
HAL Id: cea-04185987
https://cea.hal.science/cea-04185987

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the Robustness of Neural Networks to Noisy
Multi-Level Non-Volatile Memory-based Synapses

Manon Dampfhoffer, Joel Minguet Lopez, Thomas Mesquida, Alexandre
Valentian, Lorena Anghel

To cite this version:
Manon Dampfhoffer, Joel Minguet Lopez, Thomas Mesquida, Alexandre Valentian, Lorena Anghel.
Improving the Robustness of Neural Networks to Noisy Multi-Level Non-Volatile Memory-based
Synapses. 2023 International Joint Conference on Neural Networks (IJCNN), Jun 2023, Gold
Coast, Australia. pp.10.1109/IJCNN54540.2023.10191804, �10.1109/IJCNN54540.2023.10191804�.
�cea-04185987�

https://cea.hal.science/cea-04185987
https://hal.archives-ouvertes.fr

Improving the Robustness of
Neural Networks to Noisy Multi-Level
Non-Volatile Memory-based Synapses

Manon Dampfhoffer
INAC-Spintec, Univ. Grenoble Alpes,

CEA, CNRS, Grenoble INP
Grenoble, France

manon.dampfhoffer@cea.fr

Joel Minguet Lopez
CEA-Leti

Univ. Grenoble Alpes
Grenoble, France

joel.minguetlopez@cea.fr

Thomas Mesquida
CEA-List

Univ. Grenoble Alpes
Grenoble, France

thomas.mesquida@cea.fr

Alexandre Valentian
CEA-List

Univ. Grenoble Alpes
Grenoble, France

alexandre.valentian@cea.fr

Lorena Anghel
INAC-Spintec, Univ. Grenoble Alpes,

CEA, CNRS, Grenoble INP
Grenoble, France

lorena.anghel@phelma.grenoble-inp.fr

Abstract—The implementation of Artificial Neural Networks
(ANNs) using analog Non-Volatile Memories (NVMs) for synaptic
weights storage promises improved energy-efficiency and higher
density compared to fully-digital implementations. However,
NVMs are prone to variability, resulting in a degradation of the
accuracy of ANNs. In this paper, a general methodology to eval-
uate and enhance the accuracy of neural networks implemented
with non-ideal multi-level NVMs is presented. A hardware fault
model distinguishing two types of errors, namely static and
dynamic, capturing the variability of NVMs is proposed. Con-
sidering various neural networks, it is shown that error-aware
training highly increases the robustness to errors compared to
a standard, error-agnostic, training. Moreover, Recurrent NNs
(RNNs) and Spiking NNs (SNNs) are found to be inherently
more robust to dynamic errors than Convolutional NNs (CNNs).
In addition, new insights on the adaptability of neural networks
to noisy multi-level NVMs are presented, which could further
improve their robustness in this context. The methodology aims
at providing tools for hardware-software co-design, paving the
way for a broader use of multi-level NVM-based synapses.

Index Terms—neuromorphic computing, non-volatile memo-
ries, robustness, fault tolerance, spiking neural networks, convo-
lutional neural networks, recurrent neural networks

I. INTRODUCTION

Artificial Neural Networks (ANNs) rely on a large number
of computations and data transfers, making their implemen-
tation in embedded systems, with stringent power, energy
and area constraints, particularly challenging. Neuromorphic
computing, such as bio-inspired algorithms and architectures,
promise to improve the efficiency of hardware implementa-
tions of ANNs [1], [2]. In particular, analog implementations
can achieve significant gains compared to fully-digital imple-
mentations [3]. In such systems, emerging Non-Volatile Mem-
ory (NVMs) devices [4], such as resistive random-access mem-

This work has been partially supported by MIAI @ Grenoble Alpes, (ANR-
19-P3IA-0003).

ories (RRAMs), magnetic RAMs (MRAMs), phase-change
RAMs (PCRAMs) or ferroelectric RAMs (FeRAMs), can be
used to encode synaptic weights of ANNs. The non-volatility
of these devices allows them to retain the information even
if the power supply is turned off, which is important in
Internet of Things applications which wake up on demand.
In addition, multi-level cell programming strategies allow
more than one bit of information to be stored in a single
NVM device, by encoding multiple non-volatile states in the
memory. Therefore, multi-level NVMs allow energy-efficient
and dense hardware implementations of ANNs [5], [6].

Nevertheless, emerging NVMs are prone to variability, in-
ducing the occurence of errors, which can significantly degrade
the accuracy of ANNs. This trend is especially exacerbated
with dense multi-level approaches due to the reduced program-
ming window for each level [7], [8]. Therefore, enhancing the
robustness of neural networks to noisy multi-level weights is
essential to achieve accurate and efficient hardware implemen-
tations of ANNs. In addition, variability in NVMs comes from
different sources and results in different types of errors, which
can have a different impact on the accuracy of ANNs [9], [10].

The robustness of ANNs to NVM non-idealities has been
shown to depend on the topology of ANNs. For instance,
wider and narrower neural networks are more robust than deep
networks [11]. Besides, Spiking Neural Networks (SNNs) are
thought to be particularly robust to noise in synaptic weights,
due to the computations using accumulation over time [12].
Moreover, SNNs appear to be energy-efficient alternatives to
ANNs, due to their brain-like computations and communica-
tions using sparse 1-bit spiking activations [13]. Besides, the
robustness of ANNs and SNNs to noisy synaptic weights have
been compared [12], [14]. However, authors in [12] do not
consider a realistic hardware model, as weights are simulated
with 32-bit floating point precision and only one type of error

is considered. A more realistic hardware model of a RRAM
crossbar implementation for evaluating the robustness of SNNs
and ANNs is presented in an other work [14]. Nevertheless,
none of these works [11], [12], [14] consider the benefits
of injecting noise during training, which has proven very
effective to enhance the fault tolerance of neural networks [15].
Strategies based on injecting noise during training have been
demonstrated with NVM implementations [5], [6], [16], [17].
However, these works focus on a specific hardware implemen-
tation and do not distinguish the effect of the different types of
faults on the neural network performance. In addition, to the
best of our knowledge, there has been no attempt to evaluate
and compare the robustness of convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) in the context
of an implementation with non-ideal NVMs.

In this paper, we propose a methodology to evaluate and
improve the robustness of neural networks to noisy multi-level
NVM-based synapses. This general methodology is applicable
to various types of neural networks and NVM technologies.
Moreover, we show that considering the characteristics of
NVMs during the training of ANNs is essential to optimize the
overall system performance. This work makes the following
contributions:

1) an abstract hardware fault model distinguishing two
types of errors, namely static and dynamic, capturing
the variability of NVMs;

2) a comparison of neural network topologies (CNNs and
RNNs) and coding strategies (ANNs and SNNs), evalu-
ated on a keyword spotting task;

3) a comparison of the performance of the various neural
networks with a standard (error-agnostic) training and
with an adapted (error-aware) training;

4) a deep understanding of the impact of the error-aware
training on the parameters learned by the neural net-
works. These findings could be used to further improve
the performance of neural networks by considering the
specificity of multi-level NVM implementations.

II. METHODS

A. Dataset and Pre-processing

A keyword spotting task from the Google Speech Command
Dataset (GSCD) v2 [18] is used for the experiments (Fig. 1.A).
This allows us to evaluate RNN and CNN topologies, which
are both relevant for this task. GSCD v2 contains 35 different
words of at most 1 second, sampled at 16 kHz. The keyword
spotting task consists of a 12-class classification problem with
10 keywords (“yes”, “no”, “up”, “down”, “left”, “right”, “on”,
“off”, “stop”, “go”), “silence” (background noise) and “un-
known” (non-keyword words) classes. The dataset is provided
with 84,843 training, 9,981 validation and 4,890 test samples.
40 log-Mel features are extracted from the audio signals, with
frequencies ranging from 80Hz to 8kHz, a window size of
30 ms and a hop length of 15 ms. This results in an input
data of size of 67x40 for time x frequency dimensions that
are re-scaled such that each frequency channel has a unit

variance across the time dimension. Data augmentation tech-
niques (background noise, time shift, and time and frequency
masking) are used to improve the accuracy.

B. Neural Networks

Four different models are used in the experiments: a CNN,
a RNN, and their corresponding spiking versions (Fig. 1.A).
The CNN and RNN topologies are chosen to have a similar
number of parameters and operations per inference. The CNN
has three 2D convolutional layers and a final Fully Connected
(FC) layer. The convolutional layers have 16, 32, 64 output
channels respectively, with a fixed kernel size of (6,4), a
stride of (2,2) and a padding of (2,2), with (H,W) being
the time and frequency dimensions respectively. The RNN is
composed of 2 layers of 128 recurrent units with a single
gate similar to the implementation proposed in [19], with
a tanh activation function. Indeed, it has been shown that
single-gated RNNs can achieve the same accuracy as multi-
gated RNN while having a reduced number of parameters and
operations [19]. The RNN has a final FC layer where leaky
neurons integrate the inputs over time, as in [20]. The CNN
uses 2D convolutions, therefore the input data are processed as
images of size time x frequency dimensions. For the RNN, the
40 frequency channels are fed to the network at each timestep.

Spiking versions of the RNN and CNN topologies are also
implemented. Yet, the input data are not converted into spikes
but kept in full precision, as for ANNs, which makes it
possible to obtain sufficient accuracy and to have the same
inputs for the ANNs and SNNs [21]. The Spiking CNN
(SCNN) is composed of Leaky Integrate-and-Fire neurons. 10
timesteps are used to simulate the SNN temporal dynamics,
thus the input data are fed to the SNN 10 times. The Spiking
RNN (SRNN) is composed of SpikGRU units [20], which
corresponds to the spiking version of the single-gated RNN.
In this case, as the input data are already fed in the form of
timesteps, no supplementary timesteps are added as in [20].

C. Multi-Level Non-Volatile Memories Model

Multi-level programming strategy in NVMs allow more than
one bit of information to be stored in a single NVM device,
by encoding multiple non-volatile states in the memory. For
instance, in a resistive NVM (RRAM), the resistance of the
device represents the value to be stored. Thus, multiple values
can be encoded using multiple stable resistive states in the
memory. Multi-level NVMs can be used in different ways to
implement ANNs in hardware. The most mature and widely
used approach consists in using the NVMs only to store
the weights while performing the computation of the matrix
vector multiplication digitally. In-memory computing (IMC) is
another strategy that leverages the physical properties of the
devices to directly perform the matrix vector multiplication
in the memory array [5], [6], [22], [23]. In this study, the
former approach will be modeled, however, the method can
be extended to the latter, as will be discussed.

In this work, one NVM is used to encode each weight of
the neural network. The NVMs are modelled with 8 levels [7],

p1… … … …

Read Errors:
(1) Static errors
(2) Dynamic errors

Keyword
Spotting

Non Volatile
Memories (NVMs)

8-level NVM

Variability

« Left »

« Left » 0,91
« Yes » 0,05

« Stop » 0,02
…

Neural Network

Training:
(1) Error-agnostic
(2) Error-aware

CNN: 3 x Conv2D + FC
SCNN: Spiking CNN
RNN: 2 x 128 R (single-gated) + FC
SRNN: Spiking RNN

p2
p0 p1

p2

p1 p2 p3 p4 p5 p6 p7

1 0.11 9*10-5 2*10-10 ≈0 ≈0 ≈0 ≈0

2 0.23 0.02 4*10-4 2*10-6 1*10-10 1*10-13 ≈0

3 0.23 0.09 0.02 2*10-3 2*10-4 5*10-6 1*10-9

A B

1 2 3

C

Noise
level

N
o

is
e

 le
ve

l

pi = Probability of reading a level at distance i

-4 -3 -2 -1 0 1 2 3
Corresponding
digital values

Fig. 1. Methods. A. Four types of neural networks using 8-level NVMs for weight implementation are simulated on a keyword spotting task. The effects of
two training strategies and two types of errors are considered. B. Error model of the 8-level NVM. Digital values associated to each level in these experiments
are indicated. p0 is the probability to correctly read the level, pi is the probability to read the level at distance i instead of the correct level. C. Probabilities
of errors depending on the distance between two levels (cf B.). Three noise levels are considered (varying sigma in the gaussian distribution).

[8] associated with a corresponding digital value that will be
used as the weight value (see Fig. 1.B). In these experiments,
the digital values are signed integers ranging from -4 to +3.
A gaussian distribution is used to model the variability in
NVMs [24], both with a static and a time varying model.
All levels are assumed to have the same variability and to
be equally distanced inside the reading window. Therefore,
the noise level is determined by the variance of the gaussian
distribution. Note that, for some technologies, the variability
depends on the programmed resistance, and hence is different
between levels [24]. However, by programming the levels such
that the overlap in the gaussian distribution of neighboring
levels is similar (i.e. by adjusting the distance between levels
based on their variability), it is assumed that the NVM would
be equivalent to the one modeled in this study.

Three variances are used to obtain three noise levels
(Fig. 1.C). In Fig. 1.B and C, pi corresponds to the probability
for a given level to be read as the level at distance i (i.e.
it is equal to the area under the curve of a given level that
is between the reading thresholds of a level at distance i).
p0 corresponds to the probability that a given level will be
read correctly. Note that, although all levels have the same
variability, they have different p0, as they do not have the same
neighborhood. For instance, the middle level corresponding to
the digital value “-1” has a p0 equals to 0.50 in the case of
noise level 2. Indeed, it has a probability of 0.23 (p1) to be
read “0” and a probability of 0.23 to be read “-2” (neighbors
at distance 1). Likewise, it has a probability of 0.02 (p2) to be
read “-3” and a probability of 0.02 to be read “1” (neighbors
at distance 2), etc.

An abstract error model covering the variability of NVMs

is defined with two categories of errors, namely static and
dynamic (modeled with the same gaussian distribution). Static
(respectively dynamic) errors are defined as fixed (respectively
changing) during the inference time. When testing with static
errors, the errors are sampled once for each input data and used
for the whole inference. When testing with dynamic errors, an
identical and independent sampling of the error distribution
is performed each time the weight is read. In practice, these
errors result from different physical effects. Depending on
the technology, static errors can correspond to programming
failures, or temporal fluctuations of the device with a timescale
higher than the inference time, such as conductance relaxation
for RRAMs [25], or drift for PCRAMs [26]. Dynamic errors
can correspond to the inherent noisy behavior of analog de-
vices [10], [17], [27]. In addition, read operations on FeRAMs
are destructive [4] and hence errors are always dynamic as the
device is re-programmed after each read. Static and dynamic
errors have to be distinguished as they do not have the
same impact on neural networks, for example in the case
where weights are read several times during the inference.
In this experiment, it is assumed that weights are read at each
timestep for the RNN and at each incoming spike for the
SNNs (assuming an event-based hardware implementation).
On the contrary, for CNNs, it is assumed that the architecture
only reads the weights once per inference due to data re-use
techniques [28]. Note that static and dynamic errors can exist
simultaneously. However, in this study, they are considered
separately to understand their respective impact.

D. Training Procedure

1) General Procedure: The neural networks are imple-
mented based on the NVM model described above. Therefore,
the weights are uniformly quantized with signed integers from
-4 to +3. To allow the network to adjust the range of input
values, a scaling, which multiplies the activations, is defined
for each layer as a learnable parameter. Moreover, a full-
precision version of the weights (also called “hidden weights”)
is kept during the training to allow the network to learn
despite the highly quantized weights, using a strategy similar
to Binarized Neural Networks [29].

All neural networks are trained with backpropagation for
100 epochs and a batch size of 128, with Adam optimizer and
a cosine annealing scheduler. The initial learning rate is set at
0.001, except for the weights, for which it is set at 0.01 (as they
have a higher magnitude than the other parameters). Neural
networks are defined with biases that are not quantized. Biases
are initialized from a uniform distribution U(−1/

√
k, 1/

√
k),

k being the input size of the layer. The scaling parameter
per layer is initialized to 1/

√
k. The “hidden weights” are

initialized from a uniform distribution U(−1, 1). For SNNs,
the time constants are defined as learnable parameters (per
neuron in SRNN and per channel in SCNN) and initialized at
0.8. The voltage threshold for the spiking activation function is
set to 1. As the spiking activation function is not differentiable,
a surrogate gradient is used for backpropagation as in [20].
In all the experiments, for each configuration, the models
are trained five times and the mean accuracy with a 95%
confidence interval is reported. Note that, as randomness is
involved when testing with errors, models are tested ten times
and the mean accuracy is used.

2) Error-aware Training: In the classic error-agnostic train-
ing condition, the models are trained from scratch with no
knowledge of the errors (the forward pass is done without
errors on the weights). In the error-aware training condition,
errors on the weights are also applied during training, both
in the forward pass and the backward pass. Yet, the weight
update is performed on the error-free “hidden weights”, which
are then quantized to obtain the updated quantized weights,
as in [17], [30]. With errors, training from scratch is slower
to converge, especially with a high error rate. Therefore, the
models in the error-aware condition are initialized with the
weights of the models trained in the error-agnostic condition.
The models are trained with static errors, so that only one
set of weights is used per inference. Note that static errors
are sampled for each input data so that the neural network
does not learn which particular synapses are faulty, but rather
that all synapses are potentially faulty. Hence, this training
procedure targets a general robustness to errors rather than
a robustness to a specific configuration of errors [5], [31].
Note that the accuracy can be further increased by re-training
the neural network involving the hardware in the loop. For
instance, authors in [6], [32] propose to fine-tune the neural
network using the measured outputs of the fabricated circuit to
account for its specific errors. However, this strategy is costly

as it must be done after the chip fabrication and repeated for
each hardware unit. Conversely, the only knowledge required
in the proposed methodology is the expected overall noise
level of the devices. Indeed, the noise level used for training
must be similar to the one used for testing.

III. RESULTS

A. Robustness to Errors

The figures of merit of the different neural networks are
provided in Fig. 2. The number of operations per inference and
the number of parameters are given in Fig. 2.B. All models
have a similar number of parameters. On one hand, the ANN
versions (CNN and RNN) have a similar number of operations
per inference. On the other hand, the spiking versions have a
lower number of operations due to the spike sparsity. Indeed,
the SCNN (respectively SRNN) shows 2x (respectively 4x)
reduction in operations compared to the CNN (respectively
RNN).

The accuracy of neural networks on the different train-
ing conditions (error-agnostic and error-aware) is shown in
Fig. 2.A. The two types of errors (static and dynamic) and
the different noise levels (described in Section II.C, noise
level 0 corresponding to the error-free case) are considered.
In the error-agnostic training, the accuracy is largely degraded
by errors, with up to 48% accuracy loss in the case of the
highest noise level. For the CNN, the accuracy degradation
due to static and dynamic errors is the same, as they are
considered identical in this simulation, as explained in Section
II.C. For SNNs and the RNN, the accuracy degradation is less
significant in the case of dynamic errors than static errors. In
addition, CNN topologies (SNN and ANN) seem inherently
more robust to static errors than RNN topologies (SNN and
ANN). Indeed, the CNN and the SCNN have only 30% and
28% accuracy loss (respectively) in the case of highest noise
level, compared to 43% and 48% for the RNN and the SRNN
(respectively).

Error-aware training is very efficient at increasing the ro-
bustness of neural networks to noise, even in the worst noise
level scenario. However, the higher the noise level, the higher
the accuracy gap with the error-free case. Indeed, the accuracy
loss with respect to the error-free case is less than 1% for
the lowest noise level, but up to 3% for the highest noise
level. In addition, with error-aware training, there are no longer
significant differences between CNN and RNN topologies in
terms of robustness to static errors. Nevertheless, SNNs and
the RNN are still significantly more robust than the CNN to
dynamic errors for the highest noise level.

B. Impact of Error-aware Training

The impact of the training condition (error-aware vs. error-
agnostic) on the weights and scaling parameters is shown in
Fig. 3. Fig. 3.A illustrates the role of the weights and scaling
parameters in the computation of the output activation of a
neuron. Input activations are multiplied by the weights and a
scaling factor, which are learned by the neural networks, be-
fore the activation function. Fig. 3.B shows the scaling learned

Error-agnostic training Error-aware training
S

ta
ti
c
 e

rr
o

rs
D

y
n

a
m

ic
 e

rr
o

rs
A B

CNN SCNN RNN SRNN
0

20k

40k

60k

80k

100k

120k

N
b

 p
a

ra
m

s

CNN SCNN RNN SRNN
0

1M

2M

3M

4M

5M

6M

7M

N
b

 o
p

s

0 1 2 3
45

50

55

60

65

70

75

80

85

90

95

A
c

c
u

ra
c

y
 (

%
)

Noise level

 CNN

 SCNN

 RNN

 SRNN

0 1 2 3
45

50

55

60

65

70

75

80

85

90

95
A

c
c

u
ra

c
y

 (
%

)

Noise level

 CNN

 SCNN

 RNN

 SRNN

0 1 2 3

90

91

92

93

94

95

96

A
c

c
u

ra
c
y

 (
%

)

Noise level

0 1 2 3

90

91

92

93

94

95

96

A
c

c
u

ra
c
y

 (
%

)

Noise level

0 1 2 3
45

50

55

60

65

70

75

80

85

90

95

 CNN

 SCNN

 RNN

 SRNN

A
c

c
u

ra
c

y
 (

%
)

Noise level

0 1 2 3
45

50

55

60

65

70

75

80

85

90

95

A
c

c
u

ra
c

y
 (

%
)

Noise level

 CNN

 SCNN

 RNN

 SRNN

Fig. 2. Results. A. Test accuracy of the different neural networks (shown with a 95% confidence interval) on the keyword spotting task. Static (top) and
dynamic (bottom) errors are considered with different noise levels (cf Fig. 2.C), noise level 0 corresponding to the error-free case. Error-agnostic training
(left) and error-aware training (right) are compared. In error-aware training, models are trained to the same noise level as the one used for testing. B. Number
of operations per inference (top) and number of parameters (bottom) of the models.

for the different layers of the neural networks depending on the
noise level during training. For almost all layers, the scaling
learned in the error-aware training is lower than in the error-
agnostic training. Moreover, the higher the noise level during
training, the lower the scaling learned. In addition, in the
error-agnostic condition, the neural networks learn a gaussian-
like weight distribution centered on 0. On the contrary, in the
error-aware condition, the weights are distributed more equally
among levels, except for the levels on the sides (corresponding
to the highest weight magnitude), which are the most used.
Moreover, the average magnitude of the weights learned with
error-aware training is higher than with error-agnostic training.
In addition, as for the scaling, the higher the noise level during
training, the more this trend is exacerbated.

IV. DISCUSSION

A. Robustness to Errors

RNN topologies (ANN and SNN) seem inherently (in
error-agnostic training) less robust to static errors than CNN
topologies (ANN and SNN). This could be explained by the
high temporal depth of RNNs, which could lead to errors
accumulation and hence accuracy degradation [11]. Indeed,
although spatially shallow (they have a small number of
layers), RNNs are very deep in time. In fact, the output from a
recurrent layer is used as input at the next timestep. This means
that, when the RNN is unrolled in time, it has an equivalent
depth of 67 in the temporal dimension (in these experiments

67 timesteps are used). Nevertheless, the results demonstrate
that RNN topologies can recover as much accuracy as CNN
topologies with the error-aware training. Note that the SCNN
also has a temporal depth due to the use of 10 timesteps to
simulate the temporal dynamics of SNN. However the number
of timesteps is small compared to the case of the RNN and
the SRNN. This is in line with the results in [14] showing
that a lower number of timesteps mitigates the accumulation
of errors over time in SNNs.

On the contrary, SNNs and RNNs appear to have a better ro-
bustness to dynamic errors than CNNs, in both error-agnostic
and error-aware training conditions. This is consistent with
the results in [12], where SNNs are found to be more robust
than ANNs to dynamic errors in the case of CNN and FC
topologies. Indeed, as explained in [12], synapses in CNNs
or FCs are used only once per inference. On the contrary,
synapses in SNNs are used as many time as the number of
spikes transmitted across the synapse during inference. In the
case of dynamic errors, each weight read for a given synapse
is sampled from the same gaussian distribution. Therefore,
the more spikes transmitted across the synapse, the more the
gaussian noise is minimized. Note that even if the average
number of spikes per synapse is lower than 1, some neurons
are activated more frequently, resulting in some synapses trans-
mitting a large number of spikes. Nevertheless, this property
does not apply to the case of static errors, where the same
faulty weights are used for the whole inference. In addition,

conv1 conv2 conv3 fc
0.01

0.02

0.03

0.04

0.05

S
c
a
li
n

g

-4 -3 -2 -1 0 1 2 3

0

1

2

3

4
 1

 2

 3

Level

W
e
ig

h
t

M
a
g

n
it

u
d

e
0.0

0.2

0.4

0.6

0.8

1.0

A
v
e

ra
g

e
 E

rr
o

r
M

a
g

n
it

u
d

e

3

ih1 hh1 ih2 hh2 fc

0.02

0.04

0.06

0.08

0.10

0.12

0.14

S
c
a
li
n

g

ih1 hh1 ih2 hh2 fc

0.03

0.04

0.05

0.06

0.07

0.08

S
c
a
li
n

g

conv1 conv2 conv3 fc
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

S
c
a
li
n

g

… … … …

CNN

SCNN

RNN

SRNN

Training
noise level

increase

Training

Noise

Level

Training noise level increase Scaling decrease

A B

C

-4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3

SCNN SRNNRNN

-4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

-4 -3 -2 -1 0 1 2 3

CNN

Training noise level increase Weight magnitude increase

D
Training

Noise

Level

Training
noise level

increase

0

1

2

Weight magnitude increase SNR increase

Noise

Level

-4 -3 -2 -1 0 1 2 3

0

2

4

6

8

10

12

14

16

S
N

R
 (

d
B

)

Level

 1

 2

 3

Noise

Level

|𝑊𝑒𝑟𝑟 − 𝑊||𝑊|

𝑆𝑁𝑅 =
|𝑊|

|𝑊𝑒𝑟𝑟 − 𝑊|

Signal Noise

Fig. 3. Analysis of error training. A. Illustration of the operations for computing the output activation of a neuron. Input activations are multiplied with the
quantized weights (8 levels) and by a scaling (full precision, 1 per layer) to adjust the range of the pre-activation. A bias (full precision, 1 per neuron for RNNs
and 1 per channel for CNNs) is added before the activation function. Weights, scaling and bias are trained. B. Scaling of each layer for the different models
after training, when the models are trained with different noise levels (0 corresponding to error-agnostic training). C. Weight distribution for the different
models after training, when the models are trained with different noise levels (0 corresponding to error-agnostic training). D. (Top) Weight Magnitude and
Average Error Magnitude for each of the 8 NVM levels, for different noise levels. (Bottom) Signal-to-Noise Ratio (SNR) for each of the 8 NVM levels, for
different noise levels. As the level associated with the digital value “0” has a signal amplitude of “0”, its SNR in dB is −∞ and is not represented.

the results show that this property is also applicable to RNNs.
Indeed, RNNs have the same behavior as SNNs in the sense
that a synapse is re-used at each timestep of the inference if
the input activation is non-zero. For comparison, the CNN was
tested with the same implementation as SCNN (i.e. with the
weights being read at each pixel). However, even in this case,
the results obtained with dynamic errors are similar to the

results obtained with static errors. This shows the importance
of the accumulation over time in the same synapse for the
dynamic errors to compensate. Therefore, SNNs seem to be a
good choice for an energy-efficient hardware implementation
as they benefit from an increased robustness to dynamic errors,
as well as a significant reduction in operations per inference.

B. Impact of Error-aware Training

In these experiments, the weights and scaling parameters are
highly impacted by the noise level during training. Indeed, the
higher the noise level during training, the higher the magnitude
of the weights and the lower the scaling learned. Two reasons
can explain the change in weight distribution (and hence mag-
nitude increase). First, in the error-aware training condition,
the weights are distributed more uniformly compared to the
error-agnostic training condition, with less weights at level
“0”. Therefore, the neural network may increase its robustness
to errors by making more weights specialized, as proposed
in [6]. Second, the NVM levels have a different Signal-to-
Noise Ratio (SNR), as shown in Fig 3.D. Indeed, the outer
levels have a high SNR, meaning that the amplitude of the
noise is relatively small compared to the amplitude of the
signal they carry, compared to the levels in the middle. On
one hand, outer levels benefit from a higher weight magnitude
(signal) and a lower error magnitude (noise). On the other
hand, middle levels have a lower magnitude and a higher
error magnitude. Indeed, as shown in Fig 1.B, levels in the
middle have more neighbors compared to outer levels, and
hence more overlap with other levels. Moreover, the error
magnitude between two levels depends only on the distance
between those level (it is equal to the difference between the
two values encoded by these levels). For instance, mistaking
a “-4” for a “-3” has likely less impact than mistaking a “0”
for a “+1”, while these two errors have the same magnitude.
Therefore, by increasing the magnitude of the weights, the
SNR of synapses is increased, and hence the accuracy of the
neural network is improved. Finally, the scaling decrease may
be a consequence of the weight magnitude increase, allowing
to keep the same magnitude of pre-activations.

These findings can allow further improvement of the per-
formance of neural networks in the context of such hardware
implementations. In these experiments, both weights and scal-
ing are important for the network to increase its robustness
to errors. Nevertheless, this result depends on the quantization
method, training procedure and error model. For instance, the
quantization method, such as the choice of the digital values
associated with the levels, has an impact on both the SNR
of the levels and the learned weight distribution, and hence
may be carefully considered. Moreover, having a NVM level
associated with the value “0” may not be the optimal strategy
under high noise level. Indeed, the value “0” is inherently very
sensitive to noise due to its null magnitude. Finally, this shows
the importance of including all possible hyperparameters in the
optimization process, as some hyperparameters may have an
unexpected impact on the robustness of neural networks to
errors.

C. Limitations and Perspectives

This study considers the role of topology (CNN, RNN) and
coding (SNN, ANN) on the robustness of neural networks to
errors, while other factors may be important. For instance,
deeper networks are inherently less robust to errors as errors
accumulate through layers [11]. In these experiments, the

effect of depth in time was considered (with RNNs). However,
the case of deep networks in the spatial dimension (i.e.
having more than a few layers) should be further investigated.
Note that noise injection training strategies have shown high
accuracy for CNNs with 20 [6] or 34 [5] layers, which suggests
that this strategy is also effective for deeper networks in
space. In addition, the role of the activation function could be
further studied. For instance, a higher inherent robustness to
errors (without specific training) was observed for the RNN
when using a tanh activation function rather than a ReLU
or a linear activation function, which suggests that bounded
activation functions increase robustness to errors (in line
with [33]). Besides, the role of the binary activation function
of SNNs in the robustness to errors was not investigated. In
addition, robustness to errors may decrease with increasing
task difficulty.

In this study, the NVM and error model is very general to be
the most independent of the hardware implementation (such
as choice of bit-cell implementation and NVM technology).
Nevertheless, this model can be adapted for each specific case.
For instance, the impact of the combination of the two types
of errors could be studied. Moreover, only errors related to
the memories have been considered, while, depending on the
implementation, other sources of errors can be added to the
model [9], [32], [34]. Finally, although specifically focused
on the case of analog memories only used for weight storage,
the methodology can be extended to the case of IMC. Note
that the way of applying errors to the weights would be
slightly different. Indeed, in these experiments, the errors
are applied in a discretized way as levels are discretized
(for instance, a weight can be read at level “0” or “1”, but
not at an intermediate value). On the contrary, in the case
of IMC, the noisy analog values are directly used in the
computation. In that case, sources of noise coming from the
analog computation should be added to the model [9].

V. CONCLUSION

A general methodology to evaluate and enhance the perfor-
mance of neural networks in the context of synaptic weights
implemented with multi-level NVMs was presented. Error-
aware training is demonstrated to be very effective to improve
the robustness of neural networks to high error rates, making
them perfectly suitable for multi-level NVM implementations.
Moreover, two types of errors capturing the variability of
NVMs, namely static and dynamic errors, have been distin-
guished and have shown a different impact on the accuracy of
neural networks. In particular, SNNs and RNNs appear to be
inherently more robust to dynamic than static errors, due to the
nature of their computation using accumulation over time. In
addition, they are found to be more robust to dynamic errors
than CNNs. Moreover, error-training was observed to change
the weight distribution learned by the neural networks. These
findings are of interest to further improve the performance
of neural networks in this context. The hardware fault model
and the training strategy presented aim at providing tools in a
hardware-software co-design perspective. In this context, this

methodology can pave the way for a broader use of multi-level
NVM-based synapses, promoting highly efficient hardware
implementations of neural networks.

REFERENCES

[1] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, no. 10, pp. 1629–1636, 1990.

[2] S. K. Bose, J. Acharya, and A. Basu, “Is my Neural Network Neuromor-
phic? Taxonomy, Recent Trends and Future Directions in Neuromorphic
Engineering,” in 2019 53rd Asilomar Conference on Signals, Systems,
and Computers, 2019, pp. 1522–1527.

[3] J.-M. Hung, Y.-H. Huang, S.-P. Huang, F.-C. Chang, T.-H. Wen, C.-I. Su,
W.-S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-D. Chih,
T.-Y. J. Chang, and M.-F. Chang, “An 8-Mb DC-Current-Free Binary-to-
8b Precision ReRAM Nonvolatile Computing-in-Memory Macro using
Time-Space-Readout with 1286.4-21.6TOPS/W for Edge-AI Devices,”
in 2022 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 65, 2022, pp. 1–3.

[4] D. Ielmini and S. Ambrogio, “Emerging neuromorphic devices,” Nan-
otechnology, vol. 31, no. 9, p. 092001, Dec. 2019.

[5] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. Nandakumar, C. Piveteau,
M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate
deep neural network inference using computational phase-change mem-
ory,” Nat Commun, vol. 11, no. 1, Dec. 2020.

[6] W. Wan, R. Kubendran, C. J. S. Schaefer, S. B. Eryilmaz, W. Zhang,
D. Wu, S. R. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H. P.
Wong, and G. Cauwenberghs, “A compute-in-memory chip based on
resistive random-access memory,” Nat., vol. 608, no. 7923, pp. 504–
512, 2022.

[7] T. Nirschl, J. Philipp, T. Happ, G. Burr, B. Rajendran, M.-H. Lee,
A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen, E. Joseph, M. Lam-
orey, R. Cheek, S.-H. Chen, S. Zaidi, S. Raoux, Y. Chen, Y. Zhu,
R. Bergmann, H.-L. Lung, and C. Lam, “Write Strategies for 2 and
4-bit Multi-Level Phase-Change Memory,” in 2007 IEEE International
Electron Devices Meeting, 2007, pp. 461–464.

[8] S. Balatti, S. Larentis, D. C. Gilmer, and D. Ielmini, “Multiple Memory
States in Resistive Switching Devices Through Controlled Size and
Orientation of the Conductive Filament,” Advanced Materials, vol. 25,
no. 10, pp. 1474–1478, 2013.

[9] K. Higuchi, C. Matsui, and K. Takeuchi, “Investigation of Memory
Non-Ideality Impacts on Non-Volatile Memory Based Computation-in-
Memory AI Inference by Comprehensive Simulation Platform,” in 2022
IEEE Silicon Nanoelectronics Workshop (SNW), 2022, pp. 1–2.

[10] Z. Yan, X. S. Hu, and Y. Shi, “On the Reliability of Computing-in-
Memory Accelerators for Deep Neural Networks,” in System Depend-
ability and Analytics: Approaching System Dependability from Data,
System and Analytics Perspectives, Cham, 2023, pp. 167–190.

[11] T.-J. Yang and V. Sze, “Design Considerations for Efficient Deep
Neural Networks on Processing-in-Memory Accelerators,” in 2019 IEEE
International Electron Devices Meeting (IEDM), 2019, pp. 22.1.1–
22.1.4.

[12] C. Li, R. Chen, C. Moutafis, and S. Furber, “Robustness to Noisy
Synaptic Weights in Spiking Neural Networks,” in 2020 International
Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8.

[13] M. Dampfhoffer, T. Mesquida, A. Valentian, and L. Anghel, “Are SNNs
Really More Energy-Efficient Than ANNs? An In-Depth Hardware-
Aware Study,” IEEE Transactions on Emerging Topics in Computational
Intelligence, 2022.

[14] A. Bhattacharjee, Y. Kim, A. Moitra, and P. Panda, “Examining the
Robustness of Spiking Neural Networks on Non-Ideal Memristive
Crossbars,” in Proceedings of the ACM/IEEE International Symposium
on Low Power Electronics and Design, ser. ISLPED ’22, 2022.

[15] A. Murray and P. Edwards, “Enhanced MLP performance and fault
tolerance resulting from synaptic weight noise during training,” IEEE
Transactions on Neural Networks, vol. 5, no. 5, pp. 792–802, 1994.

[16] J. Doevenspeck, K. Garello, S. Rao, F. Yasin, S. Couet, G. Jayakumar,
A. Mallik, S. Cosemans, P. Debacker, D. Verkest, R. Lauwereins,
W. Dehaene, and G. Kar, “Multi-pillar SOT-MRAM for Accurate Analog
in-Memory DNN Inference,” in 2021 Symposium on VLSI Technology,
2021, pp. 1–2.

[17] J. Minguet Lopez, Q. Rafhay, M. Dampfhoffer, L. Reganaz, N. Castel-
lani, V. Meli, S. Martin, L. Grenouillet, G. Navarro, T. Magis,
C. Carabasse, T. Hirtzlin, E. Vianello, D. Deleruyelle, J.-M. Portal,
G. Molas, and F. Andrieu, “1S1R Optimization for High-Frequency
Inference on Binarized Spiking Neural Networks,” Advanced Electronic
Materials, p. 2200323, jun 2022.

[18] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018. [Online]. Available: https://arxiv.org/abs/1804.03209

[19] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light Gated Re-
current Units for Speech Recognition,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 2, pp. 92–102, 2018.

[20] M. Dampfhoffer, T. Mesquida, A. Valentian, and L. Anghel, “Investi-
gating Current-Based and Gating Approaches for Accurate and Energy-
Efficient Spiking Recurrent Neural Networks,” in Artificial Neural
Networks and Machine Learning – ICANN 2022. Lecture Notes in
Computer Science, vol 13531, 2022.

[21] L. Deng, Y. Wu, X. Hu, L. Liang, Y. Ding, G. Li, G. Zhao, P. Li, and
Y. Xie, “Rethinking the performance comparison between SNNs and
ANNs,” Neural Networks, vol. 121, pp. 294–307, Jan. 2020.

[22] H. Amrouch, N. Du, A. Gebregiorgis, S. Hamdioui, and I. Polian, “To-
wards Reliable In-Memory Computing:From Emerging Devices to Post-
von-Neumann Architectures,” in 2021 IFIP/IEEE 29th International
Conference on Very Large Scale Integration (VLSI-SoC), 2021, pp. 1–6.

[23] S. Jung, H. Lee, S. Myung, H. Kim, S. Yoon, S.-W. Kwon, Y. Ju,
M. Kim, W. Yi, S. Han, B. Kwon, B. Seo, K. Lee, G.-H. Koh,
K. Lee, Y. Song, C. Choi, D. Ham, and S. Kim, “A crossbar array of
magnetoresistive memory devices for in-memory computing,” Nature,
vol. 601, pp. 211–216, 01 2022.

[24] A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi,
G. Cibrario, K. El Hajjam, R. Crochemore, J. Nodin, P. Olivo, and
L. Perniola, “Fundamental variability limits of filament-based RRAM,”
in 2016 IEEE International Electron Devices Meeting (IEDM), 2016,
pp. 4.7.1–4.7.4.

[25] M. Zhao, H. Wu, B. Gao, Q. Zhang, W. Wu, S. Wang, Y. Xi, D. Wu,
N. Deng, S. Yu, H.-Y. Chen, and H. Qian, “Investigation of statistical
retention of filamentary analog RRAM for neuromophic computing,” in
2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp.
39.4.1–39.4.4.

[26] I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G.
Karpov, “Fundamental drift of parameters in chalcogenide phase change
memory,” Journal of Applied Physics, vol. 102, no. 12, p. 124503, 2007.

[27] L. Reganaz, D. Deleruyelle, Q. Rafhay, J. Minguet Lopez, N. Castellani,
J. F. Nodin, A. Bricalli, G. Piccolboni, G. Molas, and F. Andrieu,
“Investigation of resistance fluctuations in ReRAM: physical origin,
temporal dependence and impact on memory reliability,” in accepted
to 2023 IEEE International Reliability Physics Symposium (IRPS).

[28] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of
Deep Neural Networks,” Synthesis Lectures on Computer Architecture,
vol. 15, no. 2, pp. 1–341, Jun. 2020.

[29] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” 2016.

[30] T. Hirtzlin, M. Bocquet, J.-O. Klein, E. Nowak, E. Vianello, J.-M.
Portal, and D. Querlioz, “Outstanding Bit Error Tolerance of Resistive
RAM-Based Binarized Neural Networks,” in 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS),
2019, pp. 288–292.

[31] S. Burel, A. Evans, and L. Anghel, “MOZART+: Masking Outputs
With Zeros for Improved Architectural Robustness and Testing of DNN
Accelerators,” IEEE Transactions on Device and Materials Reliability,
vol. 22, no. 2, pp. 120–128, 2022.

[32] S. Moon, K. Shin, and D. Jeon, “Enhancing Reliability of Analog
Neural Network Processors,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 6, pp. 1455–1459, 2019.

[33] E. Malekzadeh, N. Rohbani, Z. Lu, and M. Ebrahimi, “The Impact of
Faults on DNNs: A Case Study,” in 2021 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), 2021, pp. 1–6.

[34] E.-I. Vatajelu, G. Di Natale, and L. Anghel, “Special Session: Reliability
of Hardware-Implemented Spiking Neural Networks (SNN),” in 2019
IEEE 37th VLSI Test Symposium (VTS), 2019, pp. 1–8.

