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ABSTRACT

Multiphase CFD’s predictions for boiling flow are limited by available models for interfacial heat transfer and area [1].
Both terms are greatly interdependent. Much research has relied upon adiabatic experiments on bubbly flow to deter-
mine the contribution of coalescence and breakup terms on the interfacial area independently of heat transfer. These
models are often applied to boiling flows [2].
We develop a two-fluid Euler-Euler CFD framework based on the PolyMAC numerical scheme [3] in CEA’s open-
source TrioCFD code [4]. We implement a k − ω [5] turbulence model, along with an original adaptive wall law
treatment. Interfacial momentum closure terms are selected and validated using bubbly adiabatic experiments on ver-
tical flows [6]. The local experimental bubble diameter is enforced to limit interactions with interfacial area closures,
as in [7].
We simulate the Debora experiment [8], an ascending boiling freon flow in a tube, and again use the experimental
diameter. The long-term goal is to run simulations using independently selected coalescence-fragmentation and heat
transfer closures.
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1. INTRODUCTION

Understanding multiphase flows is critical for nuclear applications [9, 10]. However, these flows are ex-
tremely complex and a wide variety of flow patterns can exist [11]. Even restricting ourselves to bubbly
flows, all configurations cannot be reliably simulated using existing Computational Fluid Dynamics (CFD)
codes [1]. Predicting the void fraction distribution in a boiling nuclear sub-channel requires a knowledge of
liquid turbulence, interfacial forces, wall boiling dynamics, condensation and bubble coalescence and frag-
mentation. Additionnaly, these terms interact with each other. For example, coalescence will affect bubble
diameters, which will change their velocities and condensation rates, and the global mass, momentum and
energy balances. This makes it very difficult to separate contributions and makes error compensation pos-
sible [12]. Therefore, the models commonly used are mostly derived from simple situations very different
from reactors, like the study of adiabatic single bubbles at atmospheric pressure [13].



In this paper, we contribute to building a CFD framework to study Pressurized Water Reactor (PWR) con-
ditions. Our approach consists in exploiting existing experiments in such a way as to decouple the contri-
butions of aforementioned terms. To avoid uncertainty related to interfacial area transport equations [14] or
population balance [15, 16] methodologies, we use bubbly flows with measured mean Sauter diameters and
enforce the experimental values as in [17]. We implement standard single phase turbulence and bubbly flow
closure terms [2, 7, 18] and validate them on air-water bubbly flows in pipes at atmospheric pressure [6, 19]
(see figure 1).

We then study the Debora experiment [8] (see figure 1). This is a vertical heated tube filled with flowing
Freon-12 designed to fill similarity criteria with PWR and Boiling Water Reactor conditions. Void fraction,
mean Sauter diameter and temperature measures were taken for different pressures, flow rates, heat fluxes
and inlet subcoolings. We run simulations using the standard closure terms calibrated at atmospheric pres-
sures, which yield unsatisfying results. We then evaluate the sensitivity of the simulation results to these
closures by modifying some of them.

Experiment Measured quantities Models validated

Hibiki et al. [19], Colin et al. [6]

Gas & Liquid velocity
Gas & Liquid vel. fluct.

Void fraction, Sauter diam.

Lift force
Turbulent disp. force
Wall repulsion force

DEBORA [8]

Gas velocity & vel. fluct.
Liquid temperature

Void fraction, Sauter diam.

Wall heat flux partition
Interfacial heat transfer

Figure 1. Diagrams of the two-phase experiments used for framework validation and heat transfer
models evaluation.

2. PHYSICAL MODEL

2.1. TrioCFD and PolyMAC

CEA is developing a multiphase RANS CFD module in its open-source CFD code, TrioCFD [4]. This
module, called TrioCMFD (Computational Multiphase Fluid Dynamics), is based on the PolyMAC Finite
Volume numerical scheme developed by Gerschenfeld and Gorsse for component-scale codes [3]. PolyMAC
can handle mass, momentum and energy conservation equations for an arbitrary number of fluids in an Euler-
Euler framework [11]. The semi-conservative form of the momentum equation is used [20]. The equations
that govern a phase k are:



∂αkρk
∂t +∇ · (αkρku⃗k) = Γk

αkρk
∂u⃗k
∂t +∇ · (αkρku⃗k ⊗ u⃗k)− u⃗k∇ · (αkρku⃗k) =

−αk∇P +∇ · [αkµk∇u⃗k − αkρku
′
iu

′
j ] + F⃗ki + αkρkg⃗

∂αkρkek
∂t +∇ · (αkρkeku⃗k) =

−P (∂tαk +∇ · (αku⃗k)) + ∇ · [αkλk∇Tk − αkρku
′
ie

′
k] + qki + qkw

(1)

In equation 1, the terms that need closure laws are the turbulent terms u′iu
′
j and u′ie

′
k, the mass transfer term

Γk, the interfacial force term F⃗ki, the interfacial heat transfer qki and the wall heat transfer qkw.

In this paper, we work with two fluids: a liquid phase l and a gas phase g.

2.2. Turbulence modelling

Shear-Induced Turbulence We choose to use a two-equations turbulence model as for single-phase flows
in rod bundles, it yields similar results as RSM models with faster calculation times [21]. We select the Kok
k−ω turbulence model [5] as it has similar properties to the more commonly used Menter k−ω model [22],
i.e., a cross-diffusion term that is suppressed in the near-wall region, but is easier to implement. To adapt
this model to two-phase flows, we chose to write an equation on αlρlk and not merely on k as the turbulent
kinetic energy is in the liquid phase and is a conserved quantity. ω being a frequency, we write the turbulent
equation directly on it. This yields:

νt =
k

ω
u′iu

′
j = −νt∇u⃗l u′ie

′
l = −νtCp,l∇Tl

∂t(αlρlk) +∇ · (αlρlku⃗l) = αlρlνt(∇u⃗l +
t u⃗l) · ∇u⃗l − βkαlρlkω +∇ · (αlρl(νl + σkνt)∇k)

∂tω +∇ · (αlωu⃗l) = αω
ω

k
νt(∇u⃗l +

t ∇u⃗l) · ∇u⃗l−βωω
2+∇ · ((νl + σωνt)∇ω)

+ σd
1

ω
max {∇k · ∇ω, 0}

(2)

The values of the constants are αω = 0.5, βk = 0.09, βω = 0.075, σk = 2/3, σω = 0.5 and σd = 0.5.

We implement an adaptive wall-law algorithm that begins by determining the friction velocity uτ in the
same way as in the Fun3D code [23]. The shear stress at the boundary is then computed and is used as a
Navier boundary condition for the momentum equation: τwf = αlρlu

2
τ .

The boundary condition on k is k = 0 at the wall for y+ < 10, where y+ = yuτ/νl and y is the distance
between the wall and the first element center. For larger wall elements, it is a zero-flux condition. The
transition is smoothed by a transition factor tanh

(
(y+/10)

2
)
.

For ω, Knopp et al. [24] give an analytical value in the near-wall region. A simple solution would be to
enforce this value in the first element. However, was already used in TrioCFD and creates numerical issues
for tetrahedron meshes. Instead, we calculate the analytical solution at a distance y/2 from the wall. We then
enforce a Dirichlet boundary condition at the wall for the first element: ωwall = 2 · ω(y/2). This amounts to
creating a virtual element between the first element and the wall in which we know the value of ω.



The single-phase heat transfer coefficient that we have implemented is the one proposed by Kader [25]. He
gives an expression of θ+(Pr, y+), where θ+ = (Tw − Tl)/T∗, T∗ = Φ/(ρlCpluτ ) and Φ is the wall heat
flux. It is based on experimental measures for y+ ranging from 0 to 300. Using the previously calculated
expression of uτ , we calculate θ+ and a wall heat transfer coefficient. We use the Kader expression as the
convective heat transfer contribution in our wall heat flux partition model (see section 2.4).

Bubble-Induced turbulence According to Alméras et al., liquid velocity fluctuations induced by bubble
movements are small before those from shear if the bubblance parameter b =

αg ||u⃗g−u⃗l||2
u′2
1ϕ

< 0.5 [26].

At PWR pressures, db < 1mm, which yields ||u⃗g − u⃗l|| < 0.1m/s, and αg < 0.5. Using the Reichardt
correlation [27] for Re = 105, bubble-induced turbulence can be neglected in PWR’s (i.e. b < 0.5) for
ubulk > 1.5m/s. This is a low value as ubulk ∼ 4m/s in operation [9], and b ∼ 0.1. Therefore, we do not
model bubble-induced turbulence.

2.3. Interfacial Force Term Modeling

The interfacial force exerted by the liquid on the gas is F⃗gi = −F⃗li. In this subsection, all forces written
apply to the gas phase. We separate the interfacial force term in five different contributions:

F⃗gi = F⃗drag + F⃗VM + F⃗lift + F⃗TD + F⃗wall (3)

Drag Force We implement the contaminated drag force of Tomiyama et al. [28]:

F⃗drag = −3

4
CD

αgρl
db

||−→ug −−→ul ||(−→ug −−→ul ) , CD = max

(
24

Reb
(1 + .15Re.687),

8Eo

3Eo+ 12

)
(4)

Virtual Mass Force The virtual mass writes:

F⃗VM = −CVM (∂t
−→ug − ∂t

−→ul +−→ug∇−→ug −−→ul∇−→ul ) (5)

The most commonly used formulations are the constant coefficient CVM = 1
2αg [29] and the Zuber coeffi-

cient CVM = 1
2
1+2αg

1−αg
αg [30], that were both derived theoretically. Recently, Beguin et al. [31] performed

potential flow simulations with random bubble positions and found CVM = αg

(
1
2 + 0.34α2

g

)
∼ 1

2αg. Fur-
thermore, in some Debora experimental runs [32], the local void fraction can reach 0.7. In either above
formulation, a liquid fraction of at least 0.7 · 1/2 = 0.35 would be entrained even though the total liquid
fraction is 0.3. This is non-physical and leads to numerical stability issues. We therefore assume that at most
1/2 of the remaining liquid can be entrained by the gas, the value 1/2 being arbitrary. This leads to:

CVM = min
(
1

2
αg,

1

2
αl

)
(6)

Our modification affects CVM for αg > 0.5.



Lift Force The general formulation for the lift force is:

F⃗lift = −CLρlαg(
−→ug −−→ul ) ∧ (∇∧−→ul ) (7)

The difference between lift force models is the lift coefficient CL. A constant coefficient can be chosen by
the user. The Sugrue et al. [17] formulation was also implemented, as it was designed to operate on high-void
fraction ascending flows and not only single bubbles, contrarily to the Tomiyama et al. formulation [13]. It
reads:

CL = f(Wo) · g(α) Wo = Eo
k

||−→ug −−→ul ||2

f(Wo) = min(0.03, 5.0404− 5.0781Wo0.0108) g(α) = 1.0155− 0.0154exp(8.0506α)
(8)

Turbulent Dispersion Force We select the Burns et al. force [33]:

F⃗disp = −CTDρlk∇αg , CTD =
3

4

CD

db
|u⃗g − u⃗l|

1

0.9 · ω

(
1 +

αg

αl

)
(9)

Wall Correction The main wall correction term implemented is the one proposed by Lubchenko et
al. [34]. It is based on geometrical arguments. It suppresses lift and modifies turbulent dispersion close
to the wall. The lift coefficient becomes:

CL →


0 if y/db < 1/2

CL

(
3
(
2y
db

− 1
)2

− 2
(
2y
db

− 1
)3

)
if 1/2 ≤ y/db < 1

CL if y/db ≥ 1

(10)

If −→n is the unit vector normal to the wall, the turbulent dispersion wall correction writes:

F⃗wall =

{
CTDρlk · αg

1
y
dB−2y
dB−y

−→n if y/db < 1/2

0 if y/db ≥ 1/2
(11)

2.4. Heat and Mass transfers

Interfacial heat transfer As we study bubbly flows, we select Nusselt-based interfacial heat transfer
formulations:

qki =
6αg

db

λl

db
(Tg − Tl)Nu (12)

The Ranz-Marshall (Nu = 2+0.6Re
1/2
b Pr1/3) [35] and the Zeitoun et al. (Nu = 2.04Re0.61b α0.328

g Ja−0.308) [36]
models are implemented.

Wall heat transfer The Kurul-Podowski [37] model was selected.

ΦKP = Φc +Φq +Φe (13)



Where Φc is the convective heat flux, Φq the quenching heat flux and Φe the evaporation heat flux. The de-
tachment bubble diameter is db, det = 10−4 ·(Tw−Ts)+0.0014, the nucleation site density Ns = (210(Tw−
Ts))

1.8, the bubble fraction Ab = min(1, π/4 ·Nsd
2
b, det), the departure frequency fdep =

√
4
3
g(ρl−ρg)
ρldb, det

. This
yields:

Φc = (1−Ab)Φ1 phase

Φe = π
6 fdepd

3
b, detρgLvapNs

Φq = 2Abλl(Tw − Tl)
√

fdepρlCpl
πλl

(14)

Where Φ1 phase comes from Kader [25].

3. FRAMEWORK VALIDATION

3.1. Adiabatic Single-Phase

We run simulations of flow in a same 2D channel at Re = 20, 000 with cartesian grids of varying refine-
ments: y+ in the first element ranges from 3 to 229 (see figure 2). The results are independent of y+ in
the first element and consistent with literature and refined solutions, except for k+ in the near-wall region
which is expected as we are transitioning from a wall-resolved to a wall-modeled solution. We also simulate
pipe flow experiments with various tube diameters and fluids, from Colin et al. [6] (see figure 3-A,B). The
simulated velocity and velocity fluctuations match experimental results. This validates our implementation
of single-phase turbulence and adaptive wall laws.
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Figure 2. k − ω results for a turbulent 2D channel with Re = 20, 000. The size of the first element
at the wall, and therefore y+, varies in each simulation. A. Non-dimensional velocity u+ = u/uτ as
a function of y+. Black line: Reichardt solution [27]. B. Non-dimensional turbulent kinetic energy
k+ = k/u2

τ as a function of y+. Black line: refined solution for y+,1 = 1. C. Non-dimensional
dissipation rate ω+ = ωuτ/ν as a function of y+. Black line: Knopp solution [24].

3.2. Heated Single-Phase

One of the campaigns on the Debora experiment consisted in measuring the liquid R12 temperature for
different flow rates, pressures and heating power [8]. We simulate single-phase heated flows from this
campaign (see figure 3-C). The liquid temperature from the experiment and the simulation have the same
profile shape, though they are off by ∼ 1◦C. This amounts to a 5% power loss on the experimental setup. In
our boiling Debora simulations, we reduce the power boundary condition by 5% to account for this.
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Figure 3. Single-phase validation of TrioCMFD. A. Colin et al. [6] single-phase axial velocity in a 4cm-
diameter pipe. B. Colin et al. [6] single-phase axial velocity fluctuations in a 4cm-diameter pipe. C.
Temperature profiles from single-phase Debora runs for a 19.2mm diameter pipe, 2.61MPa pressure,
1996kg/(m2s) mass velocity and 74.4kW/m2 heat flux with inlet temperatures of 19.84◦C and 31.46◦C
(page 109 in [8]).

3.3. Mesh Refinement

To evaluate the mesh sensitivity of TrioCMFD, we use test case U1 from [6]. Using SALOME [38], we
mesh a disk with quadrilaterals and extrude it to obtain a hexahedral pipe mesh. We run simulations on
a full cylinder, a quarter of a cylinder and an eighth of a cylinder with symmetry boundary conditions on
vertical planes, and on a 2◦slice only one element wide. Each mesh can have 7, 14 or 28 radial elements, and
40, 80 or 160 vertical elements. There is a significant difference between 7 and 14 radial element results,
but virtually none between 14 and 28. Calculations that run on a cylinder or a slice give identical results,
therefore to save computation time we only simulate slices in the rest of this paper.

3.4. Two-Phase Adiabatic Vertical Tube

Multiple experimental databases are available to study two-phase pipe flow. To validate TrioCMFD, we
select the Hibiki et al. database for upwards flow [19], as it covers a broad range of liquid and gas injection
fluxes. We also select the Colin et al. experiments for downwards and microgravity flow [6] (see figure 1).
We run different test cases using the interfacial force models described in section 2.3 (see figure 4). To
avoid modeling the interfacial area, we enforce the radially-dependent steady-state experimental diameter in
the simulations. The complete model is able to predict correctly void fraction profiles for low (figure 4-A)
and high (figure 4-C) liquid fluxes, in wall-peaked and core-peaked situations respectively. The prediction
of the transition between both regimes can still be improved, as can be seen in figure 4-B. Furthermore, in
figure 4-D the gas velocities are well predicted by the model.
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Figure 4. Two-phase adiabatic simulated and experimental void fraction distributions in a pipe. We
use the interfacial force models described in section 2.3. Lines: simulations. Circles: experimental
results. A-C. Void fraction results in Hibiki et al. [19] upwards flow experiments. D. Axial gas velocity
results in Hibiki et al. [19] upwards flow experiments. E. Void fraction results in Colin et al. [6]
downwards flow experiments. F. Void fraction results in Colin et al. [6] microgravity experiments.

4. BOILING FLOW SIMULATIONS

4.1. The Debora Database

The Debora loop was built at CEA/Grenoble to study boiling flow in reactor conditions by filling similarity
criteria [8] (see figure 1). It consists of a vertical Freon-12 pipe with a 1m-long inlet section, a 3.5m-
long heated section and an instrumentation plane located 3.485m after the beginning of the heated section.
During different campaigns, liquid temperatures, void fractions, gas velocities and Sauter mean diameters
were measured.

In the following, we will call a test tube a series of runs that have identical outlet pressures, mass flow
rates and heating power. Each test tube consists of different runs in which the inlet temperature is varied.
Reducing the inlet temperature is equivalent to measuring physical quantities at a lower point in the test
section. We call imax the run of a given test tube at the highest inlet temperature Tin,imax . Then the physical
quantities measured at the outlet for a run i with an inlet temperature Ti are the same as those measured
at an altitude zi for an inlet temperature Tin,imax such that XTin=Tin,imax

(zi) = XTin=Tin,i(zoutlet), with X the
thermodynamic quality of the flow. Therefore, in this section we launch calculations for each test tube with



Tin = Tin,imax et extract the physical parameters at the different zi. The conditions of the runs that we select
are presented in table I.

Test tube Mass flow rate Pressure Heat flux Tin,imax zi X(zi)

kg/(m2s) MPa W/m2 ◦C m

I 1007 3.01 58.2 73.7

0.72
1.48
2.48
2.98

3.485

-0.2165
-0.0973
0.0585
0.1343
0.2173

II 2016 1.458 76.26 44.21

0.75
1.52
1.81
2.20
2.49
2.86

3.485

-0.0677
-0.0185
0.0014
0.0261
0.046

0.0687
0.1091

III 2994 2.618 109.3 72.49

1.64
2.02
2.41
2.84
3.14

3.485

-0.0519
-0.0177
0.0164
0.0479
0.077

0.1005

Table I. Flow conditions of the Debora cases we study. zi is taken at the beginning of the heated length.
Each zi matches a run in [8] in which Xoutlet = X(zi).

The Sauter mean diameter is measured along the radius of the channel for each zi. We interpolate the
experimental Sauter mean diameter at any (r,z) point in the test section and enforce it in our simulations.
We can therefore run simulations without having to predict the mean Sauter diameter in the flow.

4.2. Simulation Configurations and Results

We run the simulations presented in table II. All test tubes are first simulated with our baseline closure laws
(simulations 1, 4 and 6). These are the ones used in the adiabatic tube validation, with Kurul&Podowski
wall heat transfer [37] and Zeitoun et al. interfacial heat transfer [36]. The baseline simulation results are
presented in figure 5-A,D and J.

The Sugrue et al. lift coefficient [17] is void-fraction dependent and goes to 0 from α = 0.2 to α =
0.52. Therefore, it has no effect on test tube II for Xi = 0.1091 (see figure 5-D) and a reduced effect for
Xi between 0.046 and 0.1091, which leads to a completely wrong void fraction profile for simulation 4.
Furthermore, test tube I is correctly predicted with a Sugrue lift that is close to 0 due to high void fraction
(figure 5-A). We confirm the negligible effect of lift on this test tube through a simulation without any lift
force (simulation 2, figure 5-B). This means that there are reactor condition flows in which the lift force is
essential and others where it doesn’t play a key role.



Simulation Test tube Lift Turbulent dispersion Interfacial heat flux

1 I Sugrue et al. [17] Burns et al. [33] Zeitoun et al. [36]
2 I No lift Burns et al. [33] Zeitoun et al. [36]
3 I No lift Burns et al. [33] Ranz&Marshall [35]
4 II Sugrue et al. [17] Burns et al. [33] Zeitoun et al. [36]
5 II CL = −0.2 Burns et al. [33] Zeitoun et al. [36]
6 III Sugrue et al. [17] Burns et al. [33] Zeitoun et al. [36]
7 III CL = −0.2 1/2 · Burns et al. [33] Zeitoun et al. [36]

Table II. List of simulation configurations on Debora test tubes presented here. All simulations are
carried out with a k − ω turbulence model [5], Tomiyama et al. drag coefficient [28], Lubchenko et
al. wall correction [34] and Kurul&Podowski wall heat flux partition [37].

To obtain a center-peaked void fraction profile in test tube II as in the experiment, we use CL = −0.2 in
simulation 5. This value is in-between the deformable bubble lift coefficient from Tomiyama et al. [13],
CL = −0.28, and the one from Sugrue [17], CL = −0.15. This greatly improves the simulation results
(figure 5-E vs D). As can be seen in the radial force balance, bubbles are first pushed away from the wall
by the lift force, before the turbulent dispersion force becomes dominant towards the middle of the channel
(figure 5-I). The only significant resisting force is the radial drag force. However, many issues remain: the
void fraction is too low at the wall, suggesting the lift force is too strong there; the simulated void fraction
for Xi = 0.0014 is too low, suggesting insufficient bubble nucleation at the wall or excessive condensation;
the void fraction for Xi = 0.1091 has a too flat profile, suggesting the lift force is too weak at the core.
Enforcing CL = −0.2 for test tube III also makes it possible to obtain a flat profile at the wall (simulation
7, figure 5-L).

We run test tube I with the Ranz&Marshall interfacial heat flux [35] to compare it with the Zeitoun et al.
correlation [36] (simulation 3). This improves the void fraction predictions for sub-saturated conditions
(figure 5-C vs B). For Xi = 0.2173, the flow is saturated and there is no difference between the two.

Test tube II liquid temperature results are surprisingly close to experimental value (figure 5-F) though the
void fraction and gas velocity profiles are off. The indicates that single-phase diffusion, and not multiphase
effects, is key in the liquid temperature profile.

Axial gas velocities are significantly underestimated, especially at high void fraction (figure 5-G). This
means we must improve the drag formulation. Liquid radial velocities are positive and gas negative, indi-
cating they trade places in the tube (figure 5-H). The radial velocity is very void-fraction dependent.

Simulated test tube III void fraction profiles are too high compared with experimental values (figure 5-J,L).
Given the amplitude of this discrepancy, it can have four main causes: an underestimated gas flow rate; a
liquid superheat; a gas superheat, but this seems more unlikely than for the liquid; a possibly overestimated
power measurement on the Debora experiment.

Test tube III relative axial velocities can become negative in the near-wall region (figure 5-K). In the simu-
lation, this is due to slow bubbles moving towards the core and encountering a quicker liquid. To the best of
our knowledge, this has not been observed experimentally. This inverts the lift in the near-wall region.



5. CONCLUSIONS

We developed a bubbly-flow CFD framework and selected a set of closure terms that we validated on
adiabatic atmospheric-pressure data. Enforcing the experimental diameter in our simulations shows that,
independently of interfacial area modeling, this selection of models isn’t appropriate for the nuclear reactor-
similarity conditions of the Debora experiment. We improved the results by modifying select closure terms.

The next steps in this study will be to obtain a single formulation of interfacial forces and heat transfer
closure terms that works for all Debora cases. To simulate accurately reactor-condition flows, we must also
predict the local bubble diameter. We have begun work on an interfacial area transport equation approach.

NOMENCLATURE

Subscripts

k Arbitrary phase
l Liquid phase phase
g Gas phase

Greek letters

αk Fraction of phase k
Γk Interfacial mass transfer towards phase k
λk Thermal conductivity of phase k
µk Dynamic viscosity of phase k (Pas)
νk Kinetic viscosity of phase k (m2s−1)
νt Turbulent kinetic viscosity of liquid
ρk Volume mass of phase k
Φ Wall heat flux
ω Turbulent dissipation frequency of liquid

Dimensionless numbers

Ja =
ρlCp,l||Tsat−Tl||

ρgLvap
Jacob number

Pe =
db||−→ug−−→ul ||·ρCp,l

λl
Peclet number

Pr =
νl·ρCp,l

λl
liquid Prandtl number

Reb =
db||−→ug−−→ul ||

νl
bubble Reynolds number

Roman letters

db Bubble diameter
Cp,k Heat capacity of phase k
ek Internal energy of phase k

F⃗ki Interfacial forces applied to phase k

g⃗ Gravity (ms−2)
k Turbulent kinetic energy of liquid
Lvap Evaporation latent heat
qki Interfacial heat flux towards phase k
qkw Wall heat flux towards phase k
r+ = r

Rpipe
Dimensionless radial position

P Pressure
Tk Temperature of phase k
Ts Saturation temperature
Tw Wall temperature
X Thermodynamic quality of the flow
y Distance to wall
y+ = yuτ

νl
Dimensionless distance to wall

u⃗k Velocity of phase k
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Figure 5. Results of our simulations on the Debora setup. The simulation configurations can be
found in table II. A-C. Test tube I results. D-I. Test tube II results. J-L. Test tube III results. A-
E. Simulation 1-5 void fraction results. F-G. Simulation 5-6 liquid temperature and axial gas velocity
results. H-I. Physical quantities extracted from simulation 5: radial velocities and force balance for
Xi = 0.046. J&L. Simulation 6&7 void fraction results. K. Simulation 6 relative velocity profiles.
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