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Improving Normalizing Flows with the Approximate Mass for Out-of-Distribution Detection

Normalizing flows are generative models that show poor performance on out-of-distribution (OOD) detection tasks with a likelihood-based test. In this study we focus on the "approximate mass" metric. We show that while it improves OOD detection performance, it has limitations under a maximum likelihood training. To solve this limitation we modify the training objective by incorporating the approximate mass. It smooths the learnt distribution in the vicinity of training in-distribution data. We measure an average of 97.6% AUROC in our experiments on different benchmarks, showing an improvement of 16% with respect to the best baseline we tested against.

Introduction

Out-of-distribution (OOD) detection [START_REF] Yang | Generalized Out-of-Distribution Detection: A Survey[END_REF] is a binary classification problem where a model assesses whether a data point belongs to a given data distribution (the "indistribution") or not (if it falls in an "out-distribution"). This problem occurs when deploying machine learning models as they would face unexpected data and should handle OOD inputs properly. Therefore, such systems would greatly benefit from assessing the quality and relevance of the input data beforehand. In this case, generative models are especially interesting because some of them can estimate the likelihood of input data. Normalizing flows (or invertible neural networks) [START_REF] Papamakarios | Normalizing Flows for Probabilistic Modeling and Inference[END_REF] in particular show unique characteristics: not only they can generate samples following the target data distribution but they can also evaluate the exact loglikelihood of data unlike GANs [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] or VAEs [START_REF] Diederik | Auto-Encoding Variational Bayes[END_REF].

It was shown by previous studies [START_REF] Nalisnick | Do Deep Generative Models Know What They Don[END_REF][START_REF] Kirichenko | Why Normalizing Flows Fail to Detect Out-of-Distribution Data[END_REF][START_REF] Zhang | Understanding Failures in Out-of-Distribution Detection with Deep Generative Models[END_REF][START_REF] Caterini | Entropic Issues in Likelihood-Based OOD Detection[END_REF] that normalizing flows perform poorly on out-of-distribution detection with a likelihood metric: they assign higher likelihood on certain out-distributions than to their training data [START_REF] Nalisnick | Do Deep Generative Models Know What They Don[END_REF]. Although current explanations of this phenomenon either involve mismatch in entropy between the ID and OOD distributions [START_REF] Caterini | Entropic Issues in Likelihood-Based OOD Detection[END_REF] or overfitting [START_REF] Zhang | Understanding Failures in Out-of-Distribution Detection with Deep Generative Models[END_REF], the "typical set hypothesis" (TSH) [START_REF] Nalisnick | Do Deep Generative Models Know What They Don[END_REF] interpretation was one of the first proposed mechanism to explain the OOD detection problem. The authors of [START_REF] Nalisnick | Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality[END_REF] suggested that input data are most likely coming from the typical set which is disjoint from the set of most likely data, thereby making the likelihood irrelevant to OOD detection. Instead, they replace it with a test statistics based on entropy to assess whether a point belongs to the typical set or not. This mechanism was later interpreted in [START_REF] Grathwohl | Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One[END_REF] as the model not spreading out the mass of the learnt probability distribution efficiently across the input space, creating abrupt variations around OOD samples. This study gave rise to the approximate mass [START_REF] Grathwohl | Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One[END_REF], the metric we focus on in this study. This metric is argued to be more efficient in OOD detection than likelihood, the OOD values having higher approximate mass than ID values in normal condi-tions. However, the link with the typical set is not clear. This paper presents several contributions:

• an empirical test of the hypothesis that OOD data are assigned higher approximate mass than ID data on image data as well as an observation that the maximum likelihood objective overfits and reverses the behavior of the approximate mass,

• a modification of the training objective by adding a penalization term proportional to the approximate mass,

• improvements with respect to the state-of-the-art on OOD detection and an exploration of the limits of this metric by assessing the nature of the distribution shifts the approximate mass detects.

• a methodological contribution by correcting how the ROC curve-based metrics are usually reported in the previous works, by balancing the ID and OOD classes. This treatment, as far as we are aware of, is rarely applied in most papers of the OOD detection field.

Related works

Normalizing flows learn an invertible transformation T that maps input data x to and from a latent space parameterized by a known distribution. This transformation yields a latent representation that can easily be manipulated [START_REF] Diederik | Auto-Encoding Variational Bayes[END_REF]. Normalizing flows compute the target distribution by applying the change of variable formula:

log(p X (x)) = log(p U (T (x))) + log(|det( ∂T ∂x )|)
The latent space is parameterized by a fixed tractable distribution, such as a normal distribution, chosen to be easily evaluated and to sample data easily. The transformation T is designed in a way that the determinant of its Jacobian is tractable which is achieved with coupling layers and other invertible transformations as in the RealNVP [START_REF] Dinh | Density estimation using Real NVP[END_REF], Glow [START_REF] Diederik | Glow: Generative Flow with Invertible 1x1 Convolutions[END_REF] and NICE [13] models.

The problem of OOD detection can be formulated in different ways, as stated in [START_REF] Yang | Generalized Out-of-Distribution Detection: A Survey[END_REF] in a general OOD detection framework. It is defined as a binary detection problem where the aim is to detect shifts in underlying data distribution: covariate shift (shift on the feature distribution p(x)) or semantic shift (shift on the label distribution p(y)) or a combination of both. In this paper we address both problems: OOD detection (covariate and semantic shifts) and anomaly detection (semantic shift). For OOD detection the training set is drawn from the in-distribution while the OOD distribution is any distribution with different features and underlying semantic. For anomaly detection the model learns one class of a dataset (ID distribution) while the other classes of the dataset make up the OOD distribution. It is more common in the literature to focus on the anomaly detection and OOD detection tasks [START_REF] Yang | Generalized Out-of-Distribution Detection: A Survey[END_REF] while the pure covariate shift detection is mostly studied within the adversarial attacks context [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF].

If the likelihood is used as a metric to detect OOD samples, it performs poorly when applied to normalizing flows [START_REF] Nalisnick | Do Deep Generative Models Know What They Don[END_REF][START_REF] Kirichenko | Why Normalizing Flows Fail to Detect Out-of-Distribution Data[END_REF][START_REF] Zhang | Understanding Failures in Out-of-Distribution Detection with Deep Generative Models[END_REF][START_REF] Caterini | Entropic Issues in Likelihood-Based OOD Detection[END_REF]. The "typical set hypothesis" (TSH) [START_REF] Nalisnick | Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality[END_REF] attempts to give an explanation to this phenomenon. It assumes that ID data does not originate from sets of high likelihood in the input space but rather comes from the typical set, which is the set of sequences, which probability distribution is on average close to the entropy of the data source. The authors of [START_REF] Nalisnick | Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality[END_REF] therefore propose to build a new OOD detection test based on typicality instead of likelihood. This idea was further developed in [START_REF] Grathwohl | Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One[END_REF] where the typicality test is replaced by a metric called "approximate mass" which corresponds to the norm of the gradient of the log-likelihood with respect to input data: ∥ ∂L(x;θ) ∂x ∥, where x is the input, L is the log-likelihood evaluated by the model with parameters θ and ||.|| is the euclidean norm. The authors interpret the TSH as meaning that normalizing flows map ID data to regions of high mass while OOD data is mapped to lower mass regions. According to the authors, this metric shows better results than the log-likelihood in OOD detection. It is expected to have smaller values for ID data than to OOD data.

Model improvement

Observations about normalizing flow training

For most of the models (as well as for our model), no OOD data is available during the training, thus there is no way of controlling how the approximate mass would behave on ID data relatively to OOD inputs. The model might overfit in a way that would not be visible on the likelihood but variations around input points may increase. This sensitivity to input variations was already discussed in [START_REF] Drucker | Improving generalization performance using double backpropagation[END_REF] where authors first suggested the idea of double backpropagation.

In order to check the evolution of the approximate mass during training, we train the RealNVP model [START_REF] Dinh | Density estimation using Real NVP[END_REF] following the same architecture and training settings as in [START_REF] Kirichenko | Why Normalizing Flows Fail to Detect Out-of-Distribution Data[END_REF] with CIFAR-10 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] as ID and with SVHN [START_REF] Netzer | Reading Digits in Natural Images with Unsupervised Feature Learning[END_REF] as OOD. At the end of each epoch, we check the approximate mass for both datasets.

We observe in Figure 1 that at first the approximate mass behaves as expected as the model assigns a higher score to OOD data than to ID data. However, after several epochs, the trend reverses and the model ends up assigning higher scores to ID data and lower scores to OOD data, thus making the approximate mass an unreliable metric.

To understand this phenomenon, we break down the approximate mass in the following way: 

∥ ∂L(x; θ) ∂x ∥= 1 p(x; θ) ∥ ∂p(x; θ) ∂x ∥ (1) 
knowing that p(x; θ) is a density function therefore |p(x; θ)| = p(x; θ). This expression shows that the approximate mass translates the relative changes in the values of the probability density around input x. The maximum likelihood training objective of normalizing flows naturally minimizes the term 1 p(x;θ) . However, one may wonder how the approximate mass of in-distribution data evolves during training. Our observations in Figure 1 suggest that this mass of density (the term ∥ ∂p(x;θ) ∂x ∥) might increase quicker than the term p(x; θ) during training. Intuitively, this means the model is overfitting: during training, the gap between likelihood values assigned by the model to the training inputs and neighboring points increases too much, resulting in a higher-magnitude derivative. This means that the model doesn't generalize well on the ID distribution. 

Penalizing the gradient of the log-likelihood

To improve the metric and fix this silent overfitting issue, we add the approximate mass as a term in the loss function.

Denoting L(x; θ) = log(p(x; θ)) the average loglikelihood the model parameterized by θ on a batch of input data x, we write our new training objective as follows:

min θ -L(x; θ) + α ∥ ∂L(x; θ) ∂x ∥ (2) 
where α > 0 is a hyperparameter which represents the trade-off between locally increasing the likelihood and decreasing the gradient.

We apply our approach to the image data, as is usually done in OOD detection. We proceed as follows:

1. compute the gradient of the model log-likelihood with respect to the input data, 2. flatten the gradient then compute its norm for each batch of data, 3. average the norms with respect to the batches of data.

Adding this term to the training objective can be compared to other OOD detection methods such as ODIN [START_REF] Liang | Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks[END_REF] and Generalized ODIN [START_REF] Hsu | Generalized ODIN: Detecting Out-of-Distribution Image Without Learning From Out-of-Distribution Data[END_REF] which smooth the softmax output distribution of a neural network with temperature scaling and add noise to the input. This additional noise is chosen in an adversarial direction [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF] to increase the softmax score for any input. The authors argue this perturbation has a stronger effect on in-distribution than out-of-distribution samples, thus making them more separable.

In our approach, the addition of the approximate mass allows the smoothing of the output distribution to be isotropic instead of favoring one specific direction (the direction of optimal uncertainty given by adversarial attacks). This interpretation can be put in parallel with the VAT method [START_REF] Miyato | Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning[END_REF] where, similarly, the KL divergence between the learned perturbed distribution and the true distribution in a semisupervised training framework. Another way of interpreting the approximate mass penalization would be by seeing it as the variation of the likelihood around any given data input, similarly to the score function in the Fisher information metric. This score function with respect to the input gives information about how much the log-likelihood changes around the input data. Ideally, as stated above, this variation shouldn't be too high as that would be a sign of overfitting. It would also mean that the model gives too much importance to this specific data sample. Penalizing the model with the approximate mass is expected to make it covariate-shift invariant. Some concerns can be raised about the complexity of the method as it requires two backpropagation computations per batch during training instead of only one. Further analysis were conducted in [START_REF] Etmann | A Closer Look at Double Backpropagation[END_REF] regarding complexity and optimization of the double backpropagation family of penalization methods (up to a third of improvement in computation). We chose to focus our work on the results of the application of our newly introduced training objective by relying on the automatic gradient computation methods given by common deep learning libraries.

Experiments

Experimental set-up

We conduct several experiments using RealNVP architecture following the setting in [START_REF] Kirichenko | Why Normalizing Flows Fail to Detect Out-of-Distribution Data[END_REF]. The models are trained with an Adam optimizer for 200 epochs. When describing models, we refer to the number of blocks and scales following the nomenclature in [START_REF] Kirichenko | Why Normalizing Flows Fail to Detect Out-of-Distribution Data[END_REF]. A scale, in a multi-scale RealNVP architecture, refers to a block composed of three coupling layers with checkerboard masking, a squeeze operation then three coupling layers with channel-wise masking. A block is a residual block composing the ResNet in the underlying st-network in each coupling layer. Finally, in our experiments we studied the results dependence on the value of the hyperparameter α as introduced in equation 2. We found that α = 2 yields the best results. We noticed that there is a range of α where the model behaves reasonably. This range becomes smaller as the model's size decreases for a fixed number of input dimensions.

Ablation study: removal of the penalization

In order to test out the effect of our penalization on the training of normalizing flows, we perform an ablation study where we compare two modes of training for the RealNVP model, the vanilla training (maximum likelihood) and the penalized training (our loss function as defined in 2). We then compare the results in OOD detection with the approximate mass of both models to assess the impact of approximate mass penalization on OOD detection performance.

Metrics: We report the AUROC on an OOD detection task for all our models.

Datasets: We use classic datasets widely used in the OOD detection setting, namely CIFAR-10 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] and Fash-ionMNIST [START_REF] Xiao | Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF] as ID datasets and SVHN [START_REF] Netzer | Reading Digits in Natural Images with Unsupervised Feature Learning[END_REF] and MNIST [START_REF] Deng | The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web[END_REF] as their respective OOD datasets.

Models: We train RealNVP models on the ID datasets. For grayscale images (FashionMNIST and MNIST), we use a RealNVP model with 4 blocks and 2 scales (≈10 million parameters) and for color pictures (CIFAR-10 and SVHN) we train a RealNVP model with 6 blocks and 3 scales (≈60 million parameters).

Discussion: In table 1 we report the AUROC values for both training modes, on both ID/OOD dataset pairs introduced above. The results show that the observed overfitting in section 3 impacts the OOD detection results. Indeed, the penalized models systematically performs better than their vanilla counterpart. Moreover, we observe that the values of approximate mass of the vanilla models are out of order between ID and OOD data (higher approximate mass for ID than OOD data in both cases). However, the consequences are far more visible for the model trained on CIFAR-10 as the model is almost always perfectly wrong in its classification and systematically ranks ID data higher than OOD data with the approximate mass . This inconsistent behavior observed between the vanilla models trained Fashion-MNIST and CIFAR-10 shows that the approximate mass is unreliable when not trained with our penalization. Furthermore, it shows that the addition of our penalization effectively changes the behavior of our model as it makes the approximate mass more consistent and systematically perform better than the maximum likelihood objective alone.

Out-of-distribution detection

Approximate mass illustration: To begin the study of OOD detection, we show both metrics for penalized Real- Baselines: To compare the results we chose state-ofthe-art methods that are commonly used in OOD detection benchmarks: Generalized ODIN [START_REF] Hsu | Generalized ODIN: Detecting Out-of-Distribution Image Without Learning From Out-of-Distribution Data[END_REF], an extension of the original ODIN [START_REF] Liang | Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks[END_REF], Mahalanobis [START_REF] Lee | A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks[END_REF] and Energy-based OOD detection [START_REF] Liu | Energy-based Out-of-distribution Detection[END_REF]. The ODIN family of methods rely on adversarial perturbations and smoothing the output distribution, which we will put in parallel to our approach in the following section. The Mahalanobis and energy-based methods use the feature-space to assess whether data samples are ID or OOD. The former uses Gaussian discriminant analysis while the latter uses an energy-based interpretation (different from Joint Energy-based Model [START_REF] Grathwohl | Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One[END_REF]). The energybased model also requires the use of OOD data to train its upper energy bound. We therefore train the energy-based model with both CIFAR-10/FashionMNIST as ID data and SVHN/MNIST as OOD data.

Datasets: We test our approach in a classic OOD detection setting with the CIFAR-10 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] and FashionMNIST [START_REF] Xiao | Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF] datasets as in-distribution sets. For the models trained on FashionMNIST, we use the MNIST [START_REF] Deng | The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web[END_REF] KMINST [START_REF] Clanuwat | Deep Learning for Classical Japanese Literature[END_REF] and EMNIST [START_REF] Cohen | EMNIST: An extension of MNIST to handwritten letters[END_REF] datasets as OOD distributions while the models trained on CIFAR-10 are tested against the SVHN [START_REF] Netzer | Reading Digits in Natural Images with Unsupervised Feature Learning[END_REF], DTD [START_REF] Cimpoi | Describing Textures in the Wild[END_REF], GTSRB [29], Places365 [START_REF] Zhou | Places: A 10 Million Image Database for Scene Recognition[END_REF] and iNaturalist [31] (split into "Animalia" and "Plantae" parts) datasets as out-of-distribution sets. We chose these datasets as they are semantically distat enough from the ID and the other OOD datasets.

Methodology: The methods are tested with a similar number of parameters, which we change with the dimension of data. We keep the same models as the ones trained in section 4.2 and make the other models in our benchmark match this number of parameters. Finally, the number of OOD and ID data are equalized in order to have meaningful AUROC and TNR measures as the ROC curve is sensitive to class imbalance [START_REF] Saito | The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets[END_REF]. This attention we brought on the class balance and the number of parameters is rarely done in the field of OOD detection. If this balance is not present, the models are not strictly comparable with each other, making the interpretation of results impossible.

Results: The results reported in Table 2 show state-ofthe-art performance for the penalized model. We report an average AUROC of 97.0% on the CIFAR-10 benchmarks, 98.7% on the FashionMNIST benchmarks and a global av-erage AUROC of 97.6% on all datasets. On the other hand, we measure an average AUROC of 62.4% for Generalized ODIN, 83.8% for Mahalanobis and 84.0% for Energy (or 79.44% when not taking into account MNIST and SVHN as these datasets are used during training to tune the energy bounds).

Discussion: Our state-of-the-art results on OOD detection show that the approximate mass regularization performs well when there is both a covariate shift and a semantic shift between the in-distribution and the outdistributions. Our results surpass by 16% on average the AUROC of the best baseline, Energy with OOD datasets included. Furthermore, we note a more consistent behavior of our model than the baseline as our penalized training yields good performance on all datasets in the benchmark while other models are more irregular in their classification performance depending on the OOD dataset. Finally, a gap can be observed between TNR@95%TPR values and the AU-ROC values for the other models in the benchmark. We investigated this discrepancy by plotting their respective ROC curve where we observe that lowering the value of the TPR increases the TNR (for example, TNR@95%TPR is greater than TNR@99%TPR but lower than TNR@90%TPR).

In the following section, we assess its applicability in semantic shift detection as the features used to detect OOD data might not transfer similarly to every class of distributional shifts.

Anomalous class detection

Anomaly detection or anomalous class detection is a task where the model is trained on a single class in a dataset (corresponding to its in-distribution) while the remaining classes of the dataset are treated as the out-distribution. The goal of this study is to assess the applicability of the approximate mass in a semantic shift scenario. We evaluate our model in a similar setting to [START_REF] Kwon | Backpropagated Gradient Representations for Anomaly Detection[END_REF]:

Metrics: The AUROC is usually reported for this task.

Baselines: We compare our approach to two state-ofthe-art models in the domain: OCGAN [START_REF] Perera | OC-GAN: One-Class Novelty Detection Using GANs With Constrained Latent Representations[END_REF] and GradCon [START_REF] Kwon | Backpropagated Gradient Representations for Anomaly Detection[END_REF]. The former is based on the features extracted in the latent space by a GAN [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] while the latter is based on a gradient metric with respect to the model's features (instead of the input) of the reconstruction loss of a VAE [START_REF] Diederik | Auto-Encoding Variational Bayes[END_REF].

Datasets: Simiarly to [START_REF] Kwon | Backpropagated Gradient Representations for Anomaly Detection[END_REF], we use the MNIST [START_REF] Deng | The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web[END_REF] and CIFAR-10 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] datasets to test performance in an anomalous class setting.

Methodology: We split a dataset in an ID set made of only one class of the dataset while the other classes are OOD. In order to evaluate the model, we train it on a single class of the MNIST (or CIFAR -10) training data then test it on a split of the test set between the ID class and anomalous classes (the remaining classes).

Results: Tables 3 and4 respectively show the AUROC obtained on a RealNVP model on MNIST and CIFAR-10 in an anomalous class detection setting. We report an average AUROC of 75.2% on MNIST and 76.1% on CIFAR-10 with a penalized RealNVP. The results reported in [START_REF] Kwon | Backpropagated Gradient Representations for Anomaly Detection[END_REF] are an average AUROC of 97.3% on MNIST and 66.4% CIFAR-10 for GradCon, and 97.5% on MNIST and 65.7% CIFAR-10 for OCGAN. This experiment shows that the approximate mass penalized model is sensitive to the semantic of data to some extent as it is able to detect label shifts. The gap in performance between the MNIST and CIFAR-10 datasets is much lower than the one measured for OCGAN or GradCon, consistently with results in section 4.3. However, the AUROC is distributed unevenly across classes in the datasets, some classes being seemingly less distinguishable by the model than others (e.g.: class 1 in the MNIST dataset in Table 3).

Discussion: We explain this result by looking at the information extracted by the model: the approximate mass takes the gradient with respect to the input instead of the features, as is performed by GradCon. Thus the model extracts information much closer to the input image, making it more sensitive to feature level information than semantic information. Furthermore, taking the norm rather than the angle of the gradient with respect to some reference vector, by opposition to GradCon, may also explain the disparity in performance as cosine similarity is most often used when measuring similarity between different semantics.

Conclusion

We show that normalizing flows trained with maximum likelihood assign higher approximate mass to ID data than to OOD data. This change of behavior of the approximate mass during training may be due to a displacement of the probability mass around input data. We propose a solution based on simultaneous optimization of the approximate mass and likelihood, yielding better results than the stateof-the-art OOD detection models, improving the baseline by 16% relatively to the best model. This method isotropically smoothes the log-likelihood around in-distribution input data. We show the approximate mass metric is more sensitive to covariate shifts as it allows for OOD detection (covariate and semantic shifts) while not being the best metric for semantic shift detection. Our method generalizes better for different OOD datasets compared to state-of-the-art models. In a follow up work, we aim to integrate this training objective in an adversarial context to test out covariate shift sensitivity. 
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 1 Figure 1. Evolution of the approximate mass with the vanilla Re-alNVP model trained on CIFAR-10 (red) and tested on SVHN (blue).

Figure 2 .

 2 Figure 2. Evolution of the log-likelihood distribution with the vanilla RealNVP model trained on CIFAR-10 (red) and tested on SVHN (blue).

Figure 3 .

 3 Figure 3. Approximate mass distribution of a penalized RealNVP model trained on FashionMNIST (in-distribution, red) and tested with MNIST (out-distribution, blue). Approximate mass values on the x-axis, number of occurrences on the y-axis.

Figure 4 .

 4 Figure 4. Log-likelihood distribution of a penalized RealNVP model trained on FashionMNIST (in-distribution, red) and tested with MNIST (out-distribution, blue). Log-likelihood values on the x-axis, number of occurrences on the y-axis.

Table 1 .

 1 Results on OOD classification for a vanilla model and a penalized model.

	Model	Training dataset (ID) OOD dataset AUROC
	Vanilla	FashionMNIST	MNIST	0.977
	Approximate mass	FashionMNIST	MNIST	0.994
	Vanilla	CIFAR-10	SVHN	0.0008
	Approximate mass	CIFAR-10	SVHN	0.969

Table 2 .

 2 Results on OOD classification for different state-of-the-art models. The energy model is trained with the CIFAR-10 (resp. FashionMNIST) as ID data and SVHN (resp. MNIST) datasets as OOD data. .999 0.952 0.973 0.969 0.977 0.994 0.979 0.919 0.973 OCGAN 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 Approximate mass 0.969 0.064 0.629 0.924 0.796 0.946 0.977 0.682 0.969 0.572

	Model	Training dataset		OOD dataset	AUROC AUPR TNR @95%TPR	
	G-ODIN		CIFAR-10		SVHN		0.810	0.804		0.355	
	Mahalanobis		CIFAR-10		SVHN		0.936	0.926		0.758	
	Energy		CIFAR-10		SVHN		0.999	1.0		1.0	
	Approximate mass	CIFAR-10		SVHN		0.969	0.969		1.0	
	G-ODIN		CIFAR-10		iNaturalist		0.581	0.552		0.124	
	Mahalanobis		CIFAR-10		iNaturalist		0.745	0.715		0.290	
	Energy		CIFAR-10		iNaturalist		0.647	0.902		0.872	
	Approximate mass	CIFAR-10		iNaturalist		0.968	0.906		0.994	
	G-ODIN		CIFAR-10		iNaturalist (plants)	0.581	0.552		0.124	
	Mahalanobis		CIFAR-10		iNaturalist (plants)	0.731	0.706		0.166	
	Energy		CIFAR-10		iNaturalist (plants)	0.587	0.881		0.077	
	Approximate mass	CIFAR-10		iNaturalist (plants)	0.968	0.799		0.991	
	G-ODIN		CIFAR-10		DTD		0.882	0.887		0.53	
	Mahalanobis		CIFAR-10		DTD		0.857	0.788		0.576	
	Energy		CIFAR-10		DTD		0.734	0.912		0.341	
	Approximate mass	CIFAR-10		DTD		0.978	0.979		1.0	
	G-ODIN		CIFAR-10		Places365		0.616	0.577		0.157	
	Mahalanobis		CIFAR-10		Places365		0.522	0.518		0.08	
	Energy		CIFAR-10		Places365		0.753	0.937		0.177	
	Approximate mass	CIFAR-10		Places365		0.968	0.936		0.978	
	G-ODIN		CIFAR-10		GTSRB		0.411	0.450		0.072	
	Mahalanobis		CIFAR-10		GTSRB		0.764	0.681		0.356	
	Energy		CIFAR-10		GTSRB		0.890	0.975		0.582	
	Approximate mass	CIFAR-10		GTSRB		0.970	0.970		1.0	
	G-ODIN		FashionMNIST		MNIST		0.535	0. 611		0.008	
	Mahalanobis		FashionMNIST		MNIST		0.995	0.995		0.994	
	Energy		FashionMNIST		MNIST		1.0	1.0		1.0	
	Approximate mass FashionMNIST		MNIST		0.994	0.971		1.0	
	G-ODIN		FashionMNIST		EMNIST		0.870	0.885		0.425	
	Mahalanobis		FashionMNIST		EMNIST		0.995	0.995		0.982	
	Energy		FashionMNIST		EMNIST		0.990	0.998		0.955	
	Approximate mass FashionMNIST		EMNIST		0.969	0.969		1.0	
	G-ODIN		FashionMNIST		KMNIST		0.328	0.391		0.019	
	Mahalanobis		FashionMNIST		KMNIST		0.990	0.990		0.948	
	Energy		FashionMNIST		KMNIST		0.981	0.995		0.917	
	Approximate mass FashionMNIST		KMNIST		1.0	0.996		1.0	
	Model	0	1	2	3	4	5	6	7	8	9
	GradCon	0.995 0								

Table 3 .

 3 AUROC results on anomalous class detection on MNIST for different models.

	Model	Airplane Automobile Bird	Cat	Deer	Dog	Frog Horse Ship Truck
	GradCon	0.760	0.598	0.648 0.586 0.733 0.603 0.684 0.567 0.784 0.678
	OCGAN	0.757	0.531	0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554
	Approximate mass	0.855	0.605	0.756 0.835 0.574 0.801 0.797 0.862 0.871 0.656

Table 4 .

 4 AUROC results on anomalous class detection on CIFAR-10 for different models.