λ 3 + • • • , ( 6 

Discussion

In this paper we have put forward an alternative method to investigate statistical ensembles of constrained configurations of particles on the one-dimensional lattice. The scope of this renewal approach is restricted to local constraints which are expressible in terms of the lengths of clusters of occupied and empty sites. Within this scope, the present renewal method is more systematic and easier to implement than traditional approaches involving either direct combinatorial reasoning or the transfermatrix formalism. The key formulas (2.8) and (2.15) are indeed explicit, given the sets I and J of permitted cluster lengths.

In the broad class of rational models, the complexity of a statistical ensemble is measured by the degree ∆ of the polynomial D(z). In particular, the numbers of configurations on finite lattices of length N obey a linear recursion with constant integer coefficients, whose number of terms is at most ∆ + 1. The integer ∆ is the analogue of the dimension of the transfer matrix in the transfer-matrix approach summarized in Appendix B. The renewal approach it however more straightforward, as the transfer-matrix formalism requires both the choice of a relevant set of partial partition functions and the explicit building of the corresponding transfer matrix. Furthermore, the renewal approach extends to non-rational models, which would require the construction of an infinite-dimensional transfer operator.

The renewal approach has been illustrated in detail on the k-mer deposition model and on assemblies of trapped Rydberg atoms with blockade range b. In the latter case, the presence of specific boundary conditions led us to extend the renewal approach and to generalize the formulas (2.8) and (2.15) to (6.2) and (6.3). The statistical ensembles of blocked configurations of k-mers and of Rydberg atoms are essentially equivalent to each other, with the identification k = b + 1. Their most remarkable common feature is the occurrence of logarithmic corrections in the regime where k or b become large, whose origin has been explained in detail. In the k-mer model, the most probable density ρ ⋆ approaches its maximal value ρ max = 1 very slowly, with a large correction scaling as 1/ ln k. In the case of Rydberg atoms, the Mandel Q parameter is always very near its minimal value Q min = -1, irrespective of the blockade range b. Its logarithmically slow asymptotic convergence to Q min is therefore unobservable, except for irrealistically large b.

Finally, it would be desirable to extend either the present renewal method or the transfer-matrix approach to more complex geometries besides the one-dimensional case. In this context, regular trees seem to be the most promising setting.

is the multinomial coefficient, with the constraint M 1 + • • • + M A = N . The above results express that each site is independently occupied by a particle of any species a = 1, . . . , A.
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Figure 1 .

 1 Figure 1. Configurational entropy S(ρ) of the three simple ensembles investigated in section 4, against particle density ρ. Red curve (1): flat ensemble (see (4.13)). Green curve (2): ensemble with isolated empty sites (see (4.28)). Blue curve (3): ensemble with even particle clusters (see (4.41)).

Figure 2 .

 2 Figure 2. Top row: typical blocked configuration of the trimer problem. Bottom row: corresponding configuration of Rydberg atoms with blockade range b = 2 (see section 6).

. 54 )

 54 Using(3.20),(3.21), we recover the scaling expression (5.41),(5.42) for the largedeviation function Σ(ρ).

Figure 3 .

 3 Figure 3. Configurational entropy S(ρ) of the k-mer problem, multiplied by k and plotted against particle density ρ. Bottom to top: k = 10, 20, 40, 80, 160, 320, 640 and 1280. Symbols: coordinates (ρ⋆, kS⋆) of the maxima of the entropy curves.

Figure 4 .Figure 5 .

 45 Figure 4. Maximal configurational entropy S⋆ of statistical ensemble of blocked k-mer configurations, multiplied by k and plotted against ln k. Red curve: values of kS⋆ for finite k. Blue curve: large-k estimate (see (5.29), (5.30)).

Figure 6 .

 6 Figure 6. Particle densities of blocked k-mer configurations, against k. Red curve: most probable density ρ⋆ of the statistical ensemble. Blue curve: dynamical density ρ∞ (see (5.55)). Horizontal dashed line: Rényi parking constant R (see (5.57)).

  ) where quantities entering the rightmost side pertain to the k-mer problem, studied in section 5. The mean interatomic distance B only depends on the blockade range b. It is given in table 1 up to b = 10, and plotted against b in figure 7 up to b = 40. Black straight lines show the extremal values B min = b + 1 and B max = 2b + 1. Actual values of B (red line with symbols) are compared to the large-k estimate for the ratio k/ρ ⋆ (see (5.28), (5.30)) (blue line). The latter estimate has the asymptotic expansion (see (5.38))

  with λ = ln b, µ = ln λ = ln ln b, (6.11) implying that B ≈ b(1 + 1/ ln b) is hardly larger than B min ≈ b at large b. The growth of B is already rather well represented by the above estimate for the modest range of b shown in figure 7.

60 <B>Figure 7 .

 607 Figure 7. Mean interatomic distance B (see (6.9)) of blocked configurations of Rydberg atoms, against blockade range b. Red line with symbols: values of B . Blue line: large-k estimate (see (5.28), (5.30)). Black lines: extremal values Bmin = b + 1 and Bmax = 2b + 1.

. 14 )QFigure 8 .

 148 Figure 8. Mandel Q parameter (see (6.13)) of blocked configurations of Rydberg atoms, against blockade range b.

Table 1 .

 1 Mean interatomic distance B (see (6.9)) and Mandel Q parameter (see(6.13)) in the statistical ensemble of blocked configurations of Rydberg atoms with blockade range b, up to b = 10.

	.13)

z ⋆z k ⋆ + z

2k ⋆ = 0.(5.9)The corresponding particle density readsρ ⋆ = c 1 = kz k ⋆ (1z k ⋆ ) z ⋆ + kz k ⋆ -2kz 2k ⋆ .(5.10)
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Appendix A. Several species of particles

In this appendix we show that the renewal approach can be generalized to models having several species of particles. We denote these species by a = 1, . . . , A. Each site of the infinite half-line is occupied by a particle of some species. If empty sites (holes) are permitted, they are represented for definiteness by the last species (a = A).

We consider the statistical ensemble of configurations defined by the constraints that the lengths of clusters of a-particles belong to some set I a , encoded in the generating series

The model considered in section 2 corresponds to A = 2, with a = 1 and a = 2 respectively corresponding to particles (occupied sites) and holes (empty sites), so that I 1 = I, I 2 = J . The generating series of the numbers of configurations,

can be derived along the lines of (2.6)-(2.8). We have

and finally

For A = 2, we have

in agreement with (2.8). For A = 3, we have

and so on.

The generating series of the numbers N N,M1,...,MA of configurations with given prescribed numbers M a of a-particles can be derived along the same lines, by attributing a positive weight x a to each a-particle. We have

(A.9)

The expressions (A.6) and (A.9) hold in full generality. In the case where all generating series I a (z) are rational, the resulting series N (z) and Z(z, x 1 , . . . , x A ) are also rational functions of z and of the weights x a .

The simplest ensemble in the rational class is again the flat one, where there are no constraints at all on the cluster lengths. This generalizes the ensemble considered in section 4.1. We have

for all species a. The formula (A.6) reads

and so

The formula (A.9) reads

x a , (A.13) and so

Appendix B. Transfer-matrix formalism

In this appendix we demonstrate the equivalence between the renewal approach put forward in this work and the transfer-matrix approach, on the explicit example of the ensemble where empty sites are isolated, investigated in section 4.2.

The key point of the transfer-matrix formalism consists in introducing partial partition functions, defined by assigning fixed values to the occupations of the few rightmost sites, in such a way that these partition functions obey closed linear recursions. In the present case, we introduce Z • N (x) and Z • N (x), defined by conditioning the configurations on the state (occupied or empty) of the rightmost site. We have then

. The constraint that empty sites are isolated implies that the partial partition functions obey the recursion

where T(x) is the 2 × 2 transfer matrix

The characteristic polynomial of T(x) reads

so that its eigenvalues are

The largest eigenvalue of T(x) obeys

where z 0 (x) is the nearest root of the denominator D(z, x) (see (3.1)), which enters the analysis of the thermodynamic limit.

The initial conditions to the recursion (B.1) read Z • 1 (x) = x and Z • 1 (x) = 1, as there is a single configuration of each type (• and •). These conditions translate to Z • 0 (x) = 1 and Z • 0 (x) = 0. The partial generating series Z • (z, x) and Z • (z, x), defined in analogy with (2.13), are therefore given by

and so

and finally

in agreement with (4.20). Setting x = 1 in (B.8), we obtain

and so

where F n are the Fibonacci numbers (see (4.18)), and finally

in agreement with (4.19). The expression (B.6) implies that the denominator D(z, x) entering (B.7) and (B.8) is proportional to the characteristic polynomial P (λ, x) for λ = 1/z. This property is fully general. It implies that the degree ∆ of D(z, x) coincides with the dimension of the transfer matrix T(x). It also yields the identity (B.5).