
HAL Id: cea-04186110
https://cea.hal.science/cea-04186110v1

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building blocks for LSTM homomorphic evaluation with
TFHE

Daphne Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey

To cite this version:
Daphne Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey. Building blocks for LSTM
homomorphic evaluation with TFHE. 7th International Symposium on Cyber Security, Cryptology
and Machine Learning (CSCML 2023), Jun 2023, Paris, France. pp.117. �cea-04186110�

https://cea.hal.science/cea-04186110v1
https://hal.archives-ouvertes.fr

Building blocks
for LSTM homomorphic evaluation with TFHE⋆

Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey

Université Paris-Saclay, CEA-List, Palaiseau, France
daphne.trama@cea.fr

aymen.boudguiga@cea.fr

pierre-emmanuel.clet@cea.fr

renaud.sirdey@cea.fr

Abstract. Long Short-Term Memory (LSTM) is a Neural Network (NN)
type that creates temporal connections between its nodes. It models sequence
data for applications such as speech recognition, image captioning, DNA se-
quence analysis, and sentence translation. Applications that are often subject
to privacy constraints. This paper thus presents basic building blocks for
the homomorphic execution of an LSTM that would respect the privacy of
its inputs. By means of TFHE functional bootstrapping, we propose several
approaches for homomorphically evaluating discretized flavors of the Sigmoid
and Tanh activation functions. Experimental results show that the accuracy
of the resulting discretized networks remains comparable to a full precision
clear-domain execution. Performance-wise, we are able to homomorphically
compute a Sigmoid or Tanh function in 0.3 or 0.15 secs (depending on whether
or not multivalue bootstrapping is relied on). This paves the way towards
evaluating practical LSTMs over encrypted inputs in around 1 to 3 mins
which is competitive with the state of the art.

Keywords: LSTM · Privacy · TFHE · Homomorphic encryption.

1 Introduction

In recent years, Artificial Intelligence techniques and particularly Neural Networks
(NN) have become pervasive in our connected society. They have already led to count-
less practical applications impacting, for better or worse, our daily lives. Examples are
numerous: image recognition [23], artwork [27], interactive chat [25], voice analysis [28],
and music generation [15]. In this context, protecting user data privacy during the
operational phase of already trained neural nets has become a major challenge. In the
field of provably-secure cryptography, Fully Homomorphic Encryption (FHE) is one
major corpus of techniques serving as a yardstick to address such privacy challenges.

This paper thus focuses on running a special type of neural network, called
Recurrent Neural Networks (RNN), over encrypted inputs. These networks rely, in
particular, on a specific type of unit called Long-Short Term Memory (LSTM), first

⋆ This work was supported by the France 2030 ANR Project ANR-22-PECY-003
SecureCompute.

2 D. Trama et al.

Fig. 1: LSTMs structure: the LSTM unit of time-step i takes as input xi as well as
the outputs of the LSTM unit at time-step i−1, namely the activation ai−1 and the
memory cell ci−1. It then outputs yi=f(ai), where f can be an activation function
or simply the identity function.

proposed in 1997 in [18]. The main idea of LSTM is to use memory cells to capture
the relation with activations from previous time-steps (as described in Fig. 1). LSTM
relies on Sigmoid and Tanh for memory cells and activation computation. These
networks are mainly used for text translation, natural language processing, language
translation, feeling analysis, and speech analysis.

Still, in these kinds of applications, input confidentiality can be crucial (and so is
the confidentiality of any byproduct of these inputs). For instance, it is generally the
case when the network manipulates medical data sent for diagnosis findings, genomic
data, or sensitive voice data. Furthermore, users (e.g., patients, hospitals, or govern-
ments) may wish to prevent neural network owners from accessing their sensitive data
and extracting information from it as a byproduct. It is therefore desirable to encrypt
these input data and then, as a consequence, evaluate the full neural network in the en-
crypted domain. This eventually leads to encrypted results which are sent back to the
user who, alone, should be granted access to them. Thus, it becomes possible to dele-
gate classification tasks to third parties while protecting the confidentiality of the data.
Utopian? Not at all. Indeed, with respect to Convolutional Neural Networks (CNN),
starting with the work of Dowlin et al. on CryptoNets [14], several works have investi-
gated the application of various flavors of homomorphic encryption techniques to vari-
ous flavors of neural networks with the long-term goal of achieving the above setup [7,
6, 21, 2, 19, 24, 1, 10]. However, these works have so far achieved limited scaling (reach-
ing throughputs ranging from a few hundred to a few thousand neurons per minute)
and had to resort to simple activation functions (for instance square, Sign, or ReLU).

In this context, this paper further investigates how the Sigmoid (and hyperbolic
tangent Tanh) function can be evaluated in the homomorphic domain, particularly,
to run RNNs. On the one hand, RNNs are exciting candidates for FHE since their

Building blocks for LSTM homomorphic evaluation with TFHE 3

applications often require confidentiality. On the other hand, contrary to the more
classical CNN, RNN experimentally appears much more sensitive to issues relative
to discretization and activation function precision. Nevertheless, the other operations
necessary for running the network, such as additions or scalar products, have already
been studied and are implemented using classical circuits for basis B arithmetic. But
Sigmoid and Tanh still need to receive satisfactory treatment from a homomorphic
encryption point of view (mainly because they have been worked around in previous
studies focusing on CNN). Consequently, this paper primarily focuses on the Sigmoid
and Tanh functions as ”must-have” building blocks for running RNNs over homomor-
phically encrypted data. However, these non-linear functions must be approximated
to fit the constraints of homomorphic encryption operations1. One common approach
is to approximate them by polynomials [26, 20, 8], but this raises a number of issues.
First, low-degree polynomial approximations are accurate around 0. Second, with
leveled homomorphic schemes such as BFV [3, 16] or BGV [4], the multiplicative
depth of an LSTM increases unboundedly with the number of successive time-steps
because of the recurrent nature of these networks. Thus, even for small LSTMs,
the leveled homomorphic scheme parameters would not allow an efficient execution.
Meanwhile, for larger LSTMs, leveled homomorphic schemes lead to prohibitive costs
and the use of a (practical) bootstrapping-able homomorphic encryption scheme such
as TFHE [9] becomes mandatory. However, with TFHE, using activation functions
that are approximated with polynomials is very time-consuming. Indeed, with TFHE,
we decompose every large input into digits in a basis B before encryption, and we
express multiplication and addition as circuits for basis B arithmetic where each
unitary operation requires at least one programmable (or functional) bootstrapping.

State of the art– In 2022, Jang et al., [20] implemented an RNN with Gated
Recurrent Units2 (GRUs) with an improved version of the CKKS homomorphic
encryption scheme. They enhanced CKKS with the support of multivariate RLWE (m-
RLWE) samples. As a result, they were able to encode a matrix of clear values into one
plaintext by using batching (then encrypting the obtained multivariate polynomial in
one ciphertext). They also provided an efficient algorithm for matrix-vector multiplica-
tion and approximated Tanh and Sigmoid with polynomials of degree 7. With all these
building blocks, they were able to evaluate RNNs with GRUs over encrypted data (with
comparable accuracies) for sequence copy (4 GRUs), regression adding (1 GRU), image
classification (28 GRUs), and genomic sequence classification (40 GRUs). For the small
RNNs with 1 to 4 GRUs, Jang et al., did not rely on bootstrapping, but they did need
a bootstrapping per time-step for larger sequences– 28 to 40 GRUs (starting from the
4th time-step). During their experiments, they compute each unit in 90 secs (without
including the CKKS bootstrapping time which can range from 3 to 26 minutes depend-
ing on the number of used threads and with respect to the selected parameters in [20]).

1 Note that, in principle, floating point functions can be performed by means of
homomorphic computations (e.g. by running their boolean circuit representations over
an FHE with Z2 as plain domain). In practice, however, such an approach induces
prohibitive computational costs.

2 GRU units are a simple version of LSTM ones. They also rely on Tanh and Sigmoid for com-
puting memory cells and activations. However, they cannot manage very long dependencies.

4 D. Trama et al.

Paul et al., [26] proposed a collaborative training between two parties that share
the same LSTM in clear form but intend to train an extra logistic regression layer.
The authors used homomorphic encryption only for training the logistic regression
layer. They confirmed that training and running the LSTM over encrypted data was
complex and time-consuming.

Contribution– In this paper, we design Look-Up Tables (LUTs) for evaluating
Tanh and Sigmoid using TFHE functional bootstrapping. In order to do so, we
propose several approaches to homomorphically evaluate discretized variants of the
Sigmoid and Tanh activation functions. We then introduce two step-wise functions
as replacements for Sigmoid and Tanh, which we experimentally show are sufficient
to preserve the accuracy of a real-world RNN. In terms of performances, we are then
able to homomorphically compute a Sigmoid or a Tanh in less than half a second,
which is competitive with the state of the art.

Paper organization– This paper is organized as follows: Section 2 reviews the
basics of the TFHE cryptosystem and gives the necessary details about LSTMs
structure to render this paper self-contained. In Section 3 we discuss a number of
discretization issues in LSTM. In particular, we evaluate the impact on the accuracy of
the network when Sigmoid and Tanh are approximated by different discrete functions.
Section 4 provides a detailed exposition of our approaches to executing our approx-
imated activation functions in the FHE domain. We also present the performances
of our methods. Section 5 concludes the paper and gives some perspectives.

2 Preliminaries

2.1 Notations

Let T=R/Z be the real torus, that is to say, the additive group of real numbers
modulo 1 (R mod 1). We will denote by TN [X]n the set of vectors of size n whose
coefficients are polynomials of T mod (XN +1). N is usually a power of 2. Let
B={0,1}. ⟨ , ⟩ denotes the inner product.

2.2 TFHE Scheme

The TFHE scheme is a fully homomorphic encryption scheme introduced in 2016
in [9] and implemented as the TFHE library 3. TFHE defines three structures to
encrypt plaintexts, which we summarize below as fresh encryptions of 0:

– TLWE sample: A pair (a,b)∈Tn+1, where a is uniformly sampled from Tn and
b=⟨a,s⟩+e. The secret key s is uniformly sampled from Bn, and the error e∈T
is sampled from a Gaussian distribution with mean 0 and standard deviation σ.

– TRLWE sample: A pair (a,b)∈TN [X]k+1, where a is uniformly sampled from
TN [X]k and b=⟨a,s⟩+e. The secret key s is uniformly sampled from BN [X]k,
the error e∈T is a polynomial with random coefficients sampled from a Gaussian
distribution with mean 0 and standard deviation σ. One usually chooses k=1,
therefore a and b are vectors of size 1 whose coefficient is a polynomial.

3 https://tfhe.github.io/tfhe/

Building blocks for LSTM homomorphic evaluation with TFHE 5

– TRGSW sample: a vector of l TRLWE fresh samples.

Let M denote the discrete message space (M∈TN [X] or M∈T). To encrypt
a message m∈M, we add what is called a noiseless trivial ciphertext (0,m) to a
fresh encryption of 0. We denote by c=(a,b)+(0,m)=(a,b+m)∈T(R)LWEs(m) the
T(R)LWE encryption of m with key s. A message m∈TN [X] can also be encrypted
in TRGSW samples by adding m·H to a TRGSW sample of 0, where H is a gadget
decomposition matrix. As we will not implicitly need such an operation in this paper,
more details about TRGSW can be found in [9].

To decrypt a ciphertext c, we first calculate its phase ϕ(c)= b−⟨a,s⟩=m+e.
Then, we need to remove the error, which is achieved by rounding the phase to the
nearest valid value in M. This procedure fails if the error is greater than half the
distance between two elements of M.

2.3 TFHE Bootstrapping

Bootstrapping is the operation that reduces the noise of a ciphertext thus allowing
further homomorphic calculations. It relies on three basic operations, which we briefly
review in this section.

– BlindRotate: rotates a polynomial encrypted as a TRLWE ciphertext by an
encrypted index. It takes several inputs: a ciphertext c∈TRLWEk(m), a vector
(a1,···,ap,b) where ∀i,ai∈Z2N , and a TRGSW ciphertext encrypting the secret
key s=(s1,···,sp).
It returns a ciphertext c′∈TRLWEk(m·X⟨a,s⟩−b). In this paper, we will refer to
this algorithm as BlindRotate.

– TLWE Sample Extract: extracts a coefficient of a TRLWE ciphertext and
converts it into a TLWE ciphertext. It takes as inputs both a ciphertext
c ∈ TRLWEk(m) and an index p ∈ {0, ··· ,N − 1}. The result is a TLWE ci-
phertext c′∈TLWEk(mi) where mi is the i

th coefficient of the polynomial m. In
this paper, we will refer to this algorithm as SampleExtract.

– Public Functionnal Keyswitching: allows the switching of keys and param-
eters from p ciphertexts ci∈TLWEk(mi) to one c′∈T(R)LWEs(f(m1,···,mp))
where f is a public linear morphism between Tp and TN [X]. That is to say,
this operation not only allows the packing of TLWE ciphertexts in a TRLWE
ciphertext, but it can also evaluate a linear function f over the input TLWEs.
In this paper, we will refer to this algorithm as KeySwitch.

It is important to note that, during a BlindRotate operation, an excessive noise
level in the input ciphertext can lead to errors in the bootstrapping output resulting
in incorrect ciphertexts (i.e. ciphertext which do not decrypt to correct calculation re-
sults). This has implications for parameters and data representations choices (number
of digits and basis), as we shall later see in Sect. 4.

Algorithm 1 shows the TFHE Gate Bootstrapping [9], which aims to evaluate
a binary gate operation homomorphically and reduce the output ciphertext noise
at the same time. To that end, 0 and 1 are respectively encoded as 0 and 1

2 over

6 D. Trama et al.

T. The first step of this algorithm consists in selecting a value m̂∈T which will be
used afterward to compute the coefficients of the polynomial which will rotate during
the BlindRotate. We call this polynomial testv as seen in Step 3. Note that for
any p∈ J0,2NK (where J0,2NK corresponds to the set of integers {0,··· ,2N}), the
constant term of testv·Xp is m̂ if p∈KN2 ,

3N
2 K and −m̂ otherwise. Step 4 returns an

accumulator ACC∈TRLWEs′(testv·X⟨a,s⟩−b). Indeed, the constant term of ACC
is −m̂ if c is an encryption of 0 and m̂ if c is an encryption of 1

2 . Then step 5 creates
a new ciphertext c by extracting the constant term in position 0 from ACC and
adding (0,m̂). Thus, c corresponds to an encryption of 0 if c is an encryption of 0 and
m otherwise. On the other hand, if c is an encryption of 1

2 and if we choose m= 1
2 ,

the algorithm returns a fresh sample of 1
2 , that is to say the encoding of 1.

In Fig. 2, we present an example of TFHE gate bootstrapping algorithm with
Z4={0,1,2,3} as input space. The outer circle in Fig. 2 corresponds to the plaintext
encoding in T as {0,14 ,

2
4 ,

3
4}. Meanwhile, the inner circle sets the coefficients of the

test polynomial testv to 1, i.e., m̂= 1
4 . Then, we rotate the test polynomial during

the bootstrapping by the phase ϕ(c0) of the input ciphertext c0. In our example, we
obtain as bootstrapping output either an encryption of the encoding of 1 for positive
inputs {0,14}, or an encryption of the encoding of −1 for negative inputs {2

4 ,
3
4}.

Algorithm 1 TFHE gate bootstrapping [9]

Require: a constant m ∈ T, a TLWE sample c = (a,b) ∈ TLWEs(x · 12) with x ∈ B, a
bootstrapping key BKs→s′ =(BKi ∈TRGSWS′(si))i∈J1,nK where S′ is the TRLWE
interpretation of a secret key s′.

Ensure: a TLWE sample c∈TLWEs(x.m)
1: Let m̂= 1

2
m∈T (pick one of the two possible values)

2: Let b=⌊2Nb⌉ and ai=⌊2Nai⌉∈Z,∀i∈J1,nK
3: Let testv :=(1+X+···+XN−1)·X

N
2 ·m̂∈TN [X]

4: ACC←BlindRotate((0,testv),(a1,...,an,b),(BK1,...,BKn))
5: c=(0,m̂)+SampleExtract(ACC)
6: return KeySwitchs′→s(c)

2.4 TFHE Functional Bootstrapping

We can use Look-Up Tables to compute functions during the bootstrapping operation.
To do so, we replace the coefficients of the test polynomial testv with the correspond-
ing values of the LUT. Let us assume that we want to evaluate the function fT via a
LUT. Then, if we retrieve the ith coefficient of testv, we actually get fT(mi) where mi

is the encrypted input to the bootstrapping. We refer to this idea by programmable
or functional bootstrapping [11, 22, 30, 12, 13].

In Fig. 2, we give an example of functional bootstrapping with Z4={0,1,2,3} as
input space. We encode the images of {0,14} by fT as coefficients of the test polynomial
(in the inner circle). Meanwhile, we deduce the images of {2

4 ,
3
4} by negacyclicity.

Indeed, in T, we can encode negacyclic functions i.e., antiperiodic functions with

Building blocks for LSTM homomorphic evaluation with TFHE 7

TFHE gate booststrapping

before bootstrapping

before bootstrapping

after bootstrapping

after bootstrapping

TFHE functional booststrapping

Fig. 2: TFHE Bootstrapping examples: the outer circles describe the inputs to the
bootstrapping (i.e., ciphertexts over T). Meanwhile, the inner circles represent the
coefficients of the test polynomial testv. One of these coefficients is extracted as the
output of the bootstrapping after the BlindRotate.

period 1
2 (verifying fT(x)=−fT(x+

1
2)), where [0,0.5[corresponds to positive values

and [0.5,1[to negative ones. In our example, if we encrypt one of the following values
{0,14 ,

2
4 ,

3
4} and we give it as input to the functional bootstrapping algorithm, we get

{fT(0),fT(1),−fT(0),−fT(1)}, respectively.

Almost all of the functional bootstrapping methods from state of the art ([11, 22,
30, 12, 13]) take as input a single ciphertext. In 2021, Guimarães et al., [17] discussed
two methods for performing functional bootstrapping with larger plaintexts. They
combine several bootstrappings with different encrypted inputs by using a tree or
a chain structure. The ciphertexts are encryptions of digits that come from the
decomposition of plaintexts in a certain basis B.

In this paper, we will instantiate Guimarães et al. tree method to perform a
homomorphic evaluation of the functions Sigmoid and Tanh or, rather, suitable
approximations of them.

8 D. Trama et al.

2.5 Long Short Term Memory (LSTM)

This section reviews the equations that govern LSTMs, highlighting the recurrent
aspect of the computations to be performed. We denote by c⟨i⟩ the memory variable of
the ith cell. c̃⟨i⟩ is the candidate value to update the memory variable. We respectively
write Γu for the update gate, Γf for the forget gate and Γo for the output gate. We
denote by Wj a weight matrix and by bj the associate bias. x is the input and σ
stands for the Sigmoid. Finally, we give the equations that define the ith LSTM unit:

c̃⟨i⟩=tanh(Wc·[c⟨i−1⟩,x⟨i⟩]+bc)

Γ ⟨i⟩
u =σ(Wu·[c⟨i−1⟩,x⟨i⟩]+bu)

Γ
⟨i⟩
f =σ(Wf ·[c⟨i−1⟩,x⟨i⟩]+bf)

Γ ⟨i⟩
o =σ(Wo·[c⟨i−1⟩,x⟨i⟩]+bo)

c⟨i⟩=Γu·c̃⟨i⟩+(1−Γu)·c⟨i−1⟩

a⟨i⟩=tanh(Wa·[a⟨i−1⟩,x⟨i⟩]+ba)

To perform a confidentiality-preserving LSTM evaluation, all these different operations
must be done in the homomorphic domain. In this paper, as a necessary first step
towards running RNNs over FHE, we focus mainly on the two building blocks that
are Sigmoid and Tanh as they are in need to receive satisfactory treatment from a
homomorphic encryption point of view.

3 Discretization Issues in LSTM

In this work, we aim at running LSTM building blocks with TFHE functional boot-
strapping. First, we decompose our input data into a certain basis B before their
encryption (as TFHE functional bootstrapping does not support large plaintexts [13]).
Then, we discretize our functions to encode them as a LUT in the test polynomial
testv. We propose to work with a practical use case that allows studying the loss of
accuracy due to discretization.

3.1 Use Case

We choose to work on the LSTM proposed by J. Woodbridge’s team in [29]. Indeed,
their LSTM takes as input a domain name and determines whether it is a malicious
domain name, which seems appropriate to our study because the LSTM is quite long
and represents real-world usage.

The network is composed of several layers: an embedding layer, an LSTM layer,
and a fully connected layer. The LSTM layer is composed of 128 LSTM units, which
we discretized to support an evaluation with homomorphic encrypted inputs. To do
so, we successfully reproduced their experimental results and computed the accuracy
of the network: 95.6%. We use this accuracy value as a reference when experimenting
with our discretized variants.

Building blocks for LSTM homomorphic evaluation with TFHE 9

3.2 Coping with TFHE Clear Domain Size Constraints

The first step to make the network homomorphic consists in discretizing the different
data. Indeed, let us recall that the ciphertext domainM in TFHE is discrete, generally
of size p=16 or p=32 whereas the inputs of the LSTM layer usually are floating-point
numbers. For a fully homomorphic evaluation of the network, these inputs must
be encrypted, hence discretized on p values. In our case, it means selecting the p
most relevant floating-point values and assigning these values as interpretations of
M= {0, 1p ,

2
p ,··· ,

p−1
p }. To put it another way, one has to choose how to encode p

values of R into M. So we have to find a bijection ι :F→M, where F is a set of p
floating-point numbers. It is the values of F that we have to determine adequately.
Here ”adequately” means that by replacing the inputs (recall that in our network
they correspond to the output of an embedding layer) with the values found for F ,
the network keeps the same predictions as on the original inputs. To do this, we
need to start by looking at what the inputs of the LSTM layer look like in typical
execution. Thus, the coefficients of the network inputs are all between -1 and 1. So
none of the p values will be chosen outside [−1,1]. Looking further, we notice that
their distribution is not uniform. So choosing F ={−1+ 2i

p | i∈{0,···,p−1}} is not
appropriate. We then thought of the k-means clustering method.

K-means clustering is a vector quantization method that aims to partition n
elements into k clusters in which each element belongs to the cluster with the nearest
mean. We used this method reduced to one dimension on our set of inputs in order to
determine p clusters. We then pick out the center of each cluster to obtain our set F .
We replace each input coefficient with the value of its cluster center in F and run the
tests. As we observe that the resulting network accuracy does not change with such
a strong discretization, we then apply the same approach to the coefficients of the
weight matrices and bias vectors. Again, despite such a drastic data discretization,
the tests performed on the new discretized network show that these simplifications
do not influence the final accuracy. Indeed, the discretized network also achieves
95.6% of correct predictions. The discretization prerequisites towards a homomorphic
execution, therefore, appear to be met.

3.3 A Naive Discretization of the Activation Functions

As it stands, TFHE does not allow, even with programmable bootstrapping, to
practically evaluate functions such as Sigmoid or Tanh. Indeed, efficiently evaluating
non-linear functions with high precision remains a challenge for FHE schemes. A
naive approach is then to coarsely approximate the activation functions by much
simpler step functions. Such approaches have already been carried out on CNNs [2],
with encouraging results, but never on RNNs. It is thus legitimate to start by trying
a similar approach for LSTM.

For the Sigmoid which has values in]0,1[, we can choose the Heaviside function,
while for the Tanh with values in]−1,1[, we can choose the Sign function. These
are (very) rough approximations, with two steps, but the question is whether the
network can endure such a simplification of its activation functions. We first perform
discretization tests with clear data with these naive approximations. Contrary to the

10 D. Trama et al.

CNN case, the results proved to be negatively conclusive: discretizing the activation
functions in only two steps leads to a significant loss of accuracy. Indeed, as shown
in the first rows of Table 1, the network accuracy drops to 0.50.

3.4 A Finer Stepwise Approach

More accurate approximations can be obtained by means of stepwise approximation
as initially suggested by Guimarães et al. [17] who presented a 3-steps approximation
of the Sigmoid for illustrative purpose and gave hints at how to implement it by means
of functional bootstrapping. We call these variants 3StepsSigmoid and 3StepsTanh.

Thus, we first considered this approximation but the results, shown in Table 1,
although better than those obtained in the previous section, lead to an unacceptable
10 points loss in network accuracy. We thus investigated a more precise approximation
of our own with two steps on the interval]−∞,−1], an affine part on]−1,1], and
two more steps on]−1,∞[. This leads to the following functions, corresponding to
the curves presented in Fig. 3.

StepSigmoid(x)=0.13·1]−6,−1](x) + 1]−1,1](x)·(0.24x+0.5) + 0.87·1]1,6](x)

+ ·1]6,∞[(x)

StepTanh(x)=−1·1]−∞,−3](x) − 0.875·1]−3,−1](x) + 1]−1,1](x)·(0.76x)
+ 0.92·1]1,6](x) + ·1]6,∞[(x).

where 1F is the indicator function and F is a subset of a set E.

1F : E → {0,1}

x 7→
{
1 if x∈F
0 otherwise.

Again, to determine the optimized values for the steps of our functions, we used

Fig. 3: Our stepwise activation functions StepSigmoid and StepTanh

Building blocks for LSTM homomorphic evaluation with TFHE 11

the k-means clustering method (as in Sect. 3.3) on the clear outputs of Sigmoid and
Tanh, leading us to an optimized discretized version of the activation functions. Using
these two approximations to replace the Sigmoid and Tanh functions, we obtain a
final accuracy of the network of 93.4%, only 2% below the network accuracy under
floating-point precision.

used functions accuracy of the LSTM

Tanh + Sigmoid 0,956

Sign + Heaviside 0,50

3StepsTanh + 3StepsSigmoid [17] 0,832

StepTanh + StepSigmoid 0,934

Table 1: Accuracy of the network depending on the activation functions

Lastly, to allow a homomorphic evaluation under TFHE, it is also necessary
to discretize the affine part of our StepSigmoid and StepTanh in 12 intermediate
steps. Indeed, to minimize the degradation of the accuracy, it is necessary to have a
significant number of steps between −1 and 1 because the prediction of the network
often relies on this interval of values. Thus, we obtain activation functions composed
of 16 steps, corresponding to the p=16 values of the ciphertext space M. The final
discretization is given in Table 2. The accuracy of the network remains unchanged,
with a rate of 93.4% of correct predictions.

Thus with our proposed approximated functions StepSigmoid and StepTanh, we
have a network for which we can investigate whether a homomorphic evaluation is
doable.

4 FHE Execution

This section presents the tree-based method, first introduced in [17]. This approach
uses the output of a LUT to construct a new LUT, and thus allows the evaluation of
functions by means of multiple functional bootstrappings. Each of these bootstrapping
has as input a ciphertext encrypting a plaintext in a basis B.

4.1 Instantiation of the Tree-based Method for the Sigmoid

We now attempt to homomorphically evaluate StepSigmoid and StepTanh by means
of a tree-based bootstrapping method.

Let B,B′,d∈N∗ and m be an integer message. B and B′ are the basis on which to
decompose the message. We then havem=

∑d−1
i=0miB

i, withmi∈J0,B−1K. From this
decomposition, we obtain d TLWE encryptions (c0,c1,···,cd−1) of (m0,m1,···,md−1)
on half of the torus T. We denote f :J0,B−1Kd→J0,B′−1K the target function and
define g as the following bijection:

g : J0,B−1Kd → J0,Bd−1K
(a0,a1,···,ad−1) 7→

∑d−1
i=0 ai·Bi

12 D. Trama et al.

x StepSigmoid(x) x StepTanh(x)
]-∞, -6] 0]-∞, -3] -1
]-6, -1] 0.13]-3, -1] -0.875
]-1, -0.8461] 0.19]-1, -0.8461] -0.74
]-0.8461, -0.6922] 0.24]-0.8461, -0.6922] -0.61
]-0.6922, -0.5383] 0.30]-0.6922, -0.5383] -0.47
]-0.5383, -0.3844] 0.36]-0.5383, -0.3844] -0.37
]-0.3844, -0.2305] 0.41]-0.3844, -0.2305] -0.20
]-0.2305, -0.0766] 0.47]-0.2305, -0.0766] -0.07
]-0.0766, 0.0772] 0.53]-0.0766, 0.0772] 0.07
]0.0772, 0.2310] 0.56]0.0772, 0.2310] 0.20
]0.2310, 0.3848] 0.64]0.2310, 0.3848] 0.33
]0.3848, 0.5386] 0.7]0.3848, 0.5386] 0.47
]0.5386, 0.6924] 0.76]0.5386, 0.6924] 0.60
]0.6924, 0.8462] 0.81]0.6924, 0.8462] 0.74
]0.8462, 1] 0.87]0.8462, 1] 0.875
]1, 6] 0.93]1, 3] 0.92
]6, +∞] 1]3, +∞] 1

Table 2: Our 16-steps StepSigmoid and StepTanh.

We then encode a LUT for f under the form of Bd−1 TRLWE ciphertexts. Each of
these ciphertexts encodes a polynomial Pi such that:

Pi(X)=

B−1∑
j=0

N
B−1∑
k=0

f◦g−1(j ·Bd−1+i)·Xj·NB+k

Then, we apply the BlindRotateAndExtract (the BlindRotate directly followed
by the SampleExtract in position 0) to each test polynomial testv=TRLWE(Pi)
with c0 as a selector. We obtain Bd−1 TLWE ciphertexts, each corresponding to the
encryption of f◦g−1(md−1·Bd−1+i), for i∈J0,Bd−1−1K.

Finally, we use the KeySwitch operation from TLWE to TRLWE to gather them
into Bd−2 encrypted TRLWE, corresponding to the LUT of h, with:

h : J0,B−1Kd−1 → J0,B′−1K
(a0,a1,···,ad−2) 7→ f(a0,a1,···,ad−2,md−1)

We then repeat this operation, using the ciphertext ci at step i, until we obtain a
single TLWE ciphertext of f(m0,m1,··· ,md−1). Note that the tree-based method
must be run independently as many times as the number of digits in the output.

With our plaintext space of size p=16, we opt for a decomposition in a basis B=4,
and so we get d=2. That is, the input of our bootstrapping StepSigmoid corresponds
to encryptions of two integers in Z4. With this setting, we get a better network
accuracy (93.4%) than when using a single integer in basis 16 (90.1%) thanks to lower
bootstrapping error rates for the same parameters set. Indeed, the values of the test
polynomial testv are spread over several vectors rather than encoded into one, which

Building blocks for LSTM homomorphic evaluation with TFHE 13

results in a lower noise tolerance from the BlindRotate (as discussed in Sect. 2.3).
We choose to output one ciphertext in Z16 (B′=16): to avoid running the tree-based
method multiple times. With a one-digit output, we thus need only a single execution.

4.2 Multi-value Bootstrapping

Multi-Value Bootstrapping (MVB) [5] refers to the method for evaluating k different
LUTs on a single input with a single bootstrapping. MVB factors the test polynomial
Pfi associated with the function fi into a product of two polynomials v0 and vi,
where v0 is a common factor to all Pfi. In practice, we have:

(1+X+···+XN−1)·(1−X)≡2 mod (XN+1)

Now by writing Pfi in the form Pfi =
∑N−1

j=0 αi,jX
j with αi,j ∈Z, we get from the

previous equation:

Pfi =
1

2
·(1+X+···+XN−1)·(1−X)·Pfi mod (XN+1)

=v0·vi mod (XN+1)

where:

v0=
1

2
·(1+X+···+XN−1)

vi=αi,0+αi,N−1+(αi,1−αi,0)·X+···+(αi,N−1−αi,N−2)·XN−1.

This factorization makes it possible to compute many LUTs using a unique bootstrap-
ping. Indeed, it is enough to initialize the test polynomial testv with the value of v0
during bootstrapping. Then, after the BlindRotate operation, one has to multiply
the obtained ACC by each vi corresponding to the LUT of fi to get ACCi.

This optimization reduces the number of bootstrapping required for an operation
and, thus, the overall computation time. In our case, the MVB allows us to reduce the
number of bootstrapping from 5 to 2 when evaluating either the Sigmoid or the Tanh.

4.3 Technical Setup

We did our experiments with the default parameters of TFHElib4. The librairy gives
N=1024 and n=630 so that a∈T630 (TLWE) or a∈T1024[X] (TRLWE). We run
our code on a 4-core Intel Core i7-7600U 2.90GHz CPU (with only one core activated)
and 16GiB total system memory with a Ubuntu 20.04.5 LTS server.

In Sect. 3, we successfully discretized Sigmoid into StepSigmoid by encoding the
Sigmoid domain on 16 distinct values. In practice, we set p=32 to be able to encode
these 16 values on the positive half of the torus (i.e. [0,0.5[). As such, we ensure that

4 https://tfhe.github.io/tfhe/ (v1.0.1-36-gbc71bfa).

14 D. Trama et al.

our plaintext space is included in [0,0.5[. So, we are no more limited by negacyclic
constraints [13].

Again, our StepSigmoid returns 16 positive values: {0.53,0.56,0.64,0.7,0.76,0.81,0.87,
1.0,0.47,0.41,0.36,0.3,0.24,0.19,0.13,0} ∈ [0,1]. These values will compose the test
polynomial testv. As we only work with the 16 values of the positive half of the
torus, i.e., { 0

32 ,··· ,
15
32} corresponding to values in [0,0.5[, we must find a way to

also return values in [0.5,1[to reach all the images of our StepSigmoid. To solve
this issue, we divide by 2 the values of the original testv, which are all now ≤0.5:
{0.265,0.28,0.32,0.35,0.38,0.405,0.435,0.5,0.235,0.205,0.18,0.15,0.12,0.095,0.065,0}. In-
deed, these coefficients all correspond to values in [0,0.5[. When used as coefficients for
the test polynomial testv, it allows the algorithm to be run only on the positive half of
the torus. Thanks to this, the final decryption returns a value in { 0

32 ,
1
32 ,···,

15
32}∈ [0,0.5[.

Then, to cover the whole image of our StepSigmoid, we (homomorphically) multiply
this result by 2, which gives us a value in { 0

16 ,
1
16 ,···,

15
16} this time corresponding to

values in [0,1]. Nevertheless, the returned value does not necessarily correspond to
the desired result (as TFHE will only return values in M). Still, it is close enough
(standard deviation of 0.01556) to preserve the accuracy of the network. Indeed, by re-
placing the desired values with the returned ones, the accuracy of the network remains
identical (93.4% of accurate predictions). Additionally, we have to choose the interpre-
tation of the input values. For simplicity’s sake, we decided to take the antecedents
of the values given by StepSigmoid for creating a bijection between these values and
the values in { 0

32 ,···,
15
32}. The resulting implementation is detailed in Table 3.

4.4 Performance Results

When attempting to run an RNN (or any other type of network) in the homomorphic
domain, two metrics are important: the execution time and the consequences of
the required approximations on the final accuracy of the network. In our case, with
respect to performance, we obtained an average execution time of 0.28 secs for a single
evaluation of our StepSigmoid via the tree-based method (Sect. 4.1) and of only 0.15
secs with the MVB (Sect. 4.2). As we only change the values of the test polynomial
testv to evaluate our StepTanh, the execution times are identical for both functions.

With respect to the accuracy, by testing our network in the plaintext domain by
replacing the return values of the StepSigmoid and StepTanh with the values obtained
via our homomorphic execution, the network maintains its accuracy of 93.4%. This
means that the approximations chosen for the Sigmoid and Tanh are good-enough
and do not significantly impact the overall accuracy of the network.

This work is a first step. However, an issue remains. Considering our non-standard
interpretation of the values in {0, 1

16 ,
2
16 ,···,

15
16} in the activation function outputs means

that the subsequent addition and multiplication operations cannot be performed
directly. Thus, several perspectives have to be investigated for the complete execution
of the network. We can either switch back to the standard interpretation at carefully
chosen points during the network execution (which may cost an additional bootstrap-
ping per conversion) or propose new LUT-based operators for performing additions
and multiplications directly in the non-standard interpretation (or a combination of

Building blocks for LSTM homomorphic evaluation with TFHE 15

both). Both approaches will incur additional bootstrappings, which have not been
considered in our coarse-grained estimations.

Value inM×32 Clear interpretation Desired result Achieved result
0 0.12 0.53 0.5625
1 0.24 0.56 0.5625
2 0.58 0.64 0.625
3 0.85 0.70 0.6875
4 1.15 0.76 0.75
5 1.45 0.81 0.75
6 1.90 0.87 0.875
7 7.0 1.0 1.0
8 -0.12 0.47 0.5
9 -0.36 0.41 0.4375
10 -0.58 0.36 0.375
11 -0.85 0.30 0.3125
12 -1.15 0.24 0.25
13 -1.45 0.19 0.1875
14 -1.90 0.13 0.125
15 -7.0 0.0 0.0

Table 3: Evaluation of the homomorphic StepSigmoid

5 Conclusion and Perspectives

First, we have established that, unlike CNNs, LSTMs do not support rough approxima-
tions of their activation functions. The pair (Sign,Heaviside) is thus to be banished from
LSTM implementations over FHE, at least without new LSTM cell designs. Moreover,
our results illustrate that the discretization of the inputs and the internal coefficients of
LSTMs (weight matrices and bias vectors) does not raise any issue with respect to net-
work precision. Second, we propose approximated flavors of the activation functions of
LSTMs. As shown by our experimental results applied to the Sigmoid, the accuracy of
the network remains unchanged. Moreover, the proposed approximations are relatively
efficient when evaluated over FHE, as it, for example, only takes a few hundredths
of a second for one StepSigmoid evaluation. Finally, these unitary timings allow us to
estimate the (sequential) time needed for the complete execution of our reference 128
LSTM units network using our homomorphic activation functions. The results can be
found in Table 4. The given times are coarsely estimated from the execution time of a
single evaluation of the activation functions. If we only count activation functions eval-
uation times, we obtain for the 128 LSTM units a total FHE execution time of 3 mins
using the tree-based method or 1.5 mins with the MVB optimization. This gives an or-
der of magnitude of the time required for an FHE evaluation of the complete network.

Our results are promising and open the door to an end-to-end TFHE evaluation
of LSTMs with practical latencies.

16 D. Trama et al.

number of bootstrapping execution time
tree-based method MVB tree-based method MVB

single StepSigmoidexecution 5 2 0.28s 0.15s
complete LSTM unit execution 5×5=25 2×5=10 1.4s 0.75s
complete network execution 128×25=3200 128×10=1280 179s = 2min59s 96s = 1min36s

Table 4: Execution time results (number of bootstrappings are provided for
informational purposes, as bootstrapping is the most costly operation in TFHE).

References

1. Aharoni, E., Adir, A., Baruch, M., Ezov, G., Farkash, A., Greenberg, L., Masalha,
R., Murik, D., Soceanu, O.: Tile tensors: A versatile data structure with de-
scriptive shapes for homomorphic encryption. CoRR abs/2011.01805 (2020),
https://arxiv.org/abs/2011.01805

2. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast Homomorphic Evaluation
of Deep Discretized Neural Networks. Technical Report Report 2017/1114, IACR
Cryptology ePrint Archive (Nov 2017), https://hal.science/hal-01665330

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical
gapsvp. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO
2012. pp. 868–886. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption
without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference. p. 309–325. ITCS ’12, Association for Computing Machinery, New
York, NY, USA (2012). https://doi.org/10.1145/2090236.2090262

5. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input
homomorphic evaluation and applications. Cryptology ePrint Archive, Paper 2018/622
(2018), https://eprint.iacr.org/2018/622

6. Chabanne, H., Lescuyer, R., Milgram, J., Morel, C., Prouff, E.: Recognition Over
Encrypted Faces: 4th International Conference, MSPN 2018, Paris, France (2019)

7. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving
classification on deep neural network. Cryptology ePrint Archive, Report 2017/035 (2017)

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers (2017)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic
encryption library (August 2016), https://tfhe.github.io/tfhe/

10. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homo-
morphic inference of deep neural networks. Cryptology ePrint Archive, Paper 2021/091
(2021). https://doi.org/10.1007/978-3-030-78086-91, https://eprint.iacr.org/2021/091

11. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Dolev, S., Margalit, O., Pinkas,
B., Schwarzmann, A. (eds.) Cyber Security Cryptography and Machine Learning. pp.
1–19. Springer International Publishing, Cham (2021)

12. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for tfhe. Cryptology ePrint Archive,
Report 2021/729 (2021), https://ia.cr/2021/729

13. Clet, P.E., Zuber, M., Boudguiga, A., Sirdey, R., Gouy-Pailler, C.: Putting up the swiss
army knife of homomorphic calculations by means of tfhe functional bootstrapping.
Cryptology ePrint Archive, Paper 2022/149 (2022), https://eprint.iacr.org/2022/149

Building blocks for LSTM homomorphic evaluation with TFHE 17

14. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. Tech. Rep. MSR-TR-2016-3 (February 2016), https://www.microsoft.com/en-
us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-
high-throughput-and-accuracy/

15. Dua, M., Yadav, R., Mamgai, D., Brodiya, S.: An improved RNN-LSTM based novel
approach for sheet music generation. Procedia Computer Science 171, 465–474 (01
2020). https://doi.org/10.1016/j.procs.2020.04.049

16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144 (2012), https://ia.cr/2012/144

17. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in tfhe.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2021(2),
229–253 (Feb 2021). https://doi.org/10.46586/tches.v2021.i2.229-253

18. Hochreiter, and Jurgen, S.: Long short-term memory. Neural computation 9(8),
1735–1780 (1997)

19. Izabachène, M., Sirdey, R., Zuber, M.: Practical fully homomorphic encryption for fully
masked neural networks. In: Mu, Y., Deng, R.H., Huang, X. (eds.) Cryptology and
Network Security. pp. 24–36. Springer International Publishing, Cham (2019)

20. Jang, J., Lee, Y., Kim, A., Na, B., Yhee, D., Lee, B., Cheon, J.H., Yoon, S.:
Privacy-preserving deep sequential model with matrix homomorphic encryption. In:
Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security. p. 377–391. ASIA CCS ’22, Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3488932.3523253

21. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on
homomorphic encryption: Design and evaluation. In: JMIR medical informatics (2018)

22. Kluczniak, K., Schild, L.: FDFB: Full domain functional bootstrapping towards
practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2021/1135
(2021), https://ia.cr/2021/1135

23. Lev, G., Sadeh, G., Klein, B., Wolf, L.: Rnn fisher vectors for action recognition and
image annotation (12 2015)

24. Madi, A., Sirdey, R., Stan, O.: Computing neural networks with homomorphic
encryption and verifiable computing. In: ACNS Workshops (2020)

25. OPenAI: Chatgpt: Optimizing language models for dialogue (2022),
https://openai.com/blog/chatgpt/

26. Paul, J., Annamalai, M.S.M.S., Ming, W., Badawi, A.A., Veeravalli, B., Aung, K.M.M.:
Privacy-preserving collective learning with homomorphic encryption. IEEE Access 9,
132084–132096 (2021). https://doi.org/10.1109/ACCESS.2021.3114581

27. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional
image generation with clip latents Http://arxiv.org/abs/2204.06125

28. Syed, S.A., Rashid, M., Hussain, S., Zahid, H.: Comparative analysis of cnn and RNN
for voice pathology detection. BioMed Research International 2021 (2021)

29. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain genreation
algorithms with long short-term memory networks (2016)

30. Yang, Z., Xie, X., Shen, H., Chen, S., Zhou, J.: Tota: Fully homomorphic encryption
with smaller parameters and stronger security. Cryptology ePrint Archive, Report
2021/1347 (2021), https://ia.cr/2021/1347

