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2)Aix-Marseille Université, CNRS, Ecole Centrale Marseille, Institut Fresnel, 13013 Marseille,
France

(Dated: 8 August 2023)

The divertor of WEST (W Environment in Steady-state Tokamak) is the main component for plasma control
and exhaust. It receives high heat fluxes, which can cause damage to plasma facing units above the allowable
heat flux. Improving the operation safety on the actively cooled tungsten divertor is being researched in
place at WEST, toward providing divertor monitoring solution for ITER. Divertor operation safety relies on
detecting, monitoring, and classifying all hot spots on the divertor surface using infrared (IR) cameras. In
this paper, a method based on max-tree representation and attributes of IR images is used to classify normal
from abnormal strikelines on the divertor. The proposed method requires only high-level prior knowledge
of abnormal temperatures and divertor structure but does not require any labelled data, unlike existing
methods such as support vector machines (SVM) or convolutional neural networks (CNN). The max-tree
classifier method is tested on real IR images from the WEST tokamak and shows that 88% of hot spots are
accurately classified with a small enough calculation duration, that can be performed between two pulses.

I. INTRODUCTION

Tokamak fusion plasmas endeavour to achieve the fu-
sion of Deuterium (D) and Tritium (T) atoms, which
holds great potential as a future energy source. Toka-
maks have demonstrated increasing power capabilities,
with the tokamak JET achieving fusion outputs of 20
to 40 MW and International thermonuclear experimen-
tal reactor (ITER) projected to reach up to 500 MW.
The magnitude of power used or generated by these fa-
cilities categorizes them as large-scale industrial installa-
tions. Furthermore, there is a growing tendency among
magnetic fusion devices towards continuous plasma oper-
ation, ranging from several minutes to hours, with energy
throughputs comparable to those of substantial power
plants. For example, WEST (W Environment in Steady-
state Tokamak)1 operates routinely with 4 MW of power,
for a plasma duration over a minute (record of 6 minutes,
Tore Supra (WEST Tokamak predecessor) in 2004). Fig-
ure 1(a) gives an overview of the interior of the WEST
Tokamak, showing the main plasma facing components
acting as thermal shield, and especially the divertor at
the bottom of the machine.

The large amounts of power and energy involved are
evacuated through the walls, acting as thermal shields.
They operate in a stationary manner with surface tem-
peratures of 500 to 1000°C. In addition to the normal
power evacuation, which must be monitored, parasitic
phenomena (magnetic instabilities, additional heating
power losses) send occasionally hot plasma to undesirable
locations, resulting in potentially damaging hot spots and
thermal events. These phenomena are monitored for op-
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timal machine operation, and sometimes require counter-
reaction or other safety actions.

Active temperature control of Plasma facing compo-
nents during plasma operation is an increasing trend
among tokamaks/fusion machines, especially as plasma
discharge duration extends and overcome thermal sta-
bilisation time constant. Active temperature feed back
control is for instance done in WEST tokamak in south
of France but also in JET tokamak2 in the United King-
dom, EAST tokamak in China3 or Wendelstein 7-X (W7-
X) stellerator in Germany4. W7-X research collaborators
are also working on automating infrared image analysis
to address machine safety concerns. W7-X investigated
the feasibility of employing the max-tree method for au-
tomatic segmentation of hotspots5 ,6.

Connected operators are predominantly utilized for im-
age filtering or image segmentation. The application of
these methods is widespread in various domains of im-
age analysis, including but not limited to medical ap-
plications for example. Although rare, there have been
instances where this method has been employed for clas-
sification purposes7. This article presents a novel im-
plementation of classification on infrared images using
connected operators.

This article describes the current state of WEST toka-
mak technology toward active wall temperature control,
and the architecture of the infrared diagnostics data pro-
cessing toward this goal.

This article addresses the challenge of hotspot clas-
sification, with a special focus on the identification of
anomalous strikelines. A novel classification methodol-
ogy on infrared imagery acquired from cameras installed
within the tokamak is proposed.

This article is organized as follows. Section II describes
the instruments and issues involved in the research, in-
cluding the IR diagnostics installed on the WEST toka-
mak and a description of the relevant hot spots and ther-
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mal events. Section III outlines the max-tree classifier
methodology for strikeline classification using the max-
tree image processing method, resulting into a sorting
of the wall hot spots into individual branches. The ap-
proach to cut the branches of the resulting tree and the
criteria to determine such a classification are also pre-
sented and discussed. Section IV reports on the findings
including metrics and comparative methods as well as
numerical results. Finally, section V discusses the limits
of applicability of the research including an examination
of physical parameters thanks to a synthetic dataset and
some practical cases not detected by the max-tree clas-
sifier method. The article concludes by highlighting the
importance of continued research in this area to ensure
the safe and efficient operation of tokamaks as a source
of energy.

The following notations are used throughout the paper:
{A1} symbolises a node of the tree generated by the

max-tree method. This node is composed of all the pixels
in the area associated with the letter. The index gives
the grey level associated with the area.

P symbolises a probability distribution, µ and σ corre-
spond respectively to the mean and standard deviation
of the distribution.

All the IR images use the “Hot” colormap, the interval
given for the colormap is from the temperature of the
darkest point to the temperature of the brightest point.

II. MATERIALS

A. IR diagnostics installed on WEST tokamak

Infrared camera-based optical measuring instruments
are employed to monitor the thermal shields during oper-
ation, providing armour surface temperatures. Approx-
imately 50% of the whole internal wall is observed by
optical systems, while the rest is monitored passively or
indirectly. The system features 12 IR cameras mounted
on seven optical endoscopes positioned in the machine’s
upper ports with downward-facing views. This configu-
ration provides comprehensive coverage of the lower di-
vertor, baffle leading edge, and five heating devices: three
Ion Cyclotron Resonance Heating (ICRH) antennas and
two Lower Hybrid Current Drive (LHCD) launchers. Ad-
ditionally, new optical viewing systems have been devel-
oped for WEST, including a wide-angle tangential view of
the inner chamber from an equatorial port (Figure 2(a));
a high-resolution view of the divertor with 0.1 mm spatial
resolution; and two complementary views of the divertor
(direct view through a window, scheme on Figure 1(b)).
This entire acquisition system is described by Courtois
et al. in8.

A complete chain of measurement and acquisition is
functional: conversion from raw digital levels to temper-
ature, acquisition, storage, and access to data9,10. Ex-
pert analysis of hot spots by human operators takes into
account many parameters, such as their shape, extent,

possible structure, temperature value, and temporal cor-
respondence with other machine events. In addition to
data accessible by direct or indirect measurements, the
analysis of hot spots is based on historical knowledge of
past thermal events and synthetic images produced from
first principle physical models (digital twins).

In addition to the human expertise, automated in-
frared data processing has been developed at the IRFM
Infrared laboratory for over a decade. Initial meth-
ods were purely quantitative with fixed thresholds alert-
ing safety experts based on involved area/materials.
Subsequently, more “intelligent” image analysis in-
corporating classification techniques linked to hotspot
shape/size/duration emerged as detailed in11.

Real-time monitoring is implemented using images
from infrared cameras in the Wall Monitoring System
(WMS)12, with temperature thresholds defined accord-
ing to components allowable. Control laws are imple-
mented to monitor and feed back on actuators if control
thresholds are exceeded. These basis controls are in use
today, but they are exceedingly basic, and subject to false
positive12.

More elaborated controls using artificial intelligence
and deep learning are investigated. An end-to-end
pipeline is developed to detect and classify hot spots13,14

based on recognisable features like hot spot shape, po-
sition, and temperature distribution, possible combined.
The classification method described in this article is part
of this data pipeline and is aimed at consolidating the ac-
curacy of detection / classification on hot spots detected
by artificial intelligence.

Infrared cameras are employed in various disciplines for
non-destructive evaluation through thermographic tech-
niques. Additionally, several methods15,16 have been de-
veloped to facilitate the automatic identification of spe-
cific anomalies. In contrast to many applications where
the nature of the defect is predetermined and the in-
put data is relatively unambiguous, monitoring the heat
shield of tokamak walls presents a unique challenge.

B. Hot spots description and related issues

The issue of monitoring the machine is linked to the
presence of hot spots on the tokamak’s walls. There
are various types of hot spots, including “strikelines”,
“electron type 1”, “ripples loss” or “Unidentified Flying
Objects” (UFOs), which may result from the pulverisa-
tion of wall armour and subsequent detachment of metal
dust. The full taxonomy is much more extended than
described above, a reduced taxonomy is used currently
and proves efficient for development activities13. In the
previous subsection, various infrared image analysis tech-
niques are described. These techniques are employed to
detect and classify the different types of hot spots present
in the WEST tokamak, thereby ensuring its safe opera-
tion.

The “Strikelines” are the most common hot spot be-
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(a) (b)

FIG. 1. Photo of the interior of the WEST Tokamak including some areas description (a). Simplified 3D reproduction of the
tokamak with a divertor sight-of-view IR camera (b).

(a) (b)

FIG. 2. Wide Angle (WA) camera (a) & Line of sight of a divertor camera (DIVQ1B) (b) for pulse 57541. Hot colormap for
(a): [108°C;256°C] and for (b): [91°C;462°C]

cause they result from the normal power deposition on
the divertor (top or bottom). The physical justification
to strikeline is explicated in17, in particular with Figure
5.4 at page 217 showing a toroidal cut-out of a tokamak
with the contact zone between the outer plasma layer and
the divertor.

Figure 2(b) presents an infrared image of the lower
divertor during a pulse. The lower half of the image is
an extension of its upper region: due to the divertor’s
large aspect ratio along the entire length of the tokamak,
capturing a 60° sector within a single field of view makes
a poor usage of the detector. Two lines of sight and a
recombination prism are used to better fit the FoV of a
60° divertor sector within the detector.

As depicted in Figure 2(b), these lines are not con-
tinuous and exhibit a sinusoidal modulation because of

the discrete arrangement of the 18 toroidal magnetic
coils on the WEST tokamak (the so-called “ripple ef-
fect”). Strikelines exhibit a characteristic “croissant”
shape, with a series of local hotter spots resulting from
the series arrangement of plasma facing units. The
hottest spots are concentrated towards the centre of the
strikeline. This physical knowledge facilitates differen-
tiation between a “normal/classical” strikeline and an
abnormal strikeline that warrants priority monitoring.
Normal strike lines have a temperature per Plasma fac-
ing Unit (PFU), which temperature peaks are grouped
together (the temperature of these PFUs for a strikeline
without anomalies is called “normal” temperature in the
rest of the article). By contrast, a defective strike line
has one or two peak temperatures deviating significantly
from the grouped temperature of the other fingers.
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FIG. 3. Photo of WEST divertor (Q1A) from PFU 1 to 8 after
C7 campaign. The strikepoint between plasma and Divertor
is located on monoblock (MB) 16.

Abnormal PFU temperatures originates from several
possible causes: deteriorating thermal contact to the
cooling circuit, growth of a resistive thermal deposit at
the surface of the armour tile, or possible a tile or PFU
misalignment, either pre-existing or happening following
fixture deterioration of the PFU.

Further temperatures anomalies may happen because
of erosion or dust deposition on the divertor. When tung-
sten blocks are damaged to a degree that their outer lay-
ers are altered, it is possible for the emissivity of the
material to change, thereby altering the apparent tem-
perature obtained by the IR camera. Similarly, dust de-
posits on a machine in the field of view can accumulate
on the divertor at ground level and modify the emissivity
of certain zones, resulting in abnormal strikelines. These
phenomena can be observed when the divertor is studied
after an experimental campaign (see Figure 3).

Misalignment of one or more Plasma Facing Units
(PFUs) is another factor that can result in the observa-
tion of an abnormal strikeline and require close monitor-
ing of the affected area. Vertical misalignment of PFUs
poses a significant challenge in such machines as the ac-
cepted tolerance is only 0.3mm18. Precise alignment of
the divertor is crucial for it to effectively perform its heat
absorption function. A misaligned PFU results in over-
exposure of its leading edge and consequent abnormal
heating along its entire length. Furthermore, significant
misalignment of a PFU casts a ‘shadow’ on the adjacent
unit due to their ‘staircase’ arrangement.

Figure 4 depicts a strikeline that may be considered
abnormal by a human expert due to its unexpected shape
and temperature differences between certain areas. This
Figure 4 is the infrared counterpart of Figure 3, dur-
ing the end of C7 campaign. The max-tree classifier
method described in this article aims to detect such atyp-
ical strikelines and promptly alert the safety officer of the
first wall after the pulse.

FIG. 4. Abnormal strikeline due to some deposit spotted
during the WEST tokamak operation campaign in April 2023.
(58500 - DIVQ6B - “Hot” Colormap (exceptionally non-linear
for a better visualisation): [100°C;360°C])

III. METHOD

The section III outlines the development of a classifi-
cation method, from the creation of a synthetic dataset
to the selection of appropriate classification criteria.

A. Synthetic image creation

While it is feasible to address this issue solely through
experimental data, the process of annotation can be time-
consuming. Consequently, generating a synthetic image
dataset with easily verifiable labels and anomaly types
(if present) presents a compelling alternative. Utilizing
synthetic data enables more comprehensive analysis of
max-tree results on images of this nature, facilitating the
identification of pertinent criteria for anomaly classifica-
tion. The process involves several steps:

1. A 1D profile of heat flux and temperature distri-
bution on the surface of a PFU monoblock is gen-
erated using CAST3M19 thermal calculation code
from physical input parameters from the WEST
tokamak.

2. Monoblocks and their temperature distribution are
multiplicated horizontally to generate a 1D line
with N monoblocks. The physical gap present
on the WEST divertor is added between each
monoblock by artificially inserting points at 70°C
(machine base temperature). This horizontal (X)
direction serves later as ‘toroidal’ direction.

3. The 1D line is developed vertically to create a 2D
image of N PFUs with identical distribution along
the entire vertical and repeated patterns between
all monoblocks. The vertical axis serves later as
poloidal direction.
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FIG. 5. Example of a synthetic strikeline (“Hot” colormap:
[70°C;237°C])

4. Gaussian and Eich20 flux distribution laws are ap-
plied on toroidal and poloidal axes respectively
to impose toroidal field ripple modulation around
tokamak and flux intensity at plasma-PFU contact.

5. A pixel/cm filter matching the resolution of IR
cameras defined in8 is applied.

Images with anomalies are generated by deliberately
misaligning one PFU before CAST3M simulation result-
ing in new flux distribution on two PFUs (misaligned one
and shaded one). The images generated through this pro-
cess enable the correlation of hot spot emergence with
specific physical events, such as the misalignment of a
PFU. An example of a generated artificial strikeline is
provided in Figure 5.

It is chosen to generate the artificial image database,
using the misalignment cause as a parameter. Direct
modelling of defective strike line having a larger temper-
ature because of the misalignment is representative of the
abnormal strike lines. A total of 1350 synthetic images
were generated by varying three parameters: the verti-
cal misalignment (in mm), the number N of PFUs in the
image and the anomaly position. The utilization of syn-
thetic images contributes to the formulation of criteria
delineated in subsection D.

B. Image pre-processing

The image process at the core of the technique is
built upon a max-tree transform of the image. The
next subsection introduces the max-tree image processing
method. The images are quantized into discrete temper-
ature levels. For this quantization, the temperatures are
grouped into bins of 5% of Tmax. The value at the median
of its interval is assigned to each bin. Image quantization
reduces the number of levels in an image by compress-
ing a range of values to a single value. Quantization is
a mandatory processing step, else the max-tree process

would result in exceedingly numerous digital levels, which
would hinder proper recognition of graph branches. The
quantization is also justified by two physical arguments:

� The infrared camera used on WEST do have a finite
measurement uncertainties, which make it irrele-
vant to decompose the image at the Celsius degree
level.

� A quantized image reveals better the essential infor-
mation about the physical structure and the tem-
perature contrast between different regions.

C. Max-tree operation principle

Salembier et al.21 proposed max-tree as a hierarchical
data structure that captures the topological and mor-
phological properties of a grey-level image. In this repre-
sentation, the root node corresponds to the background
of the image and contains all the pixel indexes with the
minimum grey-level value. The intermediate nodes cor-
respond to different connected regions of pixels with in-
creasing grey-level values. The leaf nodes correspond to
the regional maxima of the image, where no pixel has a
higher grey-level value in its neighbourhood.

The algorithm works by creating a “local” background
at each temporary TCk

h node, which consists of all pixels
with a grey level value of h (the “local” background may
not be a single piece). Then it finds the connected re-
gions of pixels with a grey level value above h and makes
them the child nodes of the tree. During this process,
the algorithm may create some nodes that have no pixel
in them. These nodes are deleted after the tree is built.
The final tree is called a max-tree because it shows the
image’s highest values (the highest values are at the end
of the tree branches) and gives a “tree-like” representa-
tion of the image, which is also a reduced size data format
that preserves the structure of the image.

The algorithm is explained here in details. It is ap-
plied it to a model image of a strikeline, shown in Ta-
ble I. This idea of explanation from a simplified is de-
rived from21,22 or23. The example image has 9 con-
nected components (A-I) spread over four grey levels
(0 to 3). The algorithm starts with the lowest grey-
level (0) as a threshold value and assigns pixels of {A}
with this value to the root node C0. The remain-
ing pixels are divided into two connected components
({B,C,D,E, F,G,H} and {I}) and assigned to tempo-
rary nodes: TC1

1 ={B,C,D,E, F,G,H} and TC2
1 ={I}.

Table I(a) shows the result of this iteration. In the next
iteration, the threshold is increased by one and each
temporary node is processed separately. For example,
TC1

1 contains one connected component with grey-level 1
: {B} and three connected components with higher grey-
levels ({C,F},{D,G} and {E,H}). The pixels of B are
assigned to a new node and added to the tree, while the
pixels of {C,F},{D,G} and {E,H} are assigned to new
temporary nodes. Table I(b) illustrates this step. The
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(a)
{A0}

{I3}{B1, C2, D2, E2, F3, G3, H3}

(b)
{A0}

{I3}

{B1}

{E2, H3}{D2, G3}{C2, F3}

(c)
{A0}

{I3}

{B1}

{E2}

{H3}

{D2}

{G3}

{C2}

{F3}

TABLE I. Example of a very simplified strikeline with 4 temperature levels. The letters represent the different zones of the
image and the numbers represent temperature levels. Max-tree creation process. (a), (b) and (c) are respectively the first,
second and third iteration of the creation process.

algorithm continues until all pixels are assigned to nodes
in the tree. Empty nodes are then removed from the
tree to obtain the final max-tree representation shown in
Table I(c).

With regards to implementation, the calculation of the
max-tree method can be achieved using three distinct
groups of algorithms. In an effort to remain consistent
with the ideas presented in21, a flooding algorithms is
selected for use24.

D. Cutting the branches of the resulting tree

Anomaly detection in images represented as directed
trees can be achieved by analysing the branches associ-
ated with the highest temperature values. The selection
criterion is applied to these upper branches. It is based on
a common temperature threshold that allows us to com-
pare the dimensions and shapes of the selected branches:

1. Find the maximum temperature of each branch.

2. Compute the mode of the maximum temperatures
across all branches.

3. Set a threshold at 75% of the mode value.

4. Cut all branches at the threshold value.

Therefore, the tree is pruned by removing all the nodes
below this threshold.

This method presents several advantages over pre-
scribed thresholds. Firstly, it operates independently
from varying power levels injected into the tokamak,
which results in many possible hot spot temperatures.

Secondly, it is robust to potential anomalies aimed to
be detected, as it relies on the most frequent maximum
temperature of the strikeline, which is also the regular
PFU temperature. This choice of threshold (75%) is the
first integration of a priori knowledge in the method.
The precise value of the threshold affects mostly what
is defined as the boundary and contour of a hot spot,
which remain anyway an open matter in wall monitoring
activities. Thus, it was decided to consider that the hot
zone of interest for these strikelines is delimited by tem-
peratures above 75% of the “normal” temperature. This
choice represents a progress over a fixed or proportional
threshold, that would be used to reveal hot spots.

After applying the tree pruning, B branches were ob-
tained with Nb pixels each. The number B varies be-
tween 7 and 15 depending on the plasma configura-
tion. The number of pixels within the branch Nb (with
b = 0, 1, ..., B−1, index of the branch) is widely variable,
as it can be very small (e.g., one very hot pixel due to a
camera defect) or very large (e.g., a complete PFU heat-
ing). The size of each branch is a controlling parameter
for determining whether a branch represents an anomaly
or not: for example, a branch with a unique pixel is a
bad pixel, not a hot zone on the divertor.

E. Classification criteria

Identifying anomalies in the image requires establish-
ing appropriate criteria that are effective to distinguish
normal from abnormal branches based on their thermal
properties. These criteria are based on a priori knowl-
edge of the strikelines. Three criteria are proposed to be
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used in a similar pattern. Physical prior knowledge en-
ables the understanding of the expected behaviour of a
“normal” strikeline. Thus, a branch, representing a part
of the global hotspot, that does not exhibit certain ex-
pected characteristics can be extracted. These are the
three criteria used:

� Maximum temperature of the branch: The
first intuitive criterion for anomaly detection is
the maximum temperature of each branch denoted
by Tmaxb

for branch b. This reflects the human
safety expert’s concern for the thermal state of the
component and the potential risk of overheating.
Prior physical knowledge indicates that the max-
imum temperatures along the strikeline hot zones
are within a relatively close range of temperatures.
The “3σ rule” is applied to detect outliers in this
distribution.
P(µ−3σ ≤ Tmaxb

≤ µ+3σ) ≈ 0, 9973 so any branch
with a maximum temperature too high compared
to the rest (i.e, more than µ + 3σ) is considered
as an potential anomaly and marked for further
analysis. For example, in circumstances where the
entirety of a strikeline maintains a temperature of
300°C and a singular block exhibits a temperature
of 305°C, it is not cause for concern. However, if the
strikeline temperature is approximately 200°C, this
same block (at 305°C) may indicate an anomaly.

� Size of the branch: This criterion corresponds
to the number of pixels of each branches. The “3σ
rule” is also applied to this criterion to check for
outliers in the list of branch sizes. The criterion un-
der consideration requires not only an understand-
ing of the strikeline’s physical properties but also
an awareness of potential anomalies on the divertor.
As detailed in section II, the strikeline’s structure
is well-defined and the size of hot zones which com-
pose the “croissant” are relatively consistent. In
the absence of anomalies, branches should be ap-
proximately equal in size. However, factors such
as the superposition of a UFO to the usual strike-
line temperature pattern disrupts this uniformity
by creating a “hot and thin” branch with few pix-
els in max-tree due to its significantly smaller size
relative to the strikeline.

� Temperature distribution within the branch:
In order to illustrate this criterion, the temperature
is plotted as a function of the pixels for each branch,
resulting in curves like those shown in Figure 6.

The similarity in shape among most of the curves
can be attributed to the structure of the tokamak
and the plasma shape, which results in approxi-
mately the same temperature distribution in the
“croissant” hot zones. For example, the curves
drawn on (a) correspond to a normal strikeline,
while the curves drawn on (b) correspond to a
strikeline with a misaligned PFU. In this figure (b),

(a)

(b)

FIG. 6. Temperature distribution as a function of the number
of pixel for a “normal” strikeline (a) and a strikeline with an
anomaly (b). Each curve with a given colour represents the
distribution of a given branch.

the blue curve represents the branch linked to the
misaligned PFU. A hotter zone is observed (the
value at pixel 0 is much higher than the rest), and
it is also noticeable that the decrease in tempera-
ture to reach the branch cutting threshold is much
slower.

To quantify this difference in shape, the Euclidean
distance between each pair of curves is calculated.
The “3σ rule” is then used to detect outliers in this
distance list. A branch exhibiting a distance de-
fined as an ‘outlier’ relative to (at least) half of the
other branches is identified as a potential anomaly.

A branch is defined as an anomaly for the wall safety
function if it is designated as a potential anomaly on at
least two out of the three criteria defined above: Tmaxb

for each b, size and distribution. In the event of a po-
tential anomaly, it is directly reported to the first wall’s
safety officer.

The ease of obtaining the maximum temperature of the
branch classified as anomalous is an additional benefit of
this method. Extra relevant information about hot spot
anomaly size can be conveyed. This branch size is often
key in characterising the nature of the anomaly.

From a practical standpoint, the max-tree classifier
method (called “max-tree classifier” in the following text)



8

can be implemented between the detection of strikelines
by the AI data processing pipeline14 and the upload-
ing of information to the institute’s shared databases.
The max-tree classifier adds several pieces of informa-
tion, such as the presence or absence of anomalies and
possibly the temperature of anomalies, to the existing
data for later analysis.

IV. RESULTS

A. Metrics

In evaluating the performance of the max-tree classifier
for a binary classification problem, several metrics are
utilized, including Accuracy, Recall, Precision, and F1-
Score. All these metrics are extracted from the confusion
matrix where a Negative is defined as “non anomaly” and
a Positive as an “anomaly”.

� Confusion matrix: Comparison of actual and pre-
dicted class. Table II explains the content of the
confusion matrix for a binary classification prob-
lem.

Classes Actual 0 Actual 1

Assigned 0 True Neg. (TN) False Neg.(FN)

Assigned 1 False Pos. (FP) True Pos. (TP)

TABLE II. Definition of the confusion matrix content

� Accuracy: Computes the proportion of well-
classified samples (Eq. (1)).

Accuracy =
TN + TP

TN + TP + FN + FP
(1)

� Recall: Computes the fraction of relevant instances
that were retrieved (Eq. (2)).

Recall =
TP

TP + FN
(2)

� Precision: Computes the fraction of relevant in-
stances among the retrieved instances (Eq. (3)).

Precision =
TP

TP + FP
(3)

� F1-score: Computes the harmonic mean of the pre-
cision and recall instances (Eq. (4)).

F1-score =
2TP

2TP + FP + FN
(4)

B. Comparative methods

Two alternative anomalies classification methods are
used as reference benchmarks, a Convolutional Neural
Network (CNN) method and a Support vector machines
(SVMs). Both approaches require that the dataset under
analysis contains images of identical dimensions. While
this is not a concern for the max-tree method, which
operates independently of image size, it is imperative
from a technical implementation standpoint that all in-
put images possess the same dimensions. Accordingly,
the largest image within the dataset, measuring 95× 268
pixels, is selected as the reference dimension. The di-
mensional increase is done by a third order spline inter-
polation. Consequently, the 3D matrix representing the
218 real image dataset for comparative methods has a
dimensions of N218×95×268. For the following two meth-
ods, the dataset is split into train, validation and test
sets, following the conventional approach.

1. Convolutional Neural Network (CNN) method

These images are normalized based on the statistics
(mean and standard deviation) of the training set to pre-
vent data leakage. Due to the scarcity of data, a very
simple CNN is designed as shown in Figure 7. This struc-
ture is standard for a CNN and is inspired by the various
advances in the field25(structure similar to AlexNet26 for
example).

The loss function used is the binary cross entropy
(LBCE) defined by Eq. (5):

LBCE = − 1

n

n∑
i=1

(Yilog(P(Yi)) + (1− Yi)log(1− P(Yi)))

(5)
Yi is the actual value (here, for a binary classification
case: 0 or 1) where i is the index running through the
size n of the dataset to be evaluated. P(Yi) is the proba-
bility associated with this value (computed by the neural
network).

This loss is sensitive to the distance between the pre-
dicted probabilities and the actual labels, which can help
the model learn faster and avoid overfitting.

2. SVM method

Support vector machines (SVMs) are a class of machine
learning algorithms that aim to find an optimal sepa-
rating hyperplane for different classes of data points in
the training set27. The optimal hyperplane is defined as
the one that maximizes the margin between the classes,
which is equivalent to minimizing a bound on the gener-
alization error of the model. This approach follows the
principle of structural risk minimization (SRM). In this
subsection, the investigation focuses on how SVMs can
classify the anomalies of the strikelines.
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FIG. 7. CNN model used for comparison.
The layers are respectively Convolution 2D (32 filters with kernel of size 3×3), Max-Pool 2D (3), Convolution 2D (64 filters with
kernel of size 3× 3), Max-Pool 2D (3), Dense layer (100 neurons, ReLu activation), Dense layer(10 neurons, ReLu activation),
Dense layer (2 neurons, Softmax activation) .

Actual Actual

non anomaly anomaly

Assigned non anomaly 155 12

Assigned anomaly 14 37

TABLE III. Confusion matrix with max-tree method on the
whole set of annotated real data

From a technical standpoint, the two-dimensional im-
ages are straightened in the form of a 1 × N matrix,
where N represents the number of dimensions of the vec-
tor. It results into an input matrix with dimensions
N218×1×25460.

A linear kernel is used for this SVM. This means the
decision boundary between classes is a straight line (or
hyperplane in higher dimensions). Linear kernels are of-
ten used when the data is linearly separable or when the
number of features is large compared to the number of
training examples which is the case here (25460 >> 218).

C. Numerical results

1. Max-tree method results on the entire real data set

The max-tree classifier is applied to the entire labelled
real IR images data set and a complete dataset with
all the real and synthetic images, without requiring any
training set as with other approaches. The confusion ma-
trix (computed on the real data) in Table III shows the
performance of the max-tree classifier.

The different metrics described above are derived from
this confusion matrix. There are summarized in Ta-
ble IV.

The max-tree based method achieved good and bal-
anced results on detecting anomalies on real WEST toka-
mak strikelines (see examples of good classification of real
images in Figure 8). A high recall is crucial for ensuring
the safety of the machine, as it is important to minimize
the number of false negatives that could lead to unde-

R S RS

Accuracy 0.88 0.82 0.82

Precision 0.73 0.91 0.90

Recall 0.76 0.89 0.88

F1 score 0.74 0.90 0.89

TABLE IV. Statistics on the entire real-world image dataset
(R), on the entire synthetic dataset (S) and on the mix of
entire real-world image AND simulated dataset (RS).
(R) is composed by 218 images, (S) by 1350 and (RS) by 1568
images.

tected faults. When evaluated on the complete dataset
comprising both real and simulated images, the perfor-
mance of the max-tree classifier improves significantly.
The simulated images are “cleaner”, resulting in more
distinct branch cutting and a substantial increase in re-
call and precision.

However, since the max-tree based method is new and
has not been applied to other tokamak or IR datasets, it
cannot be compared with existing state-of-the-art meth-
ods for hot spot anomaly classification. As already in-
troduced above, the max-tree classifier method is bench-
marked to CNN and SVM.

2. Comparison results

This section presents an analysis of the results obtained
on the test set, which comprises a subset of 218 labelled
images. The max-tree method was evaluated on the same
test set as other methods that require training data to
ensure a fair comparison of performance.

As can be seen from Table V, the max-tree method
outperforms by far all other methods on the test dataset.
It attains the highest scores for accuracy (0.87), recall
(0.89) and F1-score (0.73), and a satisfactory score for
precision (0.62). This suggests that it can correctly clas-
sify most of the images, identify most of them that are
anomaly, discard most of them that are not, and preserve
a good balance between precision and recall.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. Examples of good classifications on real images from C7 campaign (February/March 2023).
Non anomaly for (a),(b),(c),(d),(e) and with anomaly for (f),(g),(h).
“Hot” colormap for (a): [82°C;243°C], (b): [94°C;238°C], (c): [79°C;284°C], (d): [77°C;245°C], (e): [77°C;245°C], (f):
[91°C;331°C], (g): [85°C;243°C], (h): [94°C;238°C].

Accuracy Recall Precision F1-score Average calculation time / image

CNN train on 130 real images 0.82 0.11 1 0.20 0.002 s

CNN train on 966 synthetic images 0.47 0.11 0.05 0.08 0.09 s

SVM train on 130 real images 0.87 0.44 0.80 0.57 0.002 s

SVM train on 966 synthetic images 0.58 0.22 0.14 0.17 0.002 s

Max-tree method 0.87 0.89 0.62 0.73 0.46 s

TABLE V. Comparative table of the different methods on the test dataset (composed of 45 real-world images)

Recall is a metric that quantifies how many anoma-
lies are correctly detected by the model among all the
existing anomalies. It is crucial for anomaly detection
because it indicates how responsive and exhaustive the
model is in identifying abnormal patterns or behaviours
that may suggest security threats or risks. In this aspect
max-tree based method far outperforms the other tech-
niques, which is consistent with all the criteria choices

made beforehand.

It is important to emphasize that the max-tree classi-
fier presented in this study does not require any training
data. This eliminates issues related to the scarcity of
labelled data. During experiments on the WEST toka-
mak, terabytes of data are captured by IR cameras; how-
ever, manual labelling of this data is a labour-intensive
process. As such, the development of image classifica-
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tion/regression techniques that uses only prior knowledge
formulated as high level prescription is highly desirable.
Such use of well formulated prior knowledge allow sparing
the making of an extensive annotated database.

The max tree method takes significantly longer than
the CNN and SVM methods (counting only the inference
time, that is, excluding training time in this evaluation).
The max-tree calculation time is still compatible with an
off-line processing of the bounding boxes, between two
experiments at WEST.

V. LIMITS OF APPLICABILITY

A. Study of physical parameters with the synthetic
dataset

This section explores the sensitivity of max-tree clas-
sifier, applied to the parameter of vertical misalignment.
The vertical misalignment is used here as the controlling
parameter, and is representative of other possible over-
heating causes. 1350 synthetic images are available by
varying three physical and structural parameters of the
system, as already described in subsection III.A. This
dataset of 1350 images is presumed to contain only strike-
lines with misalignments.

The dataset of 1350 images is classified using the
present max-tree classifier on all this dataset. The pro-
portion of abnormal vs normal strikeline is plotted in
Figure 9(a), as a function of the vertical misalignment
(unknown to the max-tree classifier). The plot shows
a transition at a misalignment of 0.45 mm : beneath a
misalignment of 0.45 mm, the classifier finds a majority
of normal strikelines. Above 0.45 mm, the classifier find
predominantly abnormal strike lines. More than 90% of
images are classified as anomaly for a misalignment of
0.6mm.

This transition of 0.45 mm is commensurate with the
PFU assembly tolerance of 0.3 mm, below which de-
tecting an anomaly becomes challenging. The results of
this study indicate that the proportion as a function of
misalignment is consistent with previous physical studies
conducted on the divertor assembly. It was observed that
a misalignment of 0.3mm resulted in minimal discernible
changes to the strikeline structure.

B. Practical case not detected by the max-tree method

Figure 9(b) highlights another observation consistent
with the max-tree method’s definition, the anomaly de-
tection is independent of the misaligned PFU’s location
within the stripe. The max-tree method does not ac-
count for the spatial arrangement of the image pixels. It
only provides information about the number and distri-
bution of hot spots within each region. Therefore, the
max-tree classifier may fail to detect a new hot spot that
has similar characteristics as the typical hot spots in the

strikeline region. To illustrate this issue, some synthetic
and real images are presented and their classification is
analysed.

A synthetic strikeline is modified by adding a zone with
the same temperature distribution and maximum value
as the centre of the original strikeline (Figure 5). This
added hot spot is located in an area that a human expert
identifies as anomalous, even though it is not particularly
hot compared to the strikeline temperature.

This strikeline is classified as “normal”. Max-tree
method fails to detect a new region/shape that has the
same temperature distribution and maximal temperature
as the “central” strikeline. A concern is that this area can
be potentially hot and damage a component of the ma-
chine. The reason for this misclassification is that the
max-tree classifier only triggered one anomaly criterion
(the branch size) in this case. The other two criteria (the
maximum temperature and the distribution) are similar
to those of other branches and the value is within the
“3σ” rule. Therefore, the max-tree classifier does not
recognize this region as an anomaly.

Few situations are encountered where the max-tree
classifier fails to detect an anomalous strikeline in an
infrared image of a tokamak plasma. Figure 10 shows an
example of such an image, which is classified as normal
by the max-tree classifier. However, a human expert
considers it to be an anomaly because of the two small
hot spots on the bottom and the right of the image.
These hot spots are spacially distant from the strikeline
but have similar features in terms of distribution and
maximum temperature. Moreover, their shape resembles
the hot zones in the centre of the strikeline. Therefore,
the max-tree algorithm generates branches that are
similar to the strikeline branches. The algorithm does
not distinguish them from the aligned ones, based on the
criteria established earlier. This real image illustrates
the special case of a limitation of the proposed method.

To summarize, the max-tree classifier detects an
anomaly if:

1. The anomaly has one or more pixels that are signif-
icantly hotter than the strikeline (this may trigger
both the max temperature and distribution crite-
ria).

2. The anomaly has a different distribution than the
strikeline by having a very short or long spread (see
distribution curves). This triggered the size and
distribution criteria.

The result from this developing the max-tree classifier
drawn is that it requires an anomaly to differ in its in-
ternal structure to be detected. The max-tree method
does not consider the spatial position of the anomaly on
the image/tokamak. In summary, the successful detec-
tion of anomalies using the proposed method relies on
the structural differentiation ([1] or [2]) of the zone from
the rest of the strikeline. A potential idea for future re-
search could involve incorporating an additional brick to
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(a) (b)

FIG. 9. Proportion of anomaly/non anomaly detection in function of misalignment (a) and position of the anomaly (b). (Green
for non anomaly and orange for anomaly)

FIG. 10. Pulse 57541 - Camera DIVQ6A
(“Hot” Colormap: [104°C;251°C])

the method, which would perform a secondary check by
analysing the pixel’s position within the image. How-
ever, this would necessitate additional information, such
as the correspondence between pixel and position within
the tokamak, which is currently an ongoing area of re-
search within the laboratory.

However, experienced human experts who are responsi-
ble for the machine’s safety identified most of the anoma-
lies as belonging to case [1] and/or case [2].

VI. CONCLUSION

This article presents a novel method for hot spot clas-
sification on IR images of WEST tokamak using the max-
tree image transformation method. The max-tree classi-
fier is applied to the classification of strikeline anomalies
which are, hot spots naturally present on the divertor
of the WEST tokamak. The max-tree image processing
method is coupled with criteria based on physical a-priori
knowledge of the hot spot to perform this classification.
The approach demonstrates an accuracy of 88% and a
recall of 0.89 on real images compared to 87% (recall
0.44) and 82% (recall 0.11) for SVM and CNN respec-

tively. Moreover, the max-tree classifier does not require
labelled data. This is a significant advantage considering
the complexity and time required to generate a labelled
dataset from real data.

The generalisation of the max-tree based classification
method for the entire first wall could involve the incor-
poration of a priori knowledge into deep learning models.
Developing further this concept, the max-tree based clas-
sification method could be used to build a large databases
of real images linked to geometrical structure of their hot
spots.
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