
HAL Id: cea-04185950
https://cea.hal.science/cea-04185950

Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure hardware NTT implementation against SASCA
and CPA attacks

Rafael Carrera Rodriguez, Florent Bruguier, Emanuele Valea, Pascal Benoit

To cite this version:
Rafael Carrera Rodriguez, Florent Bruguier, Emanuele Valea, Pascal Benoit. Secure hardware NTT
implementation against SASCA and CPA attacks. 17e Colloque du GDR SoC2, Jun 2023, Lyon,
France. �cea-04185950�

https://cea.hal.science/cea-04185950
https://hal.archives-ouvertes.fr


Secure hardware NTT implementation against
SASCA and CPA attacks

Rafael Carrera Rodriguez∗†, Florent Bruguier∗, Emanuele Valea†, Pascal Benoit∗
∗LIRMM, University of Montpellier, CNRS, Montpellier, France {rafael.carrera-rodriguez, florent.bruguier, pascal.benoit}@lirmm.fr

†Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France {rafael.carrerarodriguez, emanuele.valea}@cea.fr

Index Terms—PQC, NTT, side-channel attacks, FPGA

I. INTRODUCTION

The Number Theoretic Transform (NTT) is an operation that
allows to reduce the complexity of polynomial multiplications.
It works like a Fast Fourier Transform over the ring of
the integers. Then, the multiplication of two polynomials
in the NTT can be solved by a point-wise multiplication
(PWM), whose complexity is linear with the number of
coefficients. This operation is key in several Post-Quantum
Cryptography (PQC) algorithms like the key-encapsulation
mechanism CRYSTALS-Kyber [1]. Therefore its efficient and
secure implementation is essential for the correct deployment
of quantum-resistant algorithms in physical systems.

The NTT has been subject of research efforts to assess
its vulnerability to side-channel analyses. In 2017, Primas
et. al. [2] presented a Soft-Analytical Side Channel Analysis
(SASCA) against the inverse NTT. It works by representing
the algorithm as a graph and executing the Belief Propaga-
tion algorithm with side-channel information. Additionally,
the PWM operation is also vulnerable to correlation power
analyses (CPA), as shown by [3].

To defend an NTT implementation against such attacks,
several countermeasures are proposed. For the SASCA attack,
countermeasures are focused on breaking the regularity of the
NTT algorithm. One countermeasure is masking the twiddle
factors used in each butterfly operation of NTT [4], by
randomizing the power of the root of unity. To the knowledge
of the authors, no NTT hardware implementation has been
presented with this countermeasure.

In this work, we present a hardware implementation of the
NTT for CRYSTALS-Kyber using the masking countermea-
sure from [4]. Moreover, we show how this countermeasure
can be easily integrated with the blinding countermeasure from
[5] to protect against CPA attacks on the PWM. The level of
security of this implementation is configurable at runtime. This
means that the user can decide the number of masks used at
each round of NTT, making a tradeoff between performance
and security.

II. NTT, SASCA ATTACK AND COUNTERMEASURES

In CRYSTALS-Kyber [1], in order to reduce complexity
for the polynomial multiplications, the authors choose to use
the NTT. However, because of the modulus q chosen in

CRYSTALS-Kyber, the field Zq contains n-th primitive roots
of unity, but not 2n-th primitive ones. Therefore, the NTT of
a polynomial f ∈ Rq is a vector of 128 polynomials of degree
1.

Multiplication of two elements f, g ∈ Rq is a polynomial
multiplication. This operation, transformed in the NTT do-
main, becomes a point-wise multiplication (PWM), which, for
this specific way of executing NTT, is defined as follows for
the even and odd coefficients 2i and 2i+ 1:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1 · ζ2br7(i)+1

ĥ2i+1 = f̂2iĝ2i+1 + f̂2i+1ĝ2i

In [2], the authors presented an attack against the NTT
by performing a Soft-Analytical Side Channel Attack. It is
a profiling attack where both algorithm and side-channel
information is used, by representing the NTT as a factor
graph. Then, the Belief Propagation algorithm is used to
obtain a probability for a guessed coefficient. In [4], the
authors presented a countermeasure against such attack. This
countermeasure works by randomizing the power of ζ, by
adding a random mask in the basic butterfly operation of an
NTT. The operation requirements for each masked butterfly
depend on the masks used on input and output. I.e., if the
inputs and outputs have the same mask or not. This fact itself
depend on the number of masks of each butterfly. Equations
(1) and (2) present two versions of the masked Cooley-
Tukey butterfly, with the same mask at input and same mask
at output (SISO), and different mask at input and different
mask at output (DIDO), respectively. x represents the actual
twiddle factor power, i, j represent previous masks and y, k, l
represent new masks. It can be noticed that in the SISO
case, two multiplications are needed, whereas in the DIDO
case, four multiplications are needed. If an NTT hardware
accelerator has a processing element with four multipliers, in
the case of DIDO, a single operation is performed, while in
the case of SISO, two operations can be performed in parallel.
Moreover, if the NTT is performed in an unprotected fashion,
4 operations can be executed at the same time. The number
of SISO-like or DIDO-like operations in an NTT with the
countermeasure from [4], is directly related with the number
of masks used at each round of the NTT. The authors from
[4], argue that the number of masks increase the security of
such an implementation. Therefore, an user could choose the



number of masks, by making a tradeoff between security and
performance.

c′ = a′ · ζy + b′ · ζx+y (1)
d′ = a′ · ζy − b′ · ζx+y

c′ = a′ · ζ2n−i+k + b′ · ζ2n−j+k+x (2)

d′ = a′ · ζ2n−i+l − b′ · ζ2n−j+l+x

Such countermeasure can be integrated with another coun-
termeasure to prevent CPA attacks in the PWM operation.
Let the output of even and odd coefficients of an NTT, be
masked by powers j and k, f̂ ′

2i = f̂2i · ζj , f̂ ′
2i+1 = f̂2i+1 · ζk.

Then, executing PWM between a masked polynomial f̂ ′ and
a polynomial ĝ, equals to ĥ′

2i = f̂ ′
2i · ĝ2i + f̂ ′

2i+1 · ĝ2i+1 · ζx =

f̂2i · ĝ2i · ζj + f̂2i+1 · ĝ2i+1 · ζk+x and ĥ′
2i+1 = f̂ ′

2i · ĝ2i+1 +

f̂ ′
2i+1 · ĝ2i = f̂2i · ĝ2i+1 · ζj + f̂2i+1 · ĝ2i · ζk. If k = j, then
ĥ′
2i = ĥ2i · ζj , ĥ′

2i+1 = ĥ2i+1 · ζj , and the real polynomial can
be easily retrieved from the masked polynomial. This equality
can be assured if the number of masks is limited to 128. This
countermeasure is similar to the blinding proposed by [5].

III. DESCRIPTION OF ARCHITECTURE

In this work, we propose an NTT module with [4]’s counter-
measure that can execute unprotected NTT and INTT, PWM
and also their masked versions. The user can not only choose
if the operation is protected or not, but can also decide the
number of masks 2i, where 0 < i < 7, to ensure that the
maximum number of masks per round is 128.

To perform all the possible combination of operations a
processing element is designed with two so-called Double
Butterfly Units (DBU), shown in Figure 1. Such DBUs can
perform 2 butterfly operations each in the unprotected mode,
1 when two multiplications are needed and half of a butterfly
operation, when 4 multiplications are needed. For the PWM
case, the DBUs are cascaded to perform the operation with
4 multiplications, by reducing the number of multiplications
from 5 to 4 of with a Karatsuba reduction.

Figure 1: Double Butterfly Unit (DBU) architecture

The rest of the architecture is shown in Figure 2. It is
composed by 6 basic parts: control unit, decoders, memories,
processing element, masking unit and routing units. The con-
trol unit generates the coefficient indexes, the twiddle factor
powers and the configuration signals for all the other modules.

The decoder takes the coefficient indexes and decodes them
for each of the memory banks. The memories are composed
firstly by a primary memory, where the input polynomial is
put for all of the operations and after an in-place strategy of
execution, the output of the operations is stored. Then, there is
the secondary memory, that stores the second polynomial for a
PWM operation. Finally, the twiddle factor ROM, that contains
all the possible 256 factors. The masking unit is charged of
taking the actual power of the twiddle factor and mask it with
random values, according to instructions from the control unit.
Finally, the routing units direct the data and addresses to the
correct memory banks and the correct inputs of the processing
element.

Figure 2: Full architecture

In order to allow for varying levels of parallelization de-
pending on the butterfly type executed, a special scheduling
of coefficients is used. 8 banks of primary memory are used,
with the scheduling scheme from [6]. This allows to change
the level of parallelism, while still avoiding memory collisions
and read-after-write dependency issues.

A preliminary synthesis of the architecture was done for
a Xilinx Artix-7 FPGA. It uses 4122 LUTs, 1445 FFs, 6
BRAM and 4 DSPs, with a frequency of 133 MHz. If area-time
product (ATP = (LUT + FF ) ∗ Time) is taken to compare
it with NTT implementations that also employ 4 multipliers
for parallelization, our implementation has an overhead from
around 2.3 to 5.4 times. Such an overhead is expected as none
of the compared implementations employ countermeasures
against SASCA or CPA attacks. However, this implementation
is still a work in progress, and work is being done to reduce
the overhead in ATP.

IV. CONCLUSION AND PERSPECTIVE

We present for the first time a hardware implementa-
tion of an NTT polynomial multiplier for CRYSTALS-Kyber
equipped with countermeasures against SASCA and CPA
attacks. It must be stressed that this is a work in progress.
Improvements in area utilization and frequency are expected
in future versions. Moreover, a leakage assessment will be
performed on an FPGA programmed with our implementation,
to verify if security properties are met in a real scenario.



REFERENCES

[1] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
Kyber: Algorithm Specifications and Supporting Documentation,” 2020.
[Online]. Available: https://pq-crystals.org/kyber/.

[2] R. Primas, P. Pessl, and S. Mangard, “Single-Trace Side-Channel Attacks
on Masked Lattice-Based Encryption,” in Lecture Notes in Computer
Science, pp. 513–533, Springer International Publishing, 2017.

[3] C. Mujdei, A. Beckers, J. Bermudo Mera, A. Karmakar, L. Wouters,
and I. Verbauwhede, “Side-channel analysis of lattice-based post-quantum
cryptography: Exploiting polynomial multiplication.” Cryptology ePrint
Archive, Paper 2022/474, 2022.

[4] P. Ravi, R. Poussier, S. Bhasin, and A. Chattopadhyay, “On configurable
sca countermeasures against single trace attacks for the ntt,” in Security,
Privacy, and Applied Cryptography Engineering (L. Batina, S. Picek,
and M. Mondal, eds.), (Cham), pp. 123–146, Springer International
Publishing, 2020.

[5] M.-J. O. Saarinen, “Arithmetic coding and blinding countermeasures for
lattice signatures,” Journal of Cryptographic Engineering, vol. 8, pp. 71–
84, jan 2017.

[6] J. Mu, Y. Ren, W. Wang, Y. Hu, S. Chen, C.-H. Chang, J. Fan,
J. Ye, Y. Cao, H. Li, and X. Li, “Scalable and conflict-free NTT
hardware accelerator design: Methodology, proof and implementation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1–1, 2022.


	Introduction
	NTT, SASCA attack and countermeasures
	Description of architecture
	Conclusion and perspective
	References

