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Abstract

This paper presents a deep-learning surrogate model tailored for a fast generation of
realistic ultrasonic images in the Multi-modal Total Focusing Method (M-TFM) framework.
The method employs both physics- and data- driven data-sets. To this end, we propose a
Conditional U-Net (cU-Net) to perform a controlled generative process of high-resolution M-
TFM images by spanning the set of inspection parameters, employing both the experimental
data (high-fidelity acquisitions) and the simulated ones (a low-fidelity counterpart). Once
trained on experimental and simulated images, the cU-Net embodies an enhanced realism,
learnt from the experimental data, coupled with a quasi-real-time prediction that prevents
the need for extra simulations. Moreover, our surrogate model provides a controlled M-
TFM generation conditioned by the steering parameters of the simulation as well as by
the physics underlying the ultrasonic testing schema. The performances of our approach
are demonstrated in a case study of M-TFM images of a component with planar defects
in a complex weld-like profile. Furthermore, we consider uncertainties in M-TFM image
parameters reconstruction in both numerical and experimental data to reproduce the on-
site inspection. Additionally, we show how the trained neural network can learn its inner
layers (i.e., the cU-Net layers) according to the physical parameters at stake so that it can
be considered an open-box model enabling a qualitative interpretation of the generative
process.

Keywords— ultrasonic array, total focusing method, weld inspection, multi-fidelity, deep learning,
conditional UNet, generative models, meta-model

1 Introduction

Ultrasonic array imaging is among the most employed inspection methods for non-destructive testing
and evaluation (NDT&E). This technology enables fast scanning of industrial components; thus, wider
inspection areas can be covered in a reasonable amount of time. In addition, ultrasonic arrays are
rather flexible since they allow different acquisition modalities (that could be done in parallel), such as
acquisitions with focused or steered plane waves or the so-called full matrix capture (FMC). The latter
consists of recording inter-element signals corresponding to all transmitter-receiver pairs in the array.

The most common FMC data post-processing algorithm is the Total Focusing Method (TFM) imag-
ing, which provides optimal focusing and spatial resolution throughout the region of interest if compared
to other delay-and-sum methods based on focused beams, such as in [1]. Therefore, ultrasound array is
widely adopted in complex inspection scenarios, such as in weld inspection, where mechanical properties,
flaw topology, and geometrical profile represent challenging issues to be taken into account for analysing
the acquisitions. Furthermore, the Multi-modal Total Focusing Method (M-TFM) version [2–4] has been
proven to be even more powerful in detecting and characterising different types of defects appearing at
different positions in welds. Indeed, the possibility of considering multiple wave paths allows it to reach
different locations within the weld where defects typically appear. M-TFM consists in exploiting different
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images of a given defect from the same set of FMC data, each corresponding to a particular wave path
before and after interaction with the defect. In the context of crack-like defects imaging with quasi-
vertical orientations, the reconstruction modes can be classified into two categories: those exploiting
the diffraction echoes from the defect (e.g., direct, indirect modes) and those which exploit the specular
echoes from the quasi-vertical face of the crack (e.g., half-skip, indirect modes) with ultrasonic paths
including at least one reflection with the specimen interfaces, as well as the mode conversions (see Fig. 1).

In practice, although the multi-modal approach can be useful to improve the inspection of welds,
the quality of M-TFM images is strongly influenced by the actual knowledge of the phase velocities of
longitudinal and transverse waves, the geometrical profile of the back-wall, as well as parameters of the
experimental set-up (e.g., the position of the probe relative to the region of interest, water column height
in the case of an immersion inspection). Uncertainties in such parameters can lead to errors in defect
sizing and location, as well as imaging artefacts that make images difficult to interpret [5]. Furthermore,
random noise sources coming from the acquisition and digital-to-analog conversion of signals (electronic
noise) and from the wave scattering by heterogeneities in the material (structure noise) may impact the
imaging. The lack of knowledge about the aforementioned influential parameters can be partially miti-
gated by using adaptive TFM schema to deal with irregular geometries [6] or by employing optimisation
strategies for anisotropic materials with uncertain elastic proprieties [7] with payback in terms of recon-
struction efficiency. Due to the challenges mentioned above, the analysis of M-TFM images in complex
inspection problems is not straightforward and might require numerical solvers with a non-negligible
computational burden.

Very recently, simulation-driven inversion strategies have been applied with success in NDT&E, mix-
ing Machine Learning (ML), and Ultrasonic Testing (UT) [8, 9]. Those strategies based on time-domain
signals or imaging data have also been studied in the context of structural health monitoring [10–16], as
well as as in other domains such as eddy current testing [17–19]. The possibility to handle both numer-
ical and experimental data and combine them in a tailored learning algorithm increases the efficiency
of the deep learning (DL) algorithms, conceived to detect and size defects [12, 20–22]. In [23], the au-
thors proposed a DL encoder-decoder architecture dealing with FMC data in order to suppress artefacts
in reconstructed TFM images automatically. Once FMC experimental data are provided as inputs to
the encoder-decoder, the DL architecture automatically performs denoising, reducing the presence of
artefacts in TFM images.

DL has been adopted for data-augmentation strategies in [24]. It is worth noting that for the prob-
lems mentioned above, even the most accurate numerical solvers cannot fully reproduce some patterns
that appear in experimental M-TFM images in a suitable computational time (i.e., a too-large combi-
nation of factors should be considered). This is often due to uncertainties or the lack of knowledge of
input parameters.

The present study aims at developing a fully-controlled ML generative model targeting high-dimensional
UT inspection problems embedding uncertainties coming from the lack of knowledge on inspection pa-
rameters and aleatory noise sources coming from unknown factors (e.g., electronic or structural noise,
etc.). To this end, we propose a supervised learning schema based on physics-driven data issued from
simulation tools aiming at replacing forward solvers in the massive and controlled generation of data
used in advanced and time-consuming studies. In our analysis, we showed how a tailored cU-Net archi-
tecture enables high-quality multi-fidelity (MF) M-TFM reconstructions based on both numerical and
experimental data. Moreover, we provide an analysis of the architecture’s inner working structure by
showing how the regression procedure is performed.

This paper is structured as follows: Section 2 exposes the principle of M-TFM used to produce the
high and low fidelity data-set. Section 3 describes the architecture and the basis of the inner layers.
In the same section, the loss function and the performance evaluations are summarised. The section
4 shows the implementation of this framework on the M-TFM data. A description of data production
is given, along with the hyper-parameters chosen for the architecture in this section. Additionally, an
exploration of the inner activation of the trained DNN is commented. The conclusions are summarised
in Section 5. A discussion on the perspectives and possible applications are exposed in 6. We have made
the code publicly available, along with a pre-trained network1. An accompanying video can be found

1https://github.com/geragranados/M TFM cUNet
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under the same link.

2 Data

This section first recalls the principle of M-TFM imaging and its application to the inspection of welds
where crack-like defects may appear and propagate along the chamfer. In addition, we describe the
reconstruction modes that will be exploited to evaluate the constraint generative model procedure, and
we provide some insight on the impact of reconstruction uncertainties on the M-TFM images.

The multi-modal imaging use-case considered in this paper is shown in Fig. 1b. It is a common NDT
configuration for butt welds where an ultrasonic array is attached to a Rexolite wedge to perform an
oblique inspection with either incident longitudinal (L) or transverse (T) waves depending on the wedge
angle. The complex geometry of the steel mock-up is representative of a butt V-shaped weld with tilted
interfaces on both sides of the weld root. A potential critical defect that can occur in welded parts is
a crack that may propagate near or along the weld chamfer, and it is represented by a notch in the
mock-up. A Region Of Interest (ROI) for the Eq. 1 is defined in the surrounding of the defect. A major
challenge in NDE is the detection and characterisation of such defects as early as possible before their
growth threatens the structural integrity of the component. It is precisely for this purpose that TFM
has been extended to multi-modal imaging.

TFM is a “delay-and-sum” algorithm applied to the set of N2 inter-element signals obtained from
the FMC acquisition schema with an array of N elements. If snm (t) is the signal received by element m
when element n is used as a transmitter, the image amplitude at a given point located by r consists in a
coherent sum of N2 analytic signals ŝnm (t) = snm (t) + iH {snm (t)} at appropriate propagation times
t = τpnm (r) where H denotes the Hilbert transform. τpnm (r) is the theoretical time of flight between
transmitter n and receiver m through the image point at r for the pth reconstruction mode, i.e., for
one of the many potential ultrasound paths that can be exploited for form relevant images of a given
crack-like defect. With these notations, the image amplitude Ip (r) can be calculated as

Ip (r) =

∣∣∣∣∣
N∑

n=1

N∑
m=1

ŝnm (τpnm (r))

∣∣∣∣∣ . (1)

Multi-modal TFM is the formation of several images of the same defect from a single FMC data-set
with appropriate modes, and these images can be combined to obtain a more realistic representation
of the defect [4, 25–27]. These views aim to utilise ray paths that maximise the viewing angle of any
particular defect, making visible defect responses across these views more likely.

When no reflection on the back-wall occurs along the path between the elements and the running
point P (Fig. 1a), the mode is called direct mode, in contrast with the half-skip and indirect modes,
characterised by one or multiple reflections from the upper and lower surfaces. The combination of
longitudinal (L) and transverse (T) waves leads to four direct reconstruction modes. L-L (or T-T)
designates the mode for which the return trip is with longitudinal wave (or transverse wave), while L-T
and T-L designate the modes with conversion when the incident wave-field interacts with the defect
[2]. Additionally, half-skip modes denoted P1P2 − P3 and indirect modes denoted P1P2 − P3P4 can be
considered, where Pi = L o T (i.e., see 1a).

The subset of M-TFM images under the selected modes (direct, half-skip, and indirect) used in this
work are shown in Fig. 2. The inspection is done in a complex specimen such as the one shown in Fig. 1b,
where an artificial slot is considered a root-like crack.

In this work, the numerical simulation of the UT array inspection represents the low-fidelity data.
Meanwhile, the experimental mock-up acquisitions represent high-fidelity data. In both cases, the M-
TFM imaging technique is applied to the temporal data to produce the image data-set. As a result,
a MF data-set of M-TFM images is then defined as D = {(xn,pn,yn) : n ∈ {1, ...,M}}, where M is
the number of samples (Eq. 2). An instance (xi,pi,yi) represents a low fidelity image xi with labels pi

(simulation parameters) and its high fidelity couple yi, respectively. Couples of images are created by
respecting the same parameters for both fidelities. The data-set described is then separated into training,
validation, and test set. D contains:

x ∈ X ⊂ RW×H×C , p ∈ P ⊂ Rnp ;

y ∈ Y ⊂ RW×H×C , (2)
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(a)

(b)

Figure 1: (a) Ray paths associated with three families of reconstruction modes: direct modes
including two sub-paths; half-skip modes with three sub-paths; and indirect modes with four
sub-paths. Each ultrasonic sub-path corresponds to the propagation of L or T waves. (b)
Contact inspection configuration with a Rexolite wedge for imaging a back-wall breaking notch
machined in a steel mock-up representative of a butt weld.

(a)

(b)

Figure 2: Examples of experimental M-TFM images with set-up shown in Fig. 1a. M-TFM
images of the back-wall breaking notch are given for direct-, half-skip, and indirect mode recon-
struction with (a) actual specimen given a celerity and flaw geometry and (b) same specimen
with uncertainties in celerity T (cT ) and α. Upper row: cT = 3230 m/s and α = 14◦. Lower
row: cT = 3380 m/s and α = 18◦. The images are show in a normalised linear scale.

where W,H,C are the weight, height and number of channels for the images in both fidelities, and np

size of the vector of parameter associated to each couple of images xi and yi.

3 Method

In this paper, we propose to tackle the problem of generation of high-quality M-TFM images by employ-
ing a meta-model that accounts for simulations and experimental measurements together. To this end, a
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supervised learning strategy relying on the use of a Deep Neural Network (DNN) architecture has been
developed. More precisely, an end-to-end Conditional U-Net (cU-Net) such as those presented in [28, 29]
has been conceived and developed. The DNN is designed to account for both numerical and experimental
M-TFM images. The cU-Net architecture is trained with both simulations as low-fidelity data source and
experimental measurements as high-fidelity data source along with physical parameters associated with
the numerical set-up considered (e.g., flaw(s) size and orientation, specimen geometry, phase velocities
of elastic waves, M-TFM reconstruction parameters, etc.) that plays the role of conditioning variables.
Furthermore, to properly address the complexity of the targeted problem, the proposed cU-Net exploits
advanced deep learning constitutive blocks such as the Fidelity Linear Modulation (FiLM), proposed
by [30, 31], and a modified version of the spatial transformer block [32], named in this work as Paramet-
ric Spatial Transformer (pST). Thus, our cU-Net model can be considered as a MF model [33] aiming
at enhancing the numerical simulation capabilities in terms of both accuracy and efficiency thanks to an
almost real-time M-TFM images generation.

It is worth to be pointed out that, in contrast to other DL and ML close-box models based on a
purely data-driven approach, the MF model developed in this work can be considered to be closer to
an open-box since the physics-based knowledge is injected into the learning procedure via simulations.
The objective of this strategy is to teach the surrogate model to encode all the useful information from
the simulated M-TFM images while generating images close to the experience. At the same time, the
encoder is intended to learn how its latent features are influenced by the simulation parameters to be
able to rapidly reproduce several M-TFM images spanning the space of parameters.

3.1 Model architecture

The cU-Net is a modified architecture from the original U-Net [34]. The classical U-Net is essentially
an encoder-decoder structure with skip-connections across the encoding and decoding trunks. Our cU-
Net (Fig. 3) has as input an simulated image and its labels. The architecture is intended to be used
as a parametric surrogate model and a realistic data generator, since the input is expected to be a
experimental image. The objective is to learn the link between the simulation parameters (labels) p and
the latent features z ∈ Z ⊂ Rnz associated to the input image x, although learning a disentangled latent
manifold still represents a major scientific challenge [35]. In this sense, the trained cU-Net will output
new realistic samples ŷ from the one simulated image x, based on an excursion on p (considered as input
labels).

This architecture was conceived to learn from a multi-class data-set, such as a database of M-TFM
images for different mode reconstruction or different types of flaw geometry. The cU-Net is fed with
batches of data (x,p) of size B. The model is expected to map (xi,pi) to yi. The first part of the
network F : X → Z (yellow blocks in Fig. 3) encodes the images x into a conditioned latent space
representation z (features map of green block in Fig. 3). This encoding is conditioned by p.

The decoder or generator G (blue blocks in Fig. 3) takes the space Z and the skip-connections to
reconstruct the images y ∈ Y. Additional convolutions layers (the so-called synthesis layers, depicted
in violet in Fig. 3) are stacked on the top of the generator G to improve the reconstruction. In this
study, both F and G are featured by a stack of convolutional layers, with Parametric Rectified Linear
Unit (PReLU) activation functions [37], except for the synthesis block layer. PReLU set the LeakyReLU
activation coefficient as a learnable parameter for the DNN.

In order to inform the latent manifold with the M-TFM parameters p, a FiLM+pST block is in-
serted within each convolutional layer in the encoder F . The objective of these operators is to structure
the latent representation at the end of the encoder by learning the relation of parameters (labels) and
features in different levels of resolution. The encoder extracts a sequence of features at each layer from
a given input xi, we denote the output of a layer k as xk ∈ Rrk×rk×Ck . rk is the resolution at k after
the down-sampling from k− 1 and Ck is the number of filters (or channels) for k. At the FiLM and pST
layers, the xk+1 have the same filter resolution and number of channels as the input xk.

A FiLM layer learns new per-channel statistics by applying the scales γk and the bias βk to a
normalised representation of xk (Fig. 4b). The values for γk and βk are learnables functions of p. FiLM
modifies the relative importance of features for the subsequent convolution operation k+1. The inference
from the labels p is performed by a Multi Layer Perceptron (MLP). Eq. (3) represents the operation
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Figure 3: Schematic representation of cU-Net architecture, created with [36]. The input is
a M-TFM image and its labels (simulation parameters). The DNN’s encoder is represented
in yellow, the latent space representation in green, and the decoder in blue. The violet layers
represent the synthesis block. U-net skip-connections are shown by blue lines, and labels forward
propagation on the encoder are represented by yellow arrows. An example of the number of
filters and resolution at each block is given.

done per-channel (Ck) in the encoder, where p is the image label, γk(p) and βk(p) are two output of
MLP. FiLM(xk,p) is the output of this layer, so the modified input features. In this layer, the mean
and variance are computed per batch to normalise xk. ϵ is added for numerical stability and precision.

FiLM(xk,p) = γk(p) ·
xk − E[xk]√
σ2[xk] + ϵ

+ βk(p), (3)

where βk ∈ RCk and γk ∈ RCk . E [·] and σ2 [·] represent the empirical average and variance respec-
tively.

Most of CNN applies a normalisation before each activation. The FiLM module replaces the nor-
malisation layer (e.g., IN layer) in the encoding stream (F ), giving the DNN a stable convergence and
the degree of freedom to use the input p to improve the reconstruction and to allow the regression on
the label space, as is shown in section 4.

Upon each FiLM layer in the encoder F , the proposed architecture stacked a pST layer. The original
ST layer proposed by [32] was herein modified to make use of the parameter p. An pST layer applies a
spatial transformation capable of rotating, translating, and scaling a 2D input feature map xk (Eq. (4)
and Eq. (5)), via the per-instance matrix Tϕ that reads:

pST(xk,p) = Tϕ(p)xk, (4)

where ϕ ∈ R6 and Tϕ ∈ R3×3, that reads:

ϕ = [ϕ1(p), ϕ2(p), ϕ3(p), ϕ4(p), ϕ5(p), ϕ6(p)]

Tϕ(p) =

ϕ1(p) ϕ2(p) ϕ3(p)
ϕ4(p) ϕ5(p) ϕ6(p)
1 1 1

 . (5)

Analogously, as in the FiLM layer, pST layer makes use of an MLP (known as localisation net) that
infer ϕ = fθ(p) from p (Fig. 4a). The pST layer takes the input vector of parameters p to infer the
spatial transformation for all channels. This transformation is applied to the output of the previous layer.
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(a)

(b)

Figure 4: Schema of the parametric (a)FiLM and (b) pST layers. FiLM inner normalisation is
not represented here for clarity.

On the other hand, the generator G makes use of Instance Normalisation (IN) [38] between each
convolutional layer. IN showed impressive performance for feed forward stylising [39]. The DNN imple-
ments the pixel-wise L2-norm and the Focal Frequency Loss (FFL) [40] (Eq. (6)) as image reconstruction
loss. The reconstruction loss Lrec reads:

Lrec(x,y,p,θ) = ||y − uθ(x,p)||2 + FFL(y − uθ(x,p)), (6)

where uθ is the cU-Net and θ its learn-able parameters.

The addition of the described modules is justified by the feature evolution observed on the images
in X when exploring P. For instance, a couple (xi,pi) and a couple (xj ,pj) in the same reconstruction
mode (e.g., T-T) are not far from each other in X if pi and pj are closed enough. Scaling, rotations,
and translations in some features, together with changes in the echo shape, can be observed in xj with
respect to xi.

The transformations needed to obtain xj from xi are learnt by the module FiLM+pST in F . There-
fore, the DNN is expected to set F (xi) and F (xj) near in the Z space. As a result, uθ serves as a
parametric surrogate model. The DNN is expected to map the P space into the image feature space X
and Y (injective mapping). For instance, if xi and xj are two samples from the training set and for the
test set, respectively; the couple (xi,pj) must generate the instance yj (with pi ̸= pj), without need to
know xj during the training. The model does not implement any additional loss for this task besides
Lrec, so the P to Y conditional mapping is learnt thanks to two intrinsic characteristics of the DNN. The
first characteristic is the FiLM+pST module introduced in the encoder F , which learns to condition the
features extracted from the input image with different labels. The second one is related to the supervised
framework adopted. That is, xi and yi have the same label pi associated during the training since the
data-set is presented by couples of instances from both fidelity levels. As a consequence, the output
image ŷj can be directly labelled by input parameters pj . The results of this application are shown later
in section 4.

On the other hand, uθ maps the space X into Y by learning the differences between the images from
X and from Y. Those differences can be appreciated in the Signal to Noise Ratio (SNR) variation, the
flaw echo location and shape. The decoder G acts here as a realistic data generator.

Some metrics are implemented to measure the echo localisation error and the pixel intensity error for
the couples y versus ŷ. The metrics express the reconstruction quality for the DNN either for the task of
realistic generation data or the parametric model application. The maximum value of the L1-norm for
an instance expressed by Eq. (7) is used to quantify the error at the peak value, normally located in the
echo region of the M-TFM image. Another metric is the Mean Absolute Error (MAE) which quantifies
in average the reconstruction error for ŷ. The position error of the maximum obtained by Eq. (7) is also
a metric for evaluating the performance on the test set.
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Table 1: Parameter space definition for M-TFM simulation and experimental data-set. Vertical:
β − α = 90◦ ; Tilted: β − α = 74◦

Parameter space Range n-points
(labels) of in

values P
Flaw tilt (β) Vertical ; Tilted 2
Flaw size (L) 3 mm ; 10 mm 2
T wave
celerity (cT ) [3080; 3380] 9
Geometry configu-
ration angle (α) [10;18] 9
Modes used in T-T;TT-T;TT-L;TL-T
reconstruction (M) TL-L;TT-TT;TL-LT; 9

TT-LT;ALL
Total of instances: 2916

(couples) (324
per mode)

Erec(xj , pj , yj) = max ||yj − uθ(xj , pj)||1 (7)

4 Results

The present section illustrates the outcome of the trained architecture on the test set, in other words,
images never seen by the DNN. Firstly, a realistic image generation is evaluated for the test set through
the adapted metrics. Secondly, a conditional generation through regression in the input p is evaluated
and compared to the realistic generation error. Lately, an exploration by a 2D projection of the output
features of the latent space block is used to show the data generation potential. The shown structure
of those features tends to explain how the DNN is capable of acting as a parametric surrogate model
to generate new M-TFM instances. With the same objective of explaining how the DNN works, the
exploration of the features extracted by the FiLM layer and the pST layer are shown to interpret their
role in the architecture.

The presented architecture was tested in a M-TFM image data-set with two fidelities: simulation and
experimental acquisitions. The data was obtained by a parametric simulation by sampling the P space
as shown in Table 1. The mock-up in Fig. 1b follows the configuration given by [26], with a geometry
described by l1 = 50 mm; l2 = 60.5 mm; l3 = 50 mm; and l4 = 42 mm, and a ROI of a square of
30 mm of length. Consequently, the data-set D of M ∼ 6 k single-channel images is produced. Half
of the images belong to simulated instances, while the second half is the experimental couples. The
data-set is separated in the proportion of 85%, 12%, 3% for the training (T ), validation (V) and test
set (S), respectively. A random selection of the group (xi,pi,yi) is done to generate disjoint sets so
D = T ∪ V ∪ T . The image size is (W, H, C) = (128 pixels, 128 pixels, 1 channels). The input label
size is d = 5 containing the celerity of the transversal ultrasonic wave (cT ), the back-wall angle (α), the
reconstruction mode (M), and the flaw geometry expressed by the height (L) and the tilt (β). Those
labels are re-scaled to be expressed in the range of [0, 1] (Fig. 5). For those labels that had semantic
representation (e.g., reconstruction modes), a simple dictionary is created to map the names to numerical
values in the same range as other numerical labels.

The number of channels per block is augmented by a power of 2 in the encoder F , starting with 16
channels after the input to ending up with 128 channels before the latent space block. The resolution
of the learnt filters at the end of every block of F is decreased by the down-sampling operation. The
resulting resolutions by block at the encoder are 128, 64, 32, and 16. Each resolution block contains
two FiLM+pST layers; the first is sandwiched between a convolutional layer and its PReLU activation.
The activation is followed by the second FiLM+pST layer that is set between the second convolution
operation of the block and its PReLU activation. This layer sequence ends up with a down-sampling
operation before passing to the next resolution block.
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(a) (b)

Figure 5: The M-TFM data-set contains a set of images labelled by the simulation parameters
and classes. (a) Sampling of parameters p ∈ P (simulation parameters for each coupled of
M-TFM images). The blocks represent the distribution of the sampling for each parameter and
the dots gives a quick view of, for instance, cT and alpha parameter intervals of sampling and
number of sampled values. Beta and L show, for example, that there are four defects in the
data-set, since the points are four. (b) An example of M-TFM images, right: simulated (x ∈ X );
left: experimental acquisition (y ∈ Y). The two images correspond to the same parameter’s
vector p.

Regarding the latent space block, the structure is similar to an encoder block since it accounts for
the FiLM+pST layer. The difference is that there is no down-sampling. As a consequence, the block is
built as follows: FiLM+pST + PReLU + convolution layer + FiLM+pST + PReLU. The resolution at
this level is 8x8 with 128 channels for all the layers. The objective of this arrangement is conditioning
the encoding of the DNN throughout all layers until the first up-sampling in the decoder so the labels
build a structured latent space for the generator’s input.

For the decoder G, we inverted the order in terms of resolution and number of channels, keeping
the same number of layers as the encoder. Instead of the down-sampling, the up-sampling operation at
the end of each resolution block is used to increase the resolution. The feature normalisation is done
by the IN layers before each activation layer on the decoder. Finally, the synthesis block has three
convolutional layers with the same resolution as the expected output but with more channels in the first
two convolution layers: 16 channels. This block also implements the IN, but it differs from the encoder’s
blocks since a hyperbolic tangent activation function is used on it.

4.1 Analysis of the training phase: the role of FiLM+pST

This section shows the convergence of the DNN driven by its architecture, particularly by the presence
of the feature operators such as the FiLM and pST layers. The evolution of loss versus the epochs is
shown in Fig. 6 for the validation and test. The batch size (B) is chosen equal to 128, and an Adam
optimiser with a learning rate of 0.001 is chosen. The training time is ∼ 3h on an NVIDIA Quadro RTX
6000 GPU. The early stopping activated at around 900 epochs. The trained model is then applied to
the test examples in the following sections.

During the training, we observed that adding the parameter of reconstruction modes (M) to the
label vector helped the reconstruction quality and the convergence speed, even if a regression over these
parameters does not have any physical sense (e.g., a hybrid T-T+TT-L mode). This parameter plays
a role in the structure of the latent space and helps to the DNN convergence. In the opposite sense,
the simple training of the DNN without any conditioning (no FiLM+pST blocks, no p in the input,
so an U-Net architecture) gets the best reconstruction for ŷ. Consequently, the conditioning worsens
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the reconstruction capability, but it introduces the surrogate modelling potential into the architecture:
generation of M-TFM conditioned by physical parameters.

0 200 400 600 800
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10−2
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L
r
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Figure 6: Loss evolution versus training epochs for cU-Net training on M-TFM data-set. The
test loss is in black, and the validation loss is in yellow.

During the test phase, the S set is used to evaluate the DNN performance in order to show the
capability of the cU-Net as a MF generator. The couples (xj ,pj) ∈ S are forwarded from the input
in the trained DNN uθ∗ to generate ŷj ∈ S. Since yj is our GT, we can compute the error histogram
over the test set for echo reconstruction metrics introduced at section 3.1. Fig. 7 represents the echo
amplitude error frequency for the 100 samples of the test set. The echo position error is also calculated
by the Euclidean distance in the (x, z) plane of the ROI. In Fig. 8, a single instance reconstruction on
the test set is shown in detail to illustrate the reconstruction error impact in a qualitative view.
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Figure 7: Error frequency on the test set for realistic data-set generation in blue. Generation
error frequency on reconstruction parameters regression are plotted in red (described in section
4.1). (a) shows the maximum of the pixel-wise difference between the output and the GT, (b)
is the mean of the norm-L1 between the output and the GT, and (c) is the Euclidean distance
in pixels between the maximum pixel of the output and the maximum pixel of the GT.

A second evaluation over the S set is done to test the generative capabilities of the DNN. This time,
a xi ∈ T and a pj ∈ S are picked up. The couples (xi,pj) are forwarded from the input in the trained
DNN uθ∗ to generate ŷj ∈ S. xj is our Ground Truth (GT) labelled by pj ̸= pi. Then, we can compute
the error histogram over the test set on echo reconstruction metrics (Fig. 7). The results show the
capability of the cU-Net as a surrogate model for new instances generation.

This test is a quantitative evaluation of data generated over a regression p input vector. Since only
a regular sampling was done over the parametric P to create the entire data-set, the references of ex-
perimental M-TFM images for this evaluation are limited to the known p values. The selection of the
instances of xi (TFM simulation input) for this evaluation are chosen by the following criteria: the label
pi of xi is the closest to pj , in the P space. The metric used in P is the Euclidean distance between pi

and pj . This metric promotes the generation by reconstruction parameters regression (cT and α). Thus,
a regression over the flaw geometry parameters (β and L) was only performed to evaluate the generation.
Both tests reported similar histograms (red bars in Fig. 7). See the complementary video to illustrate
conditional generation.
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Figure 8: Experimental generation example. Qualitative comparison between the output ŷ and
the GT, given a couple (x,p) at the input, where p is the correspondent set of parameters used
to create x from the simulation. (a) is the maximum pixel for the line or column between the
output and the GT. The maximum pixel amplitudes are plotted in purple for the output and
in orange for the GT. Both images are overlapped for the ROI representation. In (b), the echo
reconstruction shows the misfitting in terms of echo position and amplitude for the example
given.

The described evaluation was designed to show the potential of the DNN for a surrogate model
application. The model learns the link between the labels and the features required at the output, guided
by the pST and FiLM layers. The followings sections are focused on the internal features exploration of
the DNN for the test set with the intention of describing how the parametric regression can be done in
all directions of p to re-sample the P beyond the initial data-set points.

4.2 Analysis of the feature maps

We observed how the conditional FiLM+pST layers act during the latent space generation when the
scalar input p changes, an example of forward propagation of one image is shown in Fig. 9. The output
for each column (purple box image) can be contrasted with its GT (below the column) to evaluate the
coherence of the conditional generated image. This evaluation is done over a sample of the test-set.

We can observe that the conditional layers make the filter implant new features in the activation
maps; at the same time, they extract the main features of the input image. The intuition here is that
the encoder is capable of creating new conditional features on the activation maps from the input image;
these new features are conditioned by the input label values. Consequently, the image synthesis is also
conditioned by the input label values. We can infer that the variety of possible experience-like images
(outputs) that the decoder can create is linked to the range of the parameters observed during the
training (see Fig. 5).

Fig. 9 also shows the behaviour of the DNN without the pST layer. This is done to show the role of
each block: FiLM acts in the style content (e.g., SNR), and the pST acts in the context (echo shape).
The last column shows that the FiLM ignores the echo translation linked to the new cT input value. At
the same time, we can observe how a roto-translation is present between the first and second column
due to the pST module from the second convolutional operation.

4.3 Latent space exploration

A view into the output of the latent space block gives some clues about how the encoder works. When
a M-TFM image is forwarded into the encoder, the features of the last layer of the latent space block
represent a plausible high-dimensional representation of the input. This representation is obtained for
each sample to generate the Z space. Since we are interested in the structure of this high dimensional
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Figure 9: The first column shows the activation values for the filters at different resolutions
on F when the realistic generation is evaluated. At the end of the column, the GT image is
shown for a qualitative observation. To better appreciate the changes in style, the input and
output images are reported in logarithmic scale. The activation maps are normalised for better
visualisation. For the second column, a conditional generation by changing the cT input value
is evaluated. In this case, the same input as the first column is kept. For the third column, the
same parameter was varied (cT ), but this time by ablation of the pST blocks.

space (i.e., 8x8x256 dimensions), we choose a t-SNE manifold projection [41] to reduce this space to
a latent space (LS) representation in 2D. A principal component analysis initialisation is used for the
t-SNE.

The Fig. 10 represents a scatter plot of the Z space. A projection from X conditioned on P space to Z
space is done by the encoder. Every z point is located on the 2D manifold by its coordinates (LS1, LS2).
Consequently, each point can be related to a parameter value and input image. The representation in
Fig.10 shows how the DNN builds Z in terms of clusters ordered accordingly to the different parameters.

That is, the first hierarchy observed in the manifold is the reconstruction modes. This order in
the hierarchy is expected since the images in each reconstruction mode are significantly different. If we
observe the parameters of the flaw’s geometry, four main clusters are founded in the manifold. When
looking closer at one of these manifolds, an arrangement with respect to the two last parameters in P
can be observed. Two mostly orthogonal directions are present for the celerity T and back-wall angle
values.

The exposed structure of the Z space in this section, together with the exploration of the features,
shed some light on how the DNN learns to generate data. The observations proved that the DNN
creates a structured representation of the whole data-set. The Z sampling in the right direction with
respect to the parameters of the simulation is possible through the conditional encoder. This is how the
input vector can generate other samples present in the data-set, but also some samples not seen before.
Those samples generated by the label regression are obtained by a consistent position in Z. During the
generation by regression, the encoder features are modified in the coherent direction, as is shown in the
Z projection.

Given a fixed simulation image and a new label value never seen, the encoded “point” in the latent
space is then passed to the generator. The generators learnt to decode the known points of Z, as it was
shown in the section 4.1. It is also expected for the generator to know ”how” to generate an intermediate
point with similar characteristics to the neighbours but modified to be consistent with the new label
value.
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Figure 10: c-Unet latent space projection into a 2D t-SNE manifold. The point represents
the last layer activation of the green block in the c-UNet (Fig. 3), just before the decoding.
(a) shows the clustering by modes. (b) shows the clusterig by flaw geometries. (c) and (d)
is the a selected cluster (black rectangle in (a)) colored by two of the parameters: cT and α.
t-SNE hyperparameters: early exageration=12, perplexity = 50. References for flaw geomatries
coloring: (3,h) is the 3 mm horizontal flaw geometry, (10,v) is the 10mm vertical flaw geometry,
and so on.

5 Conclusions

In this work, we present a conditional UNet (cU-Net) for fast and realistic generation of multi-modal
total focusing method (M-TFM) images. Our DNN is trained on both numerical and experimental
data. As a result, our generative framework can learn realism from experiments along with a controlled
generation learnt from the physics encoded in the simulations. We show how the cU-Net model performs
the feature extraction to generate new realistic data. This is done by exploring the inner activation
layers for different inputs. We also demonstrate how the Spatial Transformer Layer and Fidelity Layer
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Modulator provide the mean to perform a regression in the M-TFM images by a cU-Net architecture.
The present framework allows the inclusion of simulation parameters directly as input in the meta-

model architecture. Once the model is trained, data generation can be done in quasi-real-time and guided
by the input parameters regression. In doing so, the generated data is already labelled. However, the
prior information on data fidelity (simulation and experience labelled couples) can be costly to produce in
some cases, and our approach turns out to be not highly efficient when this characteristic is not available
in the data-set. Nonetheless, the present architecture provides a way to fully inform a data generator
DNN by the data labels.

Given this choice in the DNN architecture used for TFM image generation, we are not in presence of a
physics-agnostic NN. Moreover, the DNN is constrained to learn the physics behind the mapping between
the simulated parameters and the TFM images. This is done by the pST and FiLM operators, as showed
in the Fig. 9 by the ablation of the pST during the generation of new images with different celerities.
The reconstruction loss plays also a role for this task during the training, since the conditional layers
are optimized to generate a consistent experience image given a set of parameters. To summarize, we
embed the physics knowledge in the DNN architecture by means of the data simulated by the numerical
solver, and the conditional generation driven by the parameters used in the simulation. Our approach is
in contrast to more common data-driven approaches that are in the literature of ML as applied to image
or signal processing communities.

An extensive analyses of the results by changing simulation parameters has been embedded in the
Appendix A.

Scalar labels were used as input in this work, so the inner sub-neural networks for the FiLM and
pST Layer are Multi Layer Perceptron (MLP)s. Those sub-neural networks are not limited to scalar
inputs, but they can any shape. For instance, a CNN or RNN can be deployed to take into account other
formats of labels (images, time series, etc.) that would guide later the generation.

6 Perspectives and applications

Fast and reliable surrogate models has been used in NDT&E to speed-up the computational time for
very intensive statistical studies ranging from the stochastic inversion [42] to the sensitivity analysis [33]
and model-assisted probability of detection. In these application fields in NDT&E, our contribution aims
to enhance the quality of meta-model results making them more-close-to-reality. Therefore, by the use
of the ML schema developed, the aforementioned studies will better account the impact of measure-like
uncertainties in the studies outcomes.

This approach presents a first attempt at a physics-based and explainable meta-model aiming at
providing a controllable data generation tool. The new data can be exploited as a training set for deeper
architectures (e.g., generative adversarial network) that demands big data-sets, rarely available in the
NDT&E field. Inversion problems may also benefit from an enlarged training set generated by this tool.

In our application case, we include the MF knowledge present in the data-set, but the framework can
be adopted even if a single fidelity level is available in an auto-encoder architecture (no skip connections
required). For instance, the same image may be used as input and output to train the cU-Net and get
a meta-model from a simulated data-set. Likewise, an experimental campaign may be enlarged by this
DNN when it is correctly labelled.

In the perspectives of this work, we expect to explore the power of our cU-Net backbone architecture
for inverse problems, given that structure of the latent space seems promising for this task. Additionally,
one notable mention is the possibility of using the cU-Net architecture to enhance the performance of
simulation software widely used in modern NDT&E design problems. For instance, the low fidelity source
of data may come from coarse meshed finite elements simulations or semi-analytical simulations, whereas
the high fidelity from fine meshed finite elements simulations, among others.
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A Appendix: realistic data generation by trained tailored cU-Net.

Figures demonstrate the DNN meta-model’s generation potential for realistic M-TFM images. Com-
parison to ground truth is made where possible. Parameter variations p are employed for predictions.
Consistency with physics is observed in terms of wave celerity and back-wall angle. However, accuracy
decreases when altering flaw height and angle due to the limited diversity of the four-flaw experimen-
tal data set. Consequently, extrapolation performance cannot be deemed sufficiently accurate. Two
reconstruction modes highlight distinct impacts of flaw geometry and reconstruction parameters.
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