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Abstract—Federated learning enables different parties to col-
laboratively build a global model under the orchestration of
a server while keeping the training data on clients’ devices.
However, performance is affected when clients have heteroge-
neous data. To cope with this problem, we assume that despite
data heterogeneity, there are groups of clients who have similar
data distributions that can be clustered. Previous approaches are
problematic in a context where there is a significant number of
clients that may have limited availability, since these clients are
required to send their parameters to the server simultaneously. To
prevent such a bottleneck, we propose FLIC (Federated Learning
with Incremental Clustering), in which the server exploits the
updates sent by clients during federated training instead of
asking them to send their parameters simultaneously. Hence no
additional communications between the server and the clients are
necessary other than what classical federated learning requires.
We empirically demonstrate for various non-IID cases that our
approach successfully splits clients into groups following the same
data distributions. We also identify the limitations of FLIC by
studying its capability to partition clients at the early stages of the
federated learning process efficiently. We further address attacks
on models as a form of data heterogeneity and empirically show
that FLIC is a robust defense against poisoning attacks even
when the proportion of malicious clients is higher than 50%.

Index Terms—Federated learning, clustering, non-IID data,
poisoning attacks

I. INTRODUCTION

Federated Learning (FL) is a new distributed machine
learning paradigm that enables multiple clients to build a
common model under the orchestration of a central server.
This paradigm functions while keeping the training data on
clients’ devices. McMahan et al. [1] introduced FL in order
to preserve privacy and reduce the overhead communication
costs due to data collection. Contrary to traditional server-
side approaches which aggregate data on a central server
for training, FL distributes learning tasks among clients and
aggregates only locally-computed updates to build a single
global model. Therefore, the global objective function f to
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be minimized is formulated as a weighted sum of the local
objective functions fk:

min
w

f(w) = min
w

K∑
k=1

nk∑K
q=1 nq

fk(w) (1)

where each of the K clients has nk samples and
∑K

q=1 nq

is the total number of data points belonging to all clients.
The local objective function fk measures the empirical risk
over client-k’s local dataset. Its nk samples are drawn from a
distribution Pk:

fk(w) = E(x,y)∼Pk
[l(w;x, y)] (2)

where the local loss function l(w;x, y) measures the error of
the model w in predicting a true label y given an input x.

FL was formalized by the algorithm FedAvg [1]. In FedAvg,
the server randomly initializes a global model w0, typically a
deep neural network. At round t, the server selects a subset Ct

of C ·K ≤ K clients that take part in training and sends them
the current global model wt−1. Each participant k runs several
epochs of minibatch stochastic gradient descent to minimize
its local loss function. Afterwards, each client sends back to
the server its update δkt that is the difference between wt−1 and
the optimized local parameters wk

t . Finally, the server averages
the received updates to obtain the global model wt = wt−1−∑

k∈Ct
λkδ

k
t where λk = nk∑

q∈Ct
nq

is the weight associated
to the client k, thereby concluding a round of collaborative
learning. The aggregation rule thus gives more weight in the
weighted sum to clients having a higher number of examples.
The FL process consists of multiple successive rounds.

Throughout the learning processes, the independent and
identically distributed (IID) sampling of training data is a key
point for training accurate models. It ensures that the stochastic
gradient is an unbiased estimate of the full gradient. However,
in FL scenarios where clients generate personal data from
different locations and environments, it is unrealistic to assume
that clients’ local data is IID, i.e., each client’s local data is



uniformly sampled from the entire training dataset composed
of the union of all local datasets. In non-IID scenarios,
the global performance of FedAvg is severely degraded [2]
because the heterogeneity of data distribution across clients
results in weight divergence during the collaborative training.
At a round t, the difference between the data distribution of
two clients i and j causes locally trained weights wi

t and wj
t to

diverge and the convergence rate, precision and fairness of the
federated model to degrade by comparison with homogeneous
data. Figure 1 illustrates this phenomenon, simulating here a
simple case of 1-D linear regression in a FL context with
two clients. In this toy problem, each client performs 10
local epochs with 50 samples, and the server executes 10
global rounds. In the IID case, the clients collaborate to
infer the same parameter equal to 45. In the non-IID case,
the parameters to be inferred of the first and second client
are 20 and 70 respectively. For the IID case, both clients’
weights follow the same direction and converge to the same
optimum, whereas for the non-IID case, clients’ weights point
to different directions and make the global model converge to
a parameter different from their own optimums, which is the
center of both parameters.

When non-IID is mentioned in the FL setting, it typically
means that for two clients i and j, Pi ̸= Pj . Based on [3],
[4] and knowing that for client i, Pi(x, y) = Pi(y|x)Pi(x) =
Pi(x|y)Pi(y), different cases of non-IID data can be distin-
guished. Concept shift cases occur when conditional distribu-
tions vary across clients :

• Concept shift on features: marginal label distributions
are shared Pi(y) = Pj(y) but conditional distributions
vary across clients Pi(x|y) ̸= Pj(x|y). This can arise in
handwriting because some people might write “7” with
bars or without and so, features might be different for a
same label (number). We can also refer to this case as
“different features, same labels”.

• Concept shift on labels: marginal features distributions
are shared Pi(x) = Pj(x) but label distributions condi-
tioned on features vary across clients Pi(y|x) ̸= Pj(y|x).
This can occur in sentiment analysis : for the same
features, people can have different preferences (labels).
This case can be referred as “same features, different
labels”. It is also illustrated by the non-IID case in
Figure 1 because for the same inputs i.e. features, linear
models will have different results i.e labels because their
parameters are different (in this example the parameters
are 20 and 70).

This paper focuses on concept shift cases that can be
addressed by clustering, deliberately omitting cases where
marginal distributions vary across clients, because, on the
one hand, machine learning is inherently robust to feature
distribution skew (Pi(x) ̸= Pj(x) when P(y|x) is shared).
Typically, one of the advantages of a convolutional neural
network is to be robust to variant features through convolutions
and pooling. On the other hand, clustering data with label
distribution skew (Pi(y) ̸= Pj(y) when P(x|y) is shared)

Fig. 1. Linear regression example: evolution of clients’ weights during
federated training for IID and non-IID cases. We notice that non-IID clients’
weights diverge, whereas IID clients converge to the same optimal weight.

would group clients who only have a certain number of
labels. Methods inspired by the incremental learning literature
(FedProx [5], SCAFFOLD [6] and SCAFFNEW [7]) are more
suitable to address this latter case.

Another setting that can degrade the performance of a
federated model is when it is attacked by malicious clients
that try to poison the model during training-time [8]. Under the
strong assumption that a malicious client k has full knowledge
of the aggregation rule used by the server and of the updates of
others, it can make the aggregation result equal to an arbitrary
value U at any round t by submitting the following update:

δtk =
1

λk
U −

∑
i∈Ct,i̸=k

λi

λk
δti (3)

FedAvg, and more specifically the mean aggregation rule,
are inherently vulnerable to these attacks, as shown by (3).
However, in practice clients do not have a full knowledge of
the system. That is why the standard model poisoning attacks
often consist in sending an update containing random weights,
null weights, or, more efficiently, the opposite of the true
weights. The impact of the attack can also be strengthened
when several clients collude with each other. Such attacks can
be considered as a form of data heterogeneity because the
poisoned updates are different of other updates as they try to
hinder the global model convergence.

II. RELATED WORK

Improving FL models while dealing with non-IID data is an
active field of research. Most of the approaches in literature try
to personalize the global FL model to improve performances
of individual clients. In works based on transfer learning [9],
[10] and meta-learning [11], the global model is trained using
FedAvg and afterwards each client fine-tunes the shared model
using its local data. In multi-task learning, the clients’ models
are trained simultaneously by exploiting commonalities and
differences across the learning tasks. MOCHA [12] uses the
correlation matrix among tasks as a regularization term while
FedEM [13] considers that the data distribution of each client



Fig. 2. An overview of Incremental Clustering. (a) The server initializes the model. (b) Clients perform local training and send their parameters to the server
who keeps them in memory. (c) It then computes the similarity between each parameter it has access to and fills in the adjacency matrix. The parameters
received at that round are then averaged and sent back to clients. For example, at round 1, client 1 and 3 are sampled, so we can compute S1,3

1 = S3,1
1 . At

round 2, client 2 and 4 are sampled, which means we can compute S2,4
2 = S4,2

2 but also S1,2
2 , S2,3

2 , S1,4
2 and S3,4

2 . At round 3, since client 2 was already
sampled, we replace its parameters kept in memory by the most recent. The similarities linked to client 2 are thus recomputed, and the ones of client 6 are
computed as well.

is a mixture of unknown but shared underlying distributions
and uses the Expectation-Maximization algorithm for training.

FedAvg permits to collaboratively learn a unique model
while personalized approaches provide one model per client.
We consider that clustering-based methods can be a relevant
compromise between collaboration and personalization. Sev-
eral works [14]–[16] have already considered that it is possible
to find a cluster structure in order to gather clients with similar
data distributions and perform classical FedAvg training per
cluster. Thus, there are as many models as clusters. In [14],
the number of clusters are estimated a priori and each client
is assigned to one of them before performing local training.
Once the cluster of each client is identified, the server averages
the parameters of each clusters separately. Determining each
client’s cluster requires high communication costs and may be
unsuitable for large deep learning models.

Our work resembles more the one of [15], [16] who cluster
clients based on their model parameters after FedAvg training.
However, these approaches perform a communication round T
involving all clients to build the clusters. In a cross-device
setting where the number of clients is considerable [17],
this step is impractical in terms of clients’ availability and
communication costs. To prevent such a bottleneck and to
adapt to real-world applications, our method takes advantage
of the updates received during FedAvg rounds and builds
an adjacency matrix incrementally as clients are sampled for
training.

Concerning model attacks, existing methods try to prevent
the influence of the malicious clients by replacing the averag-
ing step on the server-side with robust estimates of the mean,
such as coordinate-wise median [18] or Krum, an aggregation
rule based on a score using couples of closest vectors [19].
However, theses approaches remain robust to model poisoning
attacks while the proportion of adversaries that participate in
each round of learning is strictly below 50% [20]. In Section
IV, we will compare our cluster-based approach to the median
aggregation rule method [18], an efficient defense which we
will refer to as median defense.

III. INCREMENTAL CLUSTERING

Similarly to prior works, we tackle the issue of hetero-
geneous data by extending FedAvg and adding a clustering
step to separate clients into groups. We next train them inde-
pendently to reach homogeneous data performance. However,
contrary to [15], [16], we avoid performing the burdensome
round mentioned in Section II by taking advantage of the local
updates we already have access to at each round. Specifically,
at round t of FedAvg, when |Ct| clients finish local training,
each client k sends to the server its updates δkt = wt−1−wk

t .
This is a good indicator of how clients’ weights differ from the
global model. As seen in Algorithm 1 (l.7) and Figure 2, these
values are stored by the server in a matrix M in order to fill
in an adjacency matrix St afterwards. This matrix contains the
similarities between clients : St =

(
s(δi, δj)

)
1≤i,j≤K

where
s(δi, δj) is the similarity measure between the updates of client
i and j. During next round t + 1, the server stores the new
updates of clients belonging to Ct+1. In order to compute
the most similarities between clients, the server calculates s
between recent and previous updates kept in memory. To this
end, it keeps the most recent update if a client has already been
sampled and does not forget previously stored updates. If a
client has never been sampled, the values of its corresponding
row and column in St will be equal to zero. Furthermore, if
a similarity between two clients has already been computed,
we keep the most recent one (see Figure 3).

Once FedAvg stabilizes, the second part of Algorithm 1
(l.14) begins : we cluster clients by creating a graph from
St and applying the Louvain method algorithm [21]. Once
we have detected different communities, that we call clusters,
we resume separately FedAvg per clusters. Within a cluster,
we expect that clients should have the same data distribution
and the performances should reach the ones of identically
distributed data.

It should be noted that our incremental method adds two
biases in comparison with approaches requiring all clients to
take part in the same round :

• The coefficients of St are not all calculated at the same
round because the matrix fills in during rounds. Thus, at



Fig. 3. Evolution of the similarity matrix through rounds for an example with
four clusters and for parameters K = 100 and C = 0.1 throughout rounds 0,
10 and 49. At round 0 the matrix contains 10× 10 non-zero values because
only 10 clients have been sampled. As the server samples more clients, the
matrix fills up. Calculated similarities change during training if clients are
re-sampled. At round 49, one of the clients has never been sampled. Thus,
the graph resulting from the similarity matrix of round 49 will not contain
that client in its nodes, and so the client will not be assigned to a cluster.

round t, the computed similarities are added to St which
also contains similarities computed at previous rounds
τ, τ < t.

• s is often computed for updates of different rounds. For
instance, if client i was sampled at round t and client j
at round τ < t, then Si,j

t will be equal to s(δit, δ
j
τ ).

In previous methods [15], [16], similarities are computed
for a same round. Typically, the similarity between client i
and j would be s(δit, δ

j
t ). We notice that the gap between our

approach and the benchmark lies on the difference between the
updates of client j computed at different times. To clarify this,
let us consider for simplicity that clients perform a single local
epoch E and SGD with a learning rate α. Common similarities
(Euclidean, Manhattan, Minkowski,...) between two points
are associated with distances defined as the p-norm of the
difference between these points for a certain p.

Previous methods [15], [16] would compute distances be-
tween updates of two distinct clients calculated at the same
round t as follows :

∥δit − δjt ∥p= ∥(wt−1 − wi
t)− (wt−1 − wj

t )∥p
= ∥wj

t − wi
t∥p (4)

However, our method computes distances of updates ob-
tained at different rounds, for instance t and τ < t. Thus:

∥δit − δjτ∥p= ∥(wt−1 − wi
t)− (wτ−1 − wj

τ )∥p
= ∥(wt−1 − wτ−1) + (wj

τ − wi
t)∥p (5)

= ∥(wt−1 − wτ−1) + (wj
t − wi

t) + (wj
τ − wj

t )∥p

To upper bound the difference between the norms of the
benchmark (4) and ours (5), we use the triangle inequality :

∥δit − δjτ∥p−∥δit − δjt ∥p
≤ ∥(wt−1 − wτ−1) + (wj

τ − wj
t )∥p

≤ ∥(wt−1 − wτ−1)∥p︸ ︷︷ ︸
(a)

+ ∥(wj
τ − wj

t )∥p︸ ︷︷ ︸
(b)

(6)

As we will discuss in Section IV, the difference between
our method and previous ones mainly relies on the sampling
of clients during the training process. To get a better sense of
term (6.a), we can notice by induction that :

wt−1 = wt−2−
∑
k

λkδ
k
t−1 = ... = wτ−1−

t−1∑
t′=τ

∑
k∈C′

t

nk∑
q∈C′

t
nq

δkt′

Thus, if client j was sampled at a round much earlier than
client i, term (6.a) can be large for two reasons. Firstly, within
a same round t′ the heterogeneity of data causes divergence,
as we mentioned in section I. Moreover, the more rounds take
place in between time t and τ , the more terms are added. We
can note in Figure 1 that the difference between global weights
becomes more significant if the rounds are distant. However,
if FedAvg reaches convergence, wt−1 and wτ−1 will likely be
similar, making term (6.a) negligible. We can again notice in
Figure 1 that at a stabilized state (presumably after round 8
for this toy example), global weights will be comparable and
thus their difference small.

Term (6.b) also depends on when client j was sampled.
Although training is done on the same local data for client j,
wj

τ and wj
t can be significantly different if their starting points

are distant.
Despite these biases, we use the updates received at each

round to perform clustering because we consider that they
contain relevant information about the clients’ direction in the
optimization process.

Given that we consider a cross-device context with a high
number of clients, it is possible that during federated training
not all clients will be sampled. If it is the case, no value will
be present in its corresponding row and column in St, thus
it will not be clustered. Following [14], to assign them to a
group, we evaluate each model of the clusters with their test
data. We notice that the highest accuracy is obtained by the
model corresponding to the clients’ clusters.

Note that St does not influence in the computing of FedAvg
and that we perform no additional communications between
the server and the clients than what classical FL requires. The
central server performs the supplementary calculations due
to the adjacency matrix. We consider that in a decentralized
setting where the server computational capacity is significantly
higher than the clients’, this extra work is not critical.

As we will see in Section IV, our method can tackle
the statistical challenge inherent to FL and find the correct
clustering structure for different cases of non-IID data. It also
avoids the step in which all clients send their updates to the



Algorithm 1 FL through incremental clustering. T rounds of
FedAvg are performed before clustering and Tf rounds after.
St is the adjacency matrix at round t and matrix M stores
clients updates.

1: procedure FLINCREMENTALCLUSTERING(K)
2: initialize w0

3: for t in t = 1, ..., T do
4: Ct ← random subset of all clients K
5: for each client k in Ct do
6: δkt , nk = CLIENTUPDATE(wt−1, k, E,B, α)
7: Mk = δkt ▷ Server stores update
8: end for
9: wt = wt−1 −

∑
k

nk∑
q∈Ct

nq
δkt

10: for i, j in K do
11: Si,j

t = s(Mi,Mj) ▷ Update St matrix
12: end for
13: end for
14: P ← LOUVAINMETHOD(ST )
15: for cluster c in P do
16: initialize server c with weights wc,T = wT

17: for t in t = T + 1, ..., T + Tf do
18: Cc,t ← random subset of clients in cluster c
19: for each client k in Cc,t do
20: δkt , nk = CLIENTUPDATE(wc,t−1, k, E,B, α)
21: end for
22: wc,t = wc,t−1 −

∑
k

nk∑
q∈Ct

nq
δkt

23: end for
24: end for
25: end procedure
26: procedure CLIENTUPDATE(w, k,E,B, α)
27: initialize wk = w
28: for e in e = 1, ..., E do
29: Divide nk samples into batches of size B : set B
30: for b in B do
31: wk = wk − α∇l(wk, b)
32: end for
33: end for
34: δk = w − wk

35: return (δk, nk) ▷ Send update and number of samples
36: end procedure

server, which is very demanding in terms of communications
costs.

Furthermore, by addressing the security challenge, our ob-
jective is to separate the updates from malicious and loyal
clients and then, to build a global model from a cluster
containing only loyal clients. We show in Section IV that our
approach is a robust defense even if there are a majority of
adversaries.

IV. EXPERIMENTS ANS DISCUSSION

A. Dataset and model

We propose to use the community detection algorithm
Louvain method [21] for clustering. Contrary to [14]–[16], we
want to avoid having a cluster dependent parameter because
we assume that we do not know a priori the cluster structure
or the number of clusters we can expect. Louvain is a greedy
algorithm that does not require such parameter. The basic
Louvain algorithm considers graphs with positive weights. To

this end, we define the following similarity, positive, upper
bounded by 2 and that uses the cosine distance as in [15],
which gives a good sense of the direction gradients take during
training:

s(δi, δj) = 1 + cos(δi, δj) (7)

Our approach is however agnostic to the clustering method
and could be applied with other clustering algorithms.

We realize two types of experiments. The first ones simulate
non-IID cases by artificially forming groups of clients with
similar properties. These cases are verifiable in the sense that
after we apply our method, we can verify if clients following
same data distributions are effectively grouped together. We
will refer to this as the correct clustering. Experiments are
done with the MNIST dataset [22] dedicated to identify
handwritten digits from pixel data. The dataset is partitioned
into 100 clients, each having 600 training samples and 100 test
samples. We simulate a user experience context with hetero-
geneous data by forming groups of clients following different
data distributions. The non-IID case “same label, different
features” is simulated by partitioning the data into four groups.
Within each group the images are rotated of 90 degrees. We
will refer to this experiment as image rotation. Similarly, for
the non-IID case “same features, different labels”, we partition
the clients into 5 groups and within each group two digit
labels are swapped. This will be referred to as label swap. For
instance, a client of the first group will have 0 and 1 images
labeled with 1 and 0 respectively. A client of the second group
will have the correct labels for 0 and 1 images but will have
labels 3 and 2 for 2 and 3 images.

The second type of experiments concern the application of
our method as a defense to poisoned models. We continue
to use the MNIST dataset [22] split into 100 clients, from
which a certain number of them will be attackers. An attacker
is a malicious client that sends −δkt , i.e. the opposite of its
true update, in order to cause the global model to diverge.
This attack will be referred to as minus grad attack. The
more clients are attackers, the more the global model will
be perturbed. We set the strength of the attack by varying the
number of adversaries and we realize experiments for 30, 40,
50 and 60 malicious clients out of the 100 total clients. We
implement an existing defense that replaces the typical mean
aggregation by a median aggregation [18] in order to compare
its results to the ones of FLIC as a defense. As in the previous
experiments, we can also speak of a correct clustering if all
malicious clients are separated from loyal clients. It should
be noted that our method is agnostic to the aggregation rule.
In our experiments we use the weighted mean, but a median
aggregation could be used in order to combine both defenses.

Following [1], we build a convolutional neural network
of two convolutional layers followed by a fully connected
layer with a ReLu activation and a final softmax output layer.
This architecture is used by both the server and the clients.
We perform SGD with a learning rate of α = 0.01. Unless
specified otherwise, the number of local epochs E and the
size of mini-batches B are 5 and 10 respectively.



(a) Accuracy before clustering

(b) Label swap (c) Image rotation

Fig. 4. (a) FedAvg accuracy for IID, label swap and image rotation cases
before and after clustering. (b)-(c) Focus on cluster’s accuracies trained for
5 rounds for label swap and image rotation cases respectively. The displayed
results are obtained by evaluating the servers’ models on test images of clients
managed by them. We display the mean result of all experiments with 0.95
confidence interval.

TABLE I
ACCURACY EVOLUTION BEFORE AND AFTER CLUSTERING. WE DISPLAY
THE MEAN OF CLIENTS’ ACCURACIES ± THE STANDARD DEVIATION AND
IN PARENTHESIS THE RELATIVE INCREASE FROM BEFORE CLUSTERING.

Pre-clustering Post-clustering
IID data 0.99± 0.01

Label swap 0.75± 0.075 0.99(×1.32)± 0.011
Image rotation 0.93± 0.051 0.98(×1.05)± 0.013

We used GPUs with specifications INTEL Skylake AVX512
support, 192Go RAM and at least 48 threads. The wall-clock
time of computation for parameters E = 5, B = 10, C = 0.1
and 200 rounds was in average of one hour.

B. Results on the statistical challenge

In this section, we lead two sets of experiments realized
20 times each to reduce randomness. During our first set of
experiments, we assess the performance of our method when
clients have heterogeneous data. Firstly, 10% of the clients are
randomly sampled at each round. Then, at round 200 when
FedAvg reaches convergence, we cluster clients thanks to the
adjacency matrix built during the 200 rounds.After clustering,
each group performs 5 rounds of FedAvg.

For both non-IID cases, all clients were correctly clustered
as in [16] but without the necessity of sampling all clients
at round 200. Figure 4 shows that after clustering, the mean
accuracy of the models increases of 24% and 5% for the label
swap case and the image rotation case respectively. We reach
the same performances as in the IID case, which proves our
method is well adapted to tackle the problem of heterogeneous
data. Finally, Table I indicates that the variability between

Fig. 5. Mean FedAvg accuracy with 0.95 confidence interval for parameters
E = 3 and B = 50 over 100 rounds (blue curve and outer right axis).
Number of clusters (violet curve and left axis) and clusters purity if (green
curve and inner right axis) if clustering is done with the similarity matrix of
each round of the abscissa.

clients’ results has decreased because the standard deviation
after clustering decreases. This contributes to improve the
fairness of the federated models.

For our second set of experiments (Figure 5), we evaluate
the capability of our method to well cluster heterogeneous
data at early rounds i.e. before convergence. To this end, we
cluster clients at every round - without training per cluster as
in Algorithm 1 (l.15-24). We focus only on the label swap
case and change parameters E and B to 3 and 50 in order
to slow down the convergence rate and to better analyze the
behavior of Algorithm 1.

In Figure 5, we plot in green the cluster purity. We define
this quantity as the percentage of clients grouped with others
who follow the same data distributions. If it is equal to 1, it
means that FLIC formed groups of clients who all follow the
same data distribution.

We notice in Figure 5 that at the beginning of the training,
the cluster purity is equal to 1 and the number of clusters
represented by the violet curve starts at 10. At the beginning of
the training, the graph is small because not many clients have
yet been sampled. For instance at round 1, since C = 0.1, the
graph contains only 10 nodes with similar edges. The Louvain
method can not seam to find clear communities among nodes
and forms 10 communities each containing a single client,
which explains the obtained purity.

As new clients are sampled and trained, more communities
are found, but they sometimes contain clients of different
data distributions, which makes the cluster purity decreases
from its optimal value 1. Before round 34, the lowest round
for which a client k was sampled is in average equal to 1
i.e. δk1 is used for the update of the adjacency matrix. Some
clients have thus performed few epochs of local training and
their updates are not clearly distinguishable. After round 34,
clusters purity reaches 1, so performing training per cluster
can enhance performances as clients per group follow same
data distributions. Yet, these partitions are not optimal as not
all clients with same distributions are grouped together. As
shown in Figure 5 by the violet curve, starting from round
49, five pure groups are found, making the clustering correct.



Fig. 6. Minus grad attack by 30, 40, 50 and 60 attackers out of 100 loyal
clients, defended by the median defense and FLIC. The displayed results
are obtained by evaluating the servers’ models on test images of the clients
managed by them. For the FLIC defense, clusters containing malicious clients
are evaluated on clean images, which explains the drop in accuracy for them.
We display the mean result of all experiments with 0.95 confidence interval.

At this point, the mean lowest round at which a client was
sampled is equal to 6. Most clients have thus updates that
are representative of their local objective functions. We can
thus leverage the information received by the clients’ updates
during federated training even if they are computed at an early
stage of their local optimization. In practice, the updates sent
by clients at early rounds could be ignored for the clustering.

C. Results on the security challenge

We also realize 20 experiments and randomly sample 10%
of the clients at each round, with local parameters E = 1 and
B = 50. We implement the attack mentioned in Subsection
IV.A, which is referred to as minus grad attack. We evaluate
our method FLIC as a defense and compare our results with
the coordinate-wise median aggregation rule defense [18].

During FLIC training, we expect that after clustering, ma-
licious clients are separated from loyal. The results in Figure
6 and Table II are evaluated on client’s test data. A malicious
client will thus have poor performances if it is evaluated on
its own corrupted model. If FLIC is a robust defense, its plot
should split into two curves at round T , one representing
loyal clients reaching adequate performances, and the other
representing malicious clients dropping to a poor accuracy.

All simulations perform 300 total rounds for the minus grad
attack and the median defense. For the experiments on FLIC,
the first simulations with 30, 40 and 50 attackers, run T = 200
rounds before clustering and Tf = 100 rounds after clustering.
We decided to perform more rounds after clustering than in the
previous experiments in order to see if the new model, cleaned

TABLE II
EFFECT OF MINUS GRAD ATTACK ON IID DATA AND PERFORMANCES OF

BOTH MEDIAN AND FLIC DEFENSES ACCORDING TO THE NUMBER OF
TOTAL MALICIOUS CLIENTS. FOR EVERY METHOD WE DISPLAY THE BEST
ACCURACY OF THE LAST 50 ROUNDS ± THE CORRESPONDING STANDARD

DEVIATION. RESULTS ON FLIC DEFENSE CONCERN ONLY CLUSTERS OF
LOYAL CLIENTS. THE DISPLAYED RESULTS ARE THE ACCURACY AFTER
CLUSTERING, THE MEAN NUMBER OF LOYAL CLIENTS AND THE MEAN

NUMBER OF CLIENTS INSIDE A LOYAL CLUSTER.

30
attackers

40
attackers

50
attackers

60
attackers

FedAvg without
atack 0.99± 0.01

FedAVG with at-
tack

0.94 ±
0.003

0.91 ±
0.005

0.14 ±
0.14

0.1 ±
0.00

Median defense 0.98 ±
0.002

0.57 ±
0.423

0.10 ±
0.004

0.1 ±
0.00

FLIC - loyal
clusters

0.95 ±
0.012

0.94 ±
0.004

0.91 ±
0.006

0.97 ±
0.004

Mean number of
loyal clusters 3.5 1.09 1 1.1

Mean number of
clients in loyal
clusters

20 55 50 40

of malicious clients, can reach performances of models who
have not been attacked.

As we can see in Figure 6 and Table II, when the number
of malicious clients is not high, for instance 30, the median
defense is robust and slightly outperforms FLIC. However,
when the number of attackers is equal to 40, the median
defense learns with difficulty the task at the beginning of the
training, and then fails after approximately 100 rounds. As
mentioned, the median defense is robust only if the majority
of clients are loyal [20]. At a particular round, since there
are 40% of attackers, it is possible that out of the 10 sampled
clients, more than 5 will be attackers, which makes the median
defense fail. The variability of the median defense for 40
attackers in Figure 6 is thus due to the changing number
of attackers at each round and for every simulation. On the
contrary, as FLIC correctly separates clients at round T = 200,
loyal clients reach good performances again.

When the proportion of attackers is of 50% or higher,
the effects of the minus grad attack become predominant
and the median defense collapses. FLIC manages though to
correctly separate clients. For 50 attackers, the new model after
clustering reaches good performances in less than 100 rounds.

For the experiment with 60 attackers, we performed less
rounds before clustering (T = 50) because we noticed that
if done later (for instance at round T = 200 as the other
experiments), when FLIC successfully separated malicious
clients of the rest, loyal clients restarted training with a model
that was too degraded by the attack and could not learn
the objective task in the remaining rounds. If clustering is
performed at round T = 50, the new model of loyal clients
has a lower convergence rate but the starting point of loyal
clients’ training is not as distant from their objective as before
(T = 200) and they can still rebuild an efficient model.



Clusters purity defined in Subsection IV.B now reflects
the capability of FLIC to correctly split malicious and loyal
clients. If a malicious client is grouped with loyal clients, it
decreases the methods purity. For all of our experiments, FLIC
clusters correctly clients (purity equal to 1).

In Table II we display the mean number of loyal clusters
and the mean number of clients in loyal clusters. Ideally, all
loyal clients should be grouped in one single cluster, in order
to enhance the collaborative characteristic of FL. With 30
attackers, loyal clients are generally not grouped all together
but rather in small clusters of 20 clients. Under this attack,
the model can still learn the training task, and thus clients can
more easily learn their own local objective before sending their
updates to the server. Their updates are thus different from the
attackers ones, but not sufficiently similar between themselves
in order to be grouped in a single cluster. For the rest of
the experiments, loyal clients are generally grouped together
because the attacked model is distant from not only the global
objective but from all local objectives. Clients have thus more
difficulties to reach their local objective, and resemble more
between themselves because they begin the new training at the
same distant starting point.

V. CONCLUSION AND FUTURE WORK

In this work, we apply clustering techniques to FL under
heterogeneous data. During FedAvg, we exploit the avail-
able information sent by the sampled clients at each round
to compute similarities between clients incrementally, which
enables us to cluster clients without having to compute all
their parameters at the same round. Our method is especially
advantageous in a cross-device context where the number of
clients is large, and the communication costs between them
and the server are very high. We empirically show on a
variety of non-IID settings that the obtained groups reach IID
data performances. We also obtain partitions that effectively
group clients following similar data distributions if most
clients have performed enough rounds of local optimization.
Moreover, we also address attacks on models as a form of data
heterogeneity and apply our method as a defense technique
consisting in separating malicious clients from the rest of
the clients. We show that our method is a robust defense
even when the malicious clients are in the majority, whereas
existing methods fail to protect models in this case. Ongoing
work consists in providing convergence proofs of our method.
Other relevant future work is to check the adaptability of our
method in differential privacy contexts where noise is added
to parameters to reinforce clients’ confidentiality [23].
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