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Abstract: 

This paper investigates various types of faults in District Heating & Cooling (DHC) 

systems. Many authors point out that the lack of data hinders the development of good 

data-driven models for fault detection and diagnosis (FDD). In this work, we design a 

reference dataset based on simulation and use it to evaluate Machine Learning (ML) 

models for fault detection. 

The dataset itself covers six types of DHC system components, covering production, 

distribution and storage. It is provided as Open Data with corresponding 

documentation. Most of the models used for generating the dataset are provided as 

Open Source code.  

To assess the usefulness of the dataset, we evaluated five ML models on five fault 

detection tasks. The results highlight varying level of performance on the considered 

tasks, with faults related to global energy efficiency being easier to handle than those 

related specifically to thermal losses. Three of the investigated models (Logistic 

Regression, Support Vector Machine, and XGBoost) provide consistent performance 

on the considered tasks, achieving accuracy scores up to 99% on the easier tasks and 

above 66% on one of the more difficult tasks. We also illustrate possibilities for 

transferring models to real systems with different characteristics, with encouraging 

results.  
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1 INTRODUCTION 

1.1 Background on District Heating&Cooling Systems, Digitalization 
and Fault Detection 

The development of District Heating & Cooling (DHC) Systems is becoming a 

cornerstone of many European country policies for decarbonization, especially since 

the Green Deal. This type of system, as any technical processes, is subject to 

dysfunctions during their lifespan. The development of robust fault detection and 

diagnosis (FDD) methods is therefore a key issue to boost efficiency.  

Digitalisation and the increasing availability of data from various sensors can provide 

new opportunities for FDD. Even if this trend is still not so widespread in DHC 

compared to other fields, efforts in this direction have been scaling up in recent years 

[1], [2]. Several recent reviews recognize the opportunities for Machine-Learning in 

DHC systems, however applications of this approach for FDD are still limited [3], [4].  

1.2 Overview of current FDD approaches  

FDD approaches are often decomposed into three broad categories, as illustrated by 

Figure 1. Both the quantitative and qualitative model-based approaches rely heavily 

on models produced by experts. Process-history based approaches, nowadays rather 

referred to as “data-driven approaches”, rely on data collected from the systems, and 

automatic methods for building models from this data.  

 

Figure 1 - Classical classification scheme for FDD methods. ([5], adapted from [6], also adapted in [7]–[9], 

among others) 

Both model-based and data-driven approaches have their advantages and limitations, 

as summarized for instance by [10]. In particular, setting up dedicated physical 

simulation models may require a significant effort, while data-driven model require data 

in sufficient quantity and quality to be useful. To alleviate these limitations, hybrid 

methods can be investigated. The possibility to consider various mixes of modeling 

expertise and data (from white-box to black-box models) was already pointed out by 

Rolf Isermann in his reference book on FDD ([11], see section 5.2.1 and figure 5.10). 

However, recent progress in machine learning methods make it more and more 

feasible to rely on purely black box models, if enough meaningful data is available.  

1.3 Previous work on FDD applicable to DHC systems 



 

 

In this work, we investigate solutions for DHC system operators to detect and diagnose 

faults at system level. The authors conducted a detailed analysis on typical faults in 

DHC systems in the context of the IEA DHC Annex XIII [12]. This analysis highlights a 

number of faults on various components of a DHC system which would be relevant for 

monitoring at DHC system level using the data already available from usual process 

monitoring. Other types of faults are: (1) faults located directly on sensor or actuators, 

(2) faults which are already present at commissioning, (3) faults which are correctly 

detected by existing solutions. For sensor and actuator faults, generic methods can be 

designed based on operational data, as for instance in [13]. Previous works addressing 

the other two types of fault typically require additional or external measurements 

dedicated to FDD (e.g. infrared thermography), or sensors on particular components 

(e.g. pump [9] or gas turbine [14]) which could be available in newer equipment but 

would be hard to retrofit on existing equipment. They are not investigated further in the 

following.  

When considering production components in a DHC system, FDD has been 

investigated by previous work not only in the DHC context but also in similar set-ups 

at building level or industrial plants. For typical boilers and CHP, Panday et al.[15] 

provides a recent state of the art of fault locations and detection methods. Hundi and 

Shavari [16] study global faults leading to a lack of efficiency, which is particularly 

relevant in the DHC system. For heat pump and chillers, most previous work on FDD 

apply to single buildings, but would be applicable at DHC system level. Most works 

agree on the set of faults to consider, which was initially identified in [17] (section 3.2). 

All of these faults do not lead to an immediate stop of the device, and may therefore 

go unnoticed. Kim et al. provide an analysis of their impact on energy efficiency [18]. 

Although many works in the literature concentrate on air-to-air chillers, the described 

faults also apply to water-to-water machines used in DHC systems. In particular, 

relevant FDD approaches are in development for HVAC in BES [19]–[23] 

Regarding the pipe network, we can distinguish three types of faults affecting the 

distribution network itself: leaks, insulation faults (thermal losses), and hydraulic 

distribution faults (insufficient pressure difference, unwanted bypasses, and valves in 

wrong position). All these types of faults lead to an overall lack of efficiency of the 

network. Important leaks may also lead to a complete failure of heat distribution in 

some parts of the network. Recently, several works have been investigating efficient 

data-driven methods to detect leaks in DHC networks, with the help of simulation [24]–

[26]. 

Regarding substations, a study by Gadd and Werner [27] indicates that a high 

proportion of faults in DHC system occurs in substations, and considered 3 main types 

of faults: unsuitable heat load pattern, low average annual temperature difference, poor 

substation control. Buffa et al. [10] (section 3.2) provide a recent review of work related 

to fault detection in substations. In particular, they refer to the work of Månsson et al. 

[28], which provides a detailed taxonomy of faults observed in Swedish substations. In 

a similar work conducted in Austria, Leoni et al. [29] report that two of the main reported 

causes for high return temperatures deal with the substation valves and control. Fabre 

[30] studies malfunctions of substations in a French context, and especially the 

consequence of fouling and bad regulation. All these works complement the analysis 



 

 

conducted in the IEA EBC report ([17], section 3.1.2) with more details based on 

observations in current DHC systems and feedback from DHC operators. Among the 

list consolidated by previous literature, many of the faults are due to a wrong installation 

or configuration of the equipment (wrong commissioning). A few others may appear 

during the operation. In most cases, maintenance teams should be able to detect and 

diagnose broken actuators, stuck control valves and heat exchanger leakage. 

However, heat exchanger fouling, incorrect regulation and sensor failures may go 

unnoticed while degrading the overall performance of the system. With the increasing 

availability of data from substation monitoring, data-driven detection of fouling has 

been investigated for instance by [31].  

Regarding storage in water tanks, the analysis conducted in the IEA EBC report ([17], 

section 3.4) indicates that many faults are caused by a wrong interaction between the 

storage tank and the rest of the system (in their case a heat pump), leading in particular 

to incorrect temperature levels flowing in or out of the tank. Faure [8] reports similar 

issues in the context of tank coupled to a solar thermal system. Among the twelve main 

faults identified in the IEA EBC report ([17], section 3.4), five faults occur at design 

time. The seven faults occurring in operation are classified into four type of hardware 

faults (water proofing damage, insulation damage, too high or too low flow in two-way 

valves), two types of control faults and one sensor fault. For control and sensor faults 

generic methods can be applied. Other faults seem to remain unaddressed in the 

available literature. 

Many of the work in the literature indicate that the lack of data in sufficient quantity and 

quality, especially regarding ground truth labelling, hinders the development of good 

data-driven models ([10], [32], [33], among others). Exploiting simulation models to 

produce data for machine learning is one of the most prominent trends identified in 

hybrid Machine Learning methods [34], [35], and is also applied to energy systems 

modeling and optimization [32], [36], [37]. In the process engineering domain, the open 

availability of the Tennessee Eastman Process models and simulation data [38], [39] 

has fostered a number of results on ML and FDD. Novel methods such as transfer 

learning may also be of interest as it can help adapting a model to a different system 

than the (simulated) one it was trained on [22], [23]. 

1.4 Novelty and contribution of this study 

In this work, we investigate the possibility for DHC operators to detect and diagnose 

faults in a DHC system under the following assumptions:  

1. We only rely on the data which are typically available for usual monitoring and 

operation of the DHC system. We assume that no further investment is required 

in terms of sensors, and that the approach can be deployed only at the cost of 

a proper collection and archiving of the available data (which may require some 

investment when it is not in place). 

2. The datasets collected by DHC operator do not have to contain previous 

examples of faults with correct annotation. This aspect is critical for real-world 

deployment, where annotated datasets are seldom available and would be too 

costly to create upfront. 



 

 

In this context, the main contribution of this study is to design and to evaluate a 

reference dataset and Machine Learning models for fault detection in a DHC 

system. This is expected to improve the FDD capabilities in the DHC field, as well as 

to trigger new research based on the findings. To ensure reproductibilitiy, we provide 

not only the dataset as Open Data, but also the models used to generate it and the 

evaluation of Machine Learning algorithms as Open Source code. Considering the 

recently proposed Technology Readiness levels for Machine Learning systems [40], 

we hope this effort will participate to bringing ML technologies for FDD in DHC to TRL 

level 3 and beyond. 

  



 

 

2 MATERIAL AND METHODS 

2.1 Overview of the proposed approach 

Figure 2 provides an overview of the proposed approach, and indicates how the 

different stages map to the sections in this paper.  

 

Figure 2 - Overview of the proposed approach 

2.2 Generation of the synthetic fault dataset 

The methodology for generating fault data from simulation models is derived from 

previous work conducted by Faure et al [41], as well as similar work in the literature 

[32]. 

It can be decomposed into four main steps:  

1. Conduct a preliminary analysis, typically a Failure Modes, Effects and Criticality 

Analysis (FMECA) 

2. Define model features required for fault simulation  

3. Set up the simulation models 

4. Perform simulations to generate diverse fault data  

Setp 1 is conducted in [12] and provides a list of faults to simulate.Further steps are 

described in the following. In order to make the approach reproducible and open, we 

chose to conduct our analysis based on existing Open Source software libraries. Figure 

3 presents the process for identifying and selecting models. In total, we analysed 95 

models from 9 Open Source Modelica libraries.  

 

Figure 3 - Process for identifying and selecting fault simulation models 

Table 1 provides a synthetic summary of the selected faults and models to simulate 

them. Details on the model analysis and selection can be found in [12]. 

1. Identification 
of existing 
models

•From open source 
libraries

2. Characterization

•Model features

•Fault modeling 
capabilities

3. Selection of 
suitable models

•Based on most 
relevant faults

4. Specify further 
development 
needs

•Minor modifications if 
necessary



 

 

Table 1 - Summary of selected faults and Modelica models to simulate them. Underlined models have been 

used in this work.  

Component Simulated faults Short list of models 
(and selected model) 

Boiler & CHP Excessive Heat Loss 

Low Thermal Efficiency 

AixLib/BoilerNoControl, 

AixLib/CHPNoControl, 

TransiEnt/SimpleGasBoiler, 

TransiEnt/DetailedCHP 

Heat pump & chiller COP drop AixLib/HeatPump, TransiEnt/Heatpump 

Solar thermal Abnormal transmittance values 

Hydraulic unbalance 

CEA/DistrictHeating/SolarThermal (private) 

Network (pipe, valves 

& pump) 

Leaks 

Excessive Heat Loss 

DistrictHeating/LinearNetwork (private) 

Substations Heat Exchanger Fouling DistrictHeating/SubStation (private) 

Hot water storage Excessive heat Loss IBPSA/Stratified 

 

In most cases, we simulate faults by modifying one or more global parameters of the 

model (efficiency, thermal losses …). In practice, such modifications could come from 

various types of faults. Although the finer details of the faults are not modeled here, it 

is still possible to detect the appearance of an abnormal global behavior, which can 

then be diagnosed with a further analysis.  

For most of the models, the parameters affected by faults were fixed or modifiable only 

at start time. It was thus necessary to modify them in order to set the fault evolution as 

an input. In some cases, other modifications were necessary. 

To introduce the required diversity in the simulated fault dataset, we defined the models 

so that different boundary conditions and fault profiles can be applied.  

We defined a set of possible boundary conditions suitable for all type of models. These 

boundary conditions are defined by: 

 Weather time series at a time step of 1 hour (extracted from MeteoNorm). They 

contain the ambient temperature 𝑇𝑒𝑥𝑡(𝑡), global horizontal solar irradiance 

𝐺𝑡𝑜𝑡(𝑡) and diffuse horizontal solar irradiance 𝐺𝑑𝑖𝑓𝑓(𝑡) for the location of 

Grenoble (latitude 45.188, longitude 5.724). 

 District heating time series, generated from the weather file and generic DH 

profiles. They contains the heat demand 𝑃𝐷𝐻𝑁(𝑡), supply temperature 𝑇𝑠𝑢𝑝(𝑡), 

return temperature 𝑇𝑟𝑒𝑡(𝑡) and mass flow rate �̇�𝑓𝑙𝑜𝑤(𝑡). 

Based on a one year weather file, we generated 13 boundary condition profiles, with a 

duration of four weeks each. It is assumed that this time scale is sufficient for detecting 

a fault even if it appears progressively.  

Different fault apparition profiles are applied and are illustrated in Figure 4. They are 

defined by the following parameters: 

- A profile type which can be either a step or a ramp. 

- A start time 𝑡0 at which the fault appears. 



 

 

- A final time 𝑡𝑓 (for the ramp profile only) where the fault gets its final intensity. 

- An initial intensity 𝑣0 which is always 0 here. 

- A final intensity 𝑣𝑓 which is between 0 and 1. 

 

Figure 4 - Fault apparition profiles used in the simulation (left : ramp for progressive faults, right: step for 

abrupt faults) 

The intensity is expressed between 0 and 1, 0 corresponding to no fault and 1 

corresponds to the maximal fault intensity available in the model. It depends on model 

and fault type. 

To avoid too much regularity in the results with machine learning algorithm, the fault 

parameters are set using a random generator. The parameters can also be set 

manually. 

Finally, an example of a fault simulation setup in Modelica is presented in Figure 5. It 

consists in the simulation of the model BoilerNoControl from the AixLib Modelica 

Library [42], with minor modifications in order to have some variable inputs (efficiency 

and thermal losses). In this case, the boiler is driven to follow a supply temperature 

from the boundary conditions. An input file is provided to the model in order to impose 

a fault signal on efficiency or heat losses after a certain time. 



 

 

 

Figure 5 - Fault simulation setup for the boiler case using the model from AixLib. 

Details on the other models can be found in [12] and online repository [43]. 

2.3 Overview of the generated synthetic dataset 

Table 2 gives an overview of the dataset we generated and used for this study. We 

refer the reader to [12] for details on the choice of simulated faults and on the data 

generation process. For each simulated fault, this table provides: 

 The component used in a simulation. 

 The fault imposed during a simulation. 

 The dataset composition, .i.e., how we defined the simulation experiments that 

generated this dataset. For instance, the expression “13 x 4 weeks x 10 min x (100 

random faults + 1 reference)” means that we used 13 different time series of 4 

weeks lengths each, sampled at a 10 minutes frequency, and that we generated 

100 simulations with random faults and one reference case with no fault for each 

boundary conditions setting.  

 The total number of records obtained, corresponding to the number of variables 

times the number of instants recorded in the simulation. It is provided here to give 

an idea of the total size of the dataset. 

 The number of variables in each record, detailed as 𝑁𝑏 + 𝑁𝑥 + 𝑁𝑦 + 𝑁ℎ where: 

o 𝑁𝑏 is the number of variables from the boundary conditions. By definition, 

these variables have the same values for each experiment using a given 

boundary conditions time series. In practice, there are usually 4 boundary 

condition variables, which are the external temperature 𝑇𝑒𝑥𝑡 [°C], the heat 

demand of the network 𝑃𝐷𝑁𝐻 [kW], the network supply temperature 𝑇𝑠𝑢𝑝 [°C], 

and the network return temperature 𝑇𝑟𝑒𝑡 [°C]. For solar thermal models, the 

global horizontal solar irradiance 𝐺𝑡𝑜𝑡(𝑡) and diffuse horizontal solar irradiance 

𝐺𝑑𝑖𝑓𝑓(𝑡) are also included. 



 

 

o 𝑁𝑥 is the number of explicative variables considered as input in fault detection 

models. These variables are selected from the simulation to represent 

variables that could effectively be available as sensor measurement in a 

typical DHC system. 

o 𝑁𝑦 is the number of target variables. In our case, there is always only 1 target 

variable, corresponding to the fault status. By convention, the value 0 always 

denotes a no-fault situation and other possible values depend on the 

considered fault setup: 

 𝑦 ∈ {0,1} denotes a binary classification task. The value 1 denotes the 

presence of a fault. 

 𝑦 ∈ {0,1,2,3} denotes a case with multiple possible faults. It is used for 

the boiler and CHP component, where we considered two potential 

faults. The value 1 denotes a efficiency fault, 2 denotes excessive heat 

losses, 3 denotes both faults at the same time. 

 𝑦 ∈ {0 … 9} is used for the pipe network case, and denotes the location 

of the fault (leak or excessive losses). The value denotes the location of 

the affected piping section (9 sections considered). 

 y ∈ {0 … 10} is used for the solar thermal field case, and denotes the 

location of the faulty column (10 columns considered). 

 𝑦 ∈ {0 … 5} is used for the solar thermal field case, and denotes the 

location of the faulty line (5 lines considered). 

o 𝑁ℎ is the number of hidden variables. These variables are extracted from the 

simulation results for visualization and analysis purposes, but are not 

accessible to machine learning models as they would not be accessible 

directly in a real DHC system. 

In total, the dataset contains about 33 million records, and weight around 2.2 Gb of 

data (in compressed format). It is provided at [44]. 



 

 

 

  

Table 2 - Description of the generated dataset used for machine learning 

Component Simulated faults Dataset composition Number of variables 

(𝑁𝑏+𝑁𝑥+𝑁𝑦+𝑁ℎ) 

Number of  

records 

 

Boiler & CHP Low Thermal 

Efficiency - eta 

13 x 4 weeks x 10 min x  

(100 random faults + 1 reference)  

4+3+1+2=10  

 

5.29e6 

 

 Excessive Heat 

Loss - hls 

13 x 4 weeks x 10 min x (100 random faults 

+ 1 reference) 

4+3+1+2=10  

 

5.29e6 

 

 Combined eta + hls 13 x 4 weeks x 10 min x (100 random faults 

+ 1 reference) 

4+3+1+2=10 5.29e6 

Heat pump & 

chiller 

COP drop 13 x 4 weeks x 10 min x (100 random faults 

+ 1 reference) 

4+7+1+0=12 5.29e6 

Solar thermal Opacification 

 

1 week x 10 min x (14 locations x 5 random 

faults+1 reference) 

 

4+1+1+5=11 

 

7.1e5 

 

 Hydraulic 

unbalance 

1 week x 5 min x (5 locations x 5 random 

faults+1 reference) 

4+1+1+5=11 5.0e5 

Network (pipe, 

valves & 

pump) 

Leaks 

 

1 week x 5 min x (9 locations x 20 random 

faults + 1 reference) 

 

4+20+1+9=34 

 

3.7e5 

 

 Excessive Heat 

Loss 

1 week x10 min x(9 locations x 20 random 

faults + 1 reference) 

4+20+1+9=34 1.8e5 

Substations Heat Exchanger 

Fouling 

13 x 4 weeks x 10 min x (100 random faults 

+ 1 ref) 

4+3+1+2=10 5.29e6 

Hot water 

storage 

Excessive heat 

Loss 

13 x 4 weeks x 10 min x (100 random faults 

+ 1 ref)  

4+16+1+0=21 5.29e6 

 



 

 

2.4 Evaluation of Machine Learning for FDD 

 

Figure 6 reproduces an overview of possible use of ML models for FDD and predictive 

maintenance tasks. In this paper, we focus on five supervised binary classification 

tasks, in which the model should distinguish between two cases (fault / no fault). Table 

3 describes these tasks.  It should be noted that the generated dataset is also suitable 

for multi-class classification, leading not only to fault detection but also fault diagnosis. 

In particular, we can consider two type of multi-class classification cases: fault 

identification cases, in which several fault can occur and should be distinguished, fault 

localization cases, in which a fault can occur at different location in the system. Table 

4 describes some of the possible multi-class classification tasks. However, presenting 

these cases is out of scope of this paper: each case would require a more detailed 

presentation and analysis of the results, and will be presented in upcoming 

publications. 

Table 3 - Cases considered for fault detection using binary classification in this paper 

Case ID Component Description of the fault 

boi_eta Boiler & CHP Global reduction of the efficiency of the boiler, which can 

have several causes (bad combustion, fouling) 

boi_hls Boiler & CHP  Excessive heat losses  

hp_cop HeatPump COP drop 

sst_flg Substation Fouling of the substation’s heat exchanger 

sto_ins Storage Degradation of the storage insulation 

Figure 6 - Possible use of ML models for FDD and focus on the work presented in this paper (adapted 

from (Olesen and Shaker 2020)) 



 

 

 

Table 4 - Possible Fault Diagnosis cases using multi-class classification  

Case ID Component Description of the fault 

boi_multi Boiler & 

CHP 

Possibility to have either a reduction of the combustion 

efficiency (fault “eta”) or excessive heat losses (fault “hls”) 

or both at the same time. 

sol_unb Solar Field Hydraulic unbalance of the solar field, which can be 

attributed to one of the lines (localization) 

sol_opa Solar Field Opacification of panels in the solar field, which can be 

attributed to one single panel (localization) 

net_leaks Network Localization of leaks in one pipe section of the network 

net_hls Network Localization of excessive heat losses in one pipe section 

of the network 

 

2.4.1 Data selection 

In order to ensure a consistent evaluation on all the binary classification cases, we 

designed the evaluation as follows: 

- All considered data is taken during the heating season (i.e., with boundary 

conditions corresponding to 4-week period in January – April). 

- The train set usually contains 100 time series, randomly chosen from the input 

dataset. In most cases, since we consider time series with a duration of 4 weeks 

and sampling of 10 minutes, this typically amounts to 403 200 samples in the 

train set.  

- The test set usually contains 10 time series randomly chosen from the input 

dataset, with different boundary conditions than the train set. The choice of 

different boundary conditions reflect what would happen in a real setting, where 

a model would be trained on historical data, and used with new data, whose 

boundary conditions (weather, demand) will always be different from the training 

set. 

To ensure a good representability of the chosen data despite the relatively small 

number of time series considered, we tuned the random selection process of the time 

series to ensure that the obtained distribution is close to the global distribution of 



 

 

generated faults. As an example, Figure 7 (top) presents the distribution of the 

characteristics of a set of time series for training, which are the following: 

- Boundary conditions ID: choice of the boundary condition time series. Here 

we chose to select as much experiments based on the boundary conditions 1 

to 4 (corresponding to weeks 5 to 16 in the year, from the end of January to the 

end of April). 

- Fault start time: start time of the fault during the week, in hours. The start time 

follows a uniform distribution, although in the depicted case there is some bias 

towards faults starting in the first 2 days. 

- Fault final intensity: the final intensity of the imposed fault is distributed 

between 0 and 1, with a truncated half Gaussian distribution, so that there are 

more cases with small final intensity (minor faults) than cases with high final 

value (severe faults) 

Figure 7 (bottom) presents the distribution of characteristics for a testing set, in 

which we chose to select only data with boundary conditions corresponding to the 

beginning of January. We also chose to have a greater number of severe faults in 

the test set, to ensure that the models can correctly detect them although they are 

less represented in the training set.  

Because of the uniform distribution of start time, the train set is relatively well 

balanced, with nearly as much samples with/without faults. Samples without faults 

are a bit more represented, since the dataset also contains reference simulations 

without faults. On the contrary, the test set contains slightly more samples with 

faults. 



 

 

 

Figure 7 - Example of the distribution of characteristics for 100 time series used for training (top), and 10 

time series used for testing (bottom) 

2.4.2 Machine-Learning models 

Among the great variety of ML models, we considered the models listed in Table 5, as 

they have been used previous literature on FDD for DHC.   

Table 5 - List of Machine Learning models considered in this study 

Model ID Model Name Used in previous work 

LR Logistic Regresion [4], [33] 

RF Random Forest [4], [33] 

KNN K Nearest Neighbors [33] 

SVC Support Vector Classifier [33], [45],  

XGB eXtreme-Gradient Boosting [24], [33], [45] 

 

For each of the models, we performed an optimisation of hyper-parameters using the 

scikitlearn-hyperopt package [46]. We also included the choice of pre-processing 

during the optimisation. 

2.4.3 Evaluation metrics 



 

 

Similarly to [33], we considered two main evaluation metrics for this study. The 

accuracy score is a metric used in most ML applications. The Matthew Correlation 

Coefficient (MCC) is often used in FDD applications to deal with dataset inbalance and 

reduce the false positive rate (false alarms). The formulas for accuracy score and MCC 

are given in equations (1.) and (2.) respectively, where TP stands for True Positive, TN 

for True Negative, FP for False Positive, FN for False Negative. 

Eq 1.: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

Eq 2.: 𝑀𝐶𝐶 =
𝑇𝑃⋅𝑇𝑁−𝐹𝑃⋅𝐹𝑁

√(𝑇𝑃+𝐹𝑃)⋅(𝑇𝑃+𝐹𝑁)⋅(𝑇𝑁+𝐹𝑃)⋅(𝑇𝑁+𝐹𝑁)
 

3 RESULTS 

3.1 Binary classification results and comparison 

Figure 8 and Figure 9 present the obtained results on the accuracy and MCC criteria, 

respectively, on the test dataset.  

The main insights from these results are the following: 

 The results are most of the time similar with both evaluation metrics. This is 

expected, since our datasets have been designed to be relatively well balanced in 

terms of the number of records with a fault and without faults.  

 Three of the binary classification cases are relatively easy to handle for most 

Machine-Learning models. For the boiler efficiency fault, the accuracy is over 90% 

and sometimes close to 100%. For the heat pump COP fault and substation fouling 

fault, the accuracy is over 85%.  

o On the heat pump COP fault, the poor performance of the KNN model was 

reproduced several times on the chosen train set, but a different performance 

was observed with other train sets. This denotes a strong sensitivity of this 

approach to the chosen data.  

 Two of the binary classification cases are more difficult to handle, and both of them 

are related to heat losses. We identify 2 reasons for these results:  

o The first reason is that this comparative study is based on the raw data from 

instantaneous records, while effects of heat losses usually take places over 

longer time periods.  

o The second one is that faults related to heat losses need to be very strong to 

be detectable in the data, even by a human operator, because they are 

strongly dependent on the boundary conditions.  

Despite these conclusions, we can notice that some models perform better on this type 

of faults, namely the LR, SVM and XGB models. In fact, this is the case only for the 



 

 

excessive heat loss fault on the boiler, for which these models obtain higher scores 

when the fault is both abrupt and intense. The other two models, RF and KNN, provide 

random predictions independently of the characteristics of the fault.  

In the case of the fault on storage insulation, the scores obtained by on the models are 

also based on random guess, as indicated by a very low MCC score. Only the XGBoost 

model seem to obtain a higher score. In details, this model tends to predict a fault more 

often at the end of a simulation run than at the beginning, which provides better scores 

since the fault probability is 0 at the beginning of a simulation and close to 1 at the end 

in our simulation setup. Although all models perform prediction on separate instants 

considered independently without any explicit time information, a correlation with time 

exits in the boundary conditions (esp. external temperature), which the XGBoost model 

could pick up to artificially increase its score. 

 

 

Figure 8 - Accuracy score on the test dataset for each of the evaluated ML model, on the five binary 

classification cases.  The minimum accuracy of 0.5 would amount to a random guess. 



 

 

 

Figure 9 - MCC score on the test dataset for each of the evaluated ML model on the five binary 

classification cases. A MCC of 0 would correspond to a random guess, and negative values would highlight a 

tendency to make false predictions even in the case of an imbalanced dataset.  

Figure 10 provides a more detailed presentation of the results in the case of applying  

the LR model for the detection in the heat pump COP drop case. Four difference test 

cases are provided, with decreasing fault intensities. Both progressive and abrupt 

faults are considered (as explained in Figure 4), and the indicated percentage refers 

to the fault intensity at the end of the sequence (100% meaning COP drops to 0).The 

raw fault detection probabilities are depicted on the left side, and the final predictions 

are depicted on the right side. Final predictions are obtained by applying a threshold 

to the probabilities (here 0.5) and filtering out isolated events using a rolling windows 

averaging (here 24h). The results show that the model can correctly detect even small 

and progressive anomalies after a few days, while strongly avoiding false alarms. By 

considering the raw fault detection probabilities, we can also observe that they 

accurately correlate with the actual fault intensity, especially when the fault appearance 

is progressive. In the case of a sudden fault (second line), the raw probability 

immediately jumps to 1, but the final prediction lags by a few hour because of the 

applied filtering.  



 

 

 

 

  

Figure 10 - Detailed results on 4 test cases for the heatpump COP drop case (left: fault detection 

probability, right: correct and inccorect fault detections after filtering). The grey line indicates the actual 

value of COP, which is not provided as input to the ML model.  

3.2 Ability to transfer a trained models to a different system 

In order to assess the ability to use a trained model with an unknown dataset from a 

different system, the following experiment was performed: 



 

 

1. Generation of an alternative dataset for a different boiler (boiler B), with a different 

efficiency curve (see Figure 11, left). 

2. Training of a model using i) data containing faults from the previously simulated 

boiler (source boiler A) and ii) data without faults from the newly generated boiler 

(target boiler B). This corresponds to the situation where we would have data 

without faults from the history of a real boiler, and try to detect faults on this boiler 

although no faulty data is present in the dataset. 

3. Test of the model on data containing faults for the target boiler B.  

In this experiment, the nominal power and boundary conditions are similar in the 

previously simulated (source) and newly simulated (target) boiler. This would be 

consistent with a real use case, in which one would use the historical boundary 

conditions from a real boiler and apply it to a simulated one to produce faulty data. We 

also make the hypothesis that the historical data would not contain faults, and we 

include it in the training set as a reference. On the contrary, the faulty data present in 

the test set is different both from the faulty data (coming from boiler A) and from the 

non-faulty data (coming from boiler B) in the train set. In a real setting, this test data 

would however not be available until a failure occurs on the real system, is detected 

and is properly labeled.  

Figure 11 (left) displays the results obtained for 2 ML classifiers. Although the 

performance of the models decreases when applied to the target boiler, the MCC score 

remains relatively high and denotes both a correct detection of faults and a relatively 

low number of false alarms. 

 

Figure 11 - Efficiency curves (left) and fault detection results (right) when applying a model trained on a 

source boiler (A) to a target boiler (B) 



 

 

3.3 Application to a real-world data 

Despite the lack of openly available data from real-world systems, we could at least 

assess the performance of a trained model on the simulated dataset on the substation 

fouling case, using data available on a Kaggle repository [47]. Since this dataset does 

not contain fault annotations, we assumed that no fault was present.  

Figure 12 presents the results of testing the model trained on the simulated substation 

dataset on the real substation data. While the trained model sometimes detects 

anomalies, these events are always punctual. Considering that an alert is triggered 

only after 1h of consistent anomaly detection eliminates any false alarm. Figure 12 also 

depicts the variation of an estimation of the heat exchanger (HEX) overall conductance 

(UA) obtained using the classical LMTD formula [48]. It is interesting to notice that 

although the HEX conductance varies significantly during the year, the model correctly 

classifies the situation as non-faulty.  

 

 

Figure 12 - Test of a fault detection model on real-world data (without faults). The heat exchanger 

conductivity UA is estimated from the data using the classical LMTD formula. 

  



 

 

4 CONCLUSION AND PERSPECTIVES 

In this work, we investigate the possibility for DHC operators to detect and diagnose 

faults in a DHC system under the assumptions that (i) no specific sensors need to be 

installed, (ii) datasets do not have to contain previous examples of faults with correct 

annotations. 

To this aim, we use simulation to create a synthetic dataset for several types of faults 

which can occur in DHC system production, distribution or storage components. This 

dataset is provided as Open Data in order to serve as a reference for future research. 

After presenting the generation of the synthetic fault dataset, we evaluate the 

performance of Machine Learning (ML) models on five fault detection tasks. The results 

highlight varying level of performance among the considered tasks, with faults related 

to global energy efficiency being easier to handle than those related specifically to 

thermal losses. Although this initial result can be improved with more refined ML 

models, it reveals the difficulty to detect faults related to thermal losses, which are often 

strongly dependent on the boundary conditions. As a consequence, this type of faults 

should probably be investigated in practice with a combination of Machine Learning 

and other methods such as infrared thermography.  

We also observe that three of the investigated models (Logistic Regression, Support 

Vector Machine, and XGBoost) provide consistent performance on the considered 

tasks, achieving accuracy scores up to 99% on the easier tasks and above 66% on 

one of the more difficult tasks.  

In addition, we illustrate the possibility to transfer the results to a different system,with 

encouraging results. Although the performance may be reduced, we obtain consistent 

results when applying a model trained on our dataset to data produced either by 

another simulation model or by a real system. More advanced transfer learning 

techniques, especially using Deep Learning methods, could be investigated to confirm 

these results.   

Future works will cover additional experiments with the dataset, especially considering 

multi-class classification. Combination with other data from real-world system should 

also be attempted, depending on the availability of such data.  
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