
HAL Id: cea-04186094
https://cea.hal.science/cea-04186094

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to generate data dependent applications and
handle platform heterogeneity ?

Henri-Pierre Charles, Maha Kooli, Thaddée Bricout, Benjamin Lacour

To cite this version:
Henri-Pierre Charles, Maha Kooli, Thaddée Bricout, Benjamin Lacour. How to generate data de-
pendent applications and handle platform heterogeneity ?. RISC-V Summit Europe 2023, Jun 2023,
Barcelone, Spain. , 2023. �cea-04186094�

https://cea.hal.science/cea-04186094
https://hal.archives-ouvertes.fr


How to generate data dependent applications and
handle platform heterogeneity ?

Henri-Pierre CHARLES, Maha KOOLI, Thaddée BRICOUT, Benjamin LACOUR∗

CEA, LIST, Université Grenoble Alpes, F-38000 Grenoble, France

Abstract

Modern applications are dynamic. There are many dynamicity aspects : dynamic allocation, user chosen
data sets, user chosen parameters, dynamic / interpreted languages, indirect memory access, transprecision
. . .RISCV-V modern processors contains also dynamic behaviour : data and instruction caches, pipelines . . .

Aggressive compilers are unable to catch so many dynamic application aspects, but there is a need to adapt
binary code to those two dynamic aspects because run-time behaviour contains huge optimization opportunities.

HybroGen is an experimental compiler designed to build application with dynamic binary code adaptations.

Introduction

Modern applications behaviour are data dependent be-
cause of the dynamicity of modern applications. This
dynamicity may come from the dynamic memory al-
location, since the size of the data set is generally
chosen by the user, at run-time. Other dynamic be-
haviour may come from indirect memory access used
in complex application : graph handling, sparse com-
putations, data sorting, etc.
In another direction, hardware designers have cho-

sen to help application with statistically helpful ac-
celerators : multilevel data caches, deep instructions
pipelines, branch predictors, etc.
Mixing those two dynamicity axes make the com-

piler tasks very complex. This presentation advocates
the need for modern application to have a possible
application binary dynamic reconfiguration scheme
that can adapt running code to dynamic parameters.

Compilation scenarios and
compiler global view

The figure 1 illustrates our objective regarding the code
generation scenarios for a repetitive call to a computing
kernel : instead of having a static compilation scenario
and repetitively call the same binary kernel (scenario
a), we want to proceed by a dynamic compilation
(scenarios b) and thus have the capacity of either :

1. generate the binary kernel at the beginning (Pro-
gram initialization scenario),

2. generate the binary at each kernel call (Kernel
initialization scenario)

3. or generate the binary during the code execu-
tion at a frequency controlled by the programmer
(Application controlled scenario).

∗Corresponding author: Henri-Pierre.Charles@cea.fr

Figure 1: Compilation scenarios that can be done with
HybroGen

Of course all those scenarios are useful only if we
are able to generate code generators fast enough to
benefit from the faster code generated. This is not the
case for standard dynamic code generators like in Java
JIT or in LLVM. Our code generator is faster than
classical Just in time compiler.
In order to setup those compilation scenarios we

have developed an experimental compilation platform
which is shown on figure 2. It contains many software
blocks that are run at different “compilation times”.

1. At “installation time”, instructions sets are cate-
gorized and put into a relational database.

2. At “source to source” compilation time a part of
the code analysed and transformed in a C run-
time code generator.

3. Then a standard compiler (gcc or clang) trans-
form the C code in a binary form

4. At “run time” the code is executed and the kernel
binary code is regenerated depending on the code
generation scenario. The binary code can be run
on a silicon platform or on an emulator such as
QEMU.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:Henri-Pierre.Charles@cea.fr


Figure 2: Global view of the HybroGen compiler

Those scenarios can be used in many application
examples described in the following paragraphs.

Application examples

Code heterogeneity

We know that the RISCV-V platform can have multiple
ISA variants and the programmer may want to have
the same binary code running on multiple variants of
the RISC-V platform.

This example will use the scenario “program initial-
ization” (1)

Code specialization

In this publication [1], we have shown the possibility
to specialize the running code in order to specialize
for performance depending on the data parameters.

This example use the scenario “Kernel initialization”
(2)

Transprecision

For numeric applications it can be useful to dynami-
cally change the data type at run time. In this pub-
lication we have shown [2] the capacity of HybroGen
to change the datatype of computing variables during
the code execution.
This example uses the scenario “application con-

trolled” (3)

Computing in memory and
Heterogneity

Our compiler can also be used for heterogeneous plat-
forms which use accelerators with multiple ISA. This is
the case for the platform described here [3] which con-
tains a RISCV-V platform and a “compute in memory”
accelerator.

In this scenario we use a more elaborated scenario
where the RISCV-V platform generate instruction for
the accelerator on the fly.

Conclusion

HybroGen is opensource (https://github.com/
CEA-LIST/HybroGen) as well has the QEMU plugin
allowing to functionnaly emulate the “compute in mem-
ory” functionnality
The current public release support multiple archi-

tectures : multiple RISCV variants, ARM AArch64,
Kalray, IBM Power and a CEA “compute in memory”
platform which use a RISCV.

References

[1] Damien Couroussé and Henri-Pierre Charles. “Dynamic
code generation: An experiment on matrix multiplication”.
In: Proceedings of the Work-in-Progress Session, LCTES
(2012).

[2] Julie Dumas et al. “Dynamic compilation for transprecision
applications on heterogeneous platform”. In: Journal of
Low Power Electronics and Applications 11.3 (2021), p. 28.

[3] J-P Noel et al. “A 35.6 TOPS/W/mm2 3-stage pipelined
computational SRAM with adjustable form factor for
highly data-centric applications”. In: IEEE Solid-State
Circuits Letters 3 (2020), pp. 286–289.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/CEA-LIST/HybroGen
https://github.com/CEA-LIST/HybroGen

	Introduction
	Compilation scenarios and compiler global view
	Application examples
	Code heterogeneity
	Code specialization
	Transprecision
	Computing in memory and Heterogneity

	Conclusion

