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I. INTRODUCTION

N ext-generation cellular networks are credited to becom- ing the point of convergence of communication and sensing thanks to the availability of high-frequency technologies that will foster the creation of an ecosystem of applications and services exploiting seamless connectivity and data rates at an unprecedented scale [START_REF] Sarieddeen | Next generation terahertz communications: A rendezvous of sensing, imaging, and localization[END_REF], [START_REF] Rajatheva | Scoring the terabit/s goal: Broadband connectivity in 6G[END_REF]. In fact, unlike today's fifth generation (5G) networks, which are primarily designed for wireless communications, it is expected that sixth generation (6G) networks will entail a quantum leap towards the integration of sensing capabilities in handheld devices so that the latter will be fully aware of their surrounding 3D environment (integrated sensing and communication (ISAC)). In this regard, the ability to operate in the Terahertz (THz) band is expected to play a crucial role, as the wide bandwidth available will result in high spatial resolution, and the feasibility of large antenna arrays will enable unprecedented angular resolution [START_REF] Akyildiz | Terahertz band: Next frontier for wireless communications[END_REF]- [START_REF] Shafie | Terahertz Communications for 6G and Beyond Wireless Networks: Challenges, Key Advancements, and Opportunities[END_REF].

Traditionally, the THz band, namely the frequencies in the range 0.1´10 THz, has represented the last gap between radio and optical signals [START_REF] Chaccour | Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing[END_REF], [START_REF] Han | Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis[END_REF]. In the past, the THz gap was due to the challenges associated with developing hardware (such as transceivers and antennas) capable of delivering satisfactory performance at these frequencies. However, the situation is rapidly changing as technological obstacles are being overcome. New applications and services that require tight integration of sensing and communications capabilities are thus becoming possible [START_REF] Elbir | Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications: Model-Based and Model-Free Hybrid Beamforming[END_REF], [START_REF] Chen | A Tutorial on Terahertz-Band Localization for 6G Communication Systems[END_REF]. From this perspective, mobile devices are poised to become exceptional tools for environmental monitoring, leveraging their widespread adoption and the growing integration of embedded sensors [START_REF] Pasolini | Crowd-based cognitive perception of the physical world: Towards the Internet of Senses[END_REF]. However, their potential extends even further: according to the 6G vision, handheld devices are expected to revolutionize our perception of indoor environments and enhance our mobility within them. These devices will autonomously create digital maps of our surroundings and accurately pinpoint our position within the map, without relying on a dedicated positioning infrastructure [START_REF] Pasolini | Crowd-based cognitive perception of the physical world: Towards the Internet of Senses[END_REF]. This perspective motivated our work, which proposes original simultaneous localization and mapping (SLAM) algorithms working on THz signals and evaluates their performance when fed with real measurements taken in an indoor scenario.

Currently, accurate SLAM is practically implemented by means of complex and bulky devices, operated by trained personnel, that incorporate laser-based radars (Lidars) or Visual-SLAM (V-SLAM) cameras [START_REF] Cadena | Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[END_REF]- [START_REF] Fu | Fast ORB-SLAM without keypoint descriptors[END_REF]. Unfortunately, these devices are not only expensive and power-hungry, but also require perfect visibility and must be operated manually, so they are not suitable for incorporation into mobile devices meant to explore the environment automatically.

In this regard, a methodological and technological shift was proposed in [START_REF] Guidi | Personal mobile radars with millimeter-wave massive arrays for indoor mapping[END_REF], [START_REF] Guidi | Indoor environment-adaptive mapping with beamsteering massive arrays[END_REF] to tackle the SLAM problem by introducing the personal radar concept, which concerns the adoption of radio-SLAM (R-SLAM) techniques in handheld devices. Indeed, taking advantage of the fact that evolutionary 5G and beyond-5G scenarios envisage the integration of quasipencil beam antennas at mm-wave and THz bands, it is possible to consider utilizing the same hardware for implementing (personal) radar functionalities, overcoming the limitations of Lidar-based and Visual-based SLAM and taking a significant step in the direction of the "integrated communication and sensing" [START_REF] Li | Integrated sensing and communication in 6G: a prototype of high resolution multichannel THz sensing on portable device[END_REF] paradigm.

According to the personal radar concept, it is thus envi-sioned that mobile devices will be able to accurately scan the environment by transmitting probe radio signals via the generation of narrow radio beams pointing in different directions (beamsteering), and by receiving the signal reflected by the surroundings [START_REF] Guidi | Indoor environment-adaptive mapping with beamsteering massive arrays[END_REF]. Processing such radio echoes will allow the mobile device to retrieve ranging and bearing information, and will make it possible to derive the maps of indoor spaces [START_REF] Pasolini | Crowd-based cognitive perception of the physical world: Towards the Internet of Senses[END_REF], [START_REF] Lotti | Radio Simultaneous Localization and Mapping in the Terahertz Band[END_REF], [START_REF] Barneto | Millimeter-wave Mobile Sensing and Environment Mapping: Models, Algorithms and Validation[END_REF]. Jointly with the generation of the map, the selflocalization of the device within the physical environment is also carried out by the personal radar, which thus turns into an infrastructure-free, zero-cost, non-intrusive, and accurate indoor localization system based on R-SLAM techniques, eliminating the need for additional infrastructure. So far, state-of-the-art SLAM algorithms have been primarily designed for Lidars, which generate a one-dimensional representation of the environment for each complete scan (i.e., after exploring all angular directions). Specifically, a scan vector is produced, containing only the distance (i.e., the range) from the laser source of a single object, if present, in each angular direction. Contrarily, radar measurements are characterized by a richer information content than those of Lidars. In fact, for each complete scan, radars generate a twodimensional representation of the environment, namely, the range-angle matrix, which can ultimately be meant as an image of the surrounding scenario. Indeed, considering the high range-angle resolution expected from THz radars, radio images are anticipated to provide a fairly accurate representation of the surrounding environment. This creates an opportunity to utilize algorithms typically designed for image processing, such as those based on Fourier-Mellin transforms [START_REF] Chen | Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition[END_REF], [START_REF] Reddy | An FFT-based technique for translation, rotation, and scale-invariant image registration[END_REF], for R-SLAM purposes. These algorithms, with appropriate adjustments, are expected to better leverage the complete information contained in radar images compared to algorithms that operate on one-dimensional scan vectors, such as the widely-used laser Scan Matching algorithm [START_REF] Hess | Real-time loop closure in 2D LIDAR SLAM[END_REF].

Along this direction, in this paper we first introduce a Fourier-Mellin-based approach for joint localization and mapping using radio signals in the THz frequency range, also proposing an ad-hoc simplified version tailored for portable devices, where low complexity is an important requirement. Then, the performance of the proposed schemes is assessed using real-world THz radar measurements and is compared with state-of-the-art SLAM techniques, demonstrating the superiority of the proposed approaches. To fully understand the THz backscattering phenomenon, we also provide an experimental characterization of the THz backscattering channel using the same radar.

A. Related Works and Proposed Contribution

Surveys on the general SLAM problem can be found in [START_REF] Chen | A Tutorial on Terahertz-Band Localization for 6G Communication Systems[END_REF], [START_REF] Cadena | Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[END_REF], which provide an overview of various techniques, including FastSLAM, GraphSLAM, and belief propagation SLAM [START_REF] Thrun | The graph SLAM algorithm with applications to large-scale mapping of urban structures[END_REF], [START_REF] Leitinger | A belief propagation algorithm for multipath-based SLAM[END_REF]- [START_REF] Montemerlo | FastSLAM: A factored solution to the simultaneous localization and mapping problem[END_REF]. Initially, R-SLAM was predominantly employed in radar and automotive niche applications [START_REF] Holder | Real-time pose graph SLAM based on radar[END_REF]- [START_REF] Hong | Radar SLAM: A Robust SLAM System for All Weather Conditions[END_REF]. For instance, in [START_REF] Holder | Real-time pose graph SLAM based on radar[END_REF], an algorithm utilizing the iterative closest point (ICP) graph method is presented, which matches consecutive scans obtained from a frequency-modulated continuouswave (FMCW) radar along with odometry information. It exhibits a mean translational error as low as 0.62 m using a real-world dataset at millimeter waves collected in large outdoor areas. A similar graph-based approach is used in [START_REF] Hong | Radar SLAM: A Robust SLAM System for All Weather Conditions[END_REF] to perform outdoor SLAM under diverse weather conditions.

As already pointed out, R-SLAM has recently attracted a lot of interest for its utilization in current and next-generation wireless systems for mobile personal applications. In fact, the literature features several works on SLAM that employ RF signals, including those employed by WiFi, Bluetooth, and LTE technologies. For example, in [START_REF] Mirowski | SignalSLAM: Simultaneous localization and mapping with mixed WiFi, bluetooth, LTE and magnetic signals[END_REF], the authors propose an approach that combines multiple sources of RF signals, such as WiFi, Bluetooth, and 4G LTE, to construct signal or radio maps. Conversely, [START_REF] Wymeersch | Adaptive Detection Probability for mmWave 5G SLAM[END_REF]- [START_REF] Ge | A computationally efficient EK-PMBM filter for bistatic mmwave radio SLAM[END_REF] investigate the utilization of 5G and mmWave technologies for SLAM applications, aiming to localize the mobile user and determine the positions of signal sources. In [START_REF] Barneto | Full Duplex Radio/Radar Technology: The Enabler for Advanced Joint Communication and Sensing[END_REF] a full duplex radio/radar technology is proposed for joint communication and sensing. A method based on fingerprinting can be found in [START_REF] Jang | Indoor Positioning Technologies Without Offline Fingerprinting Map: A Survey[END_REF], whereas the authors in [START_REF] Wymeersch | Radio Localization and Mapping With Reconfigurable Intelligent Surfaces: Challenges, Opportunities, and Research Directions[END_REF], [START_REF] Yang | MetaSLAM: Wireless Simultaneous Localization and Mapping Using Reconfigurable Intelligent Surfaces[END_REF] discuss the possibility to realize R-SLAM-like applications with large intelligent surfaces.

We would like to point out that the common denominator in prior literature on R-SLAM using RF signals, like 5G, is not to localize the user and construct a topological map of the environment (as we do in this paper). Instead, the main focus has been on localizing the user and determining the positions of signal sources (e.g., base stations), or achieving user localization using a single anchor node by exploiting the multipath. The prevailing approach adopted by the majority of studies is to perform R-SLAM by employing Bayesian filtering approaches to detect and track the dominant multipath components [START_REF] Wymeersch | Adaptive Detection Probability for mmWave 5G SLAM[END_REF], [START_REF]High-Accuracy Localization for Assisted Living: 5G systems will turn multipath channels from foe to friend[END_REF]- [START_REF] Barneto | Radio-based Sensing and Environment Mapping in Millimeter-Wave 5G and Beyond Networks[END_REF].

Attempts to merge typical image processing approaches with R-SLAM in the microwave band can be found in [START_REF] Checchin | Radar scan matching SLAM using the Fourier-Mellin transform[END_REF], where the Fourier-Mellin transform is used to register consecutive radar images obtained through an FMCW technology within an EKF-SLAM framework, and in [START_REF] Callmer | Radar SLAM using visual features[END_REF], where the scale-invariant feature transform (SIFT) is adopted to extract trackable features from radar images which are subsequently matched with features from laser scans.

To further improve angular and range precision, THz technology has been mainly investigated for imaging [START_REF] Stantchev | Real-time terahertz imaging with a single-pixel detector[END_REF], [START_REF] Valušis | Roadmap of terahertz imaging 2021[END_REF], and rarely for localization [START_REF] Zheng | Coverage Analysis of Joint Localization and Communication in THz Systems with 3D Arrays[END_REF], but only separately. Recently, a R-SLAM system for indoor flying agents at THz has been investigated in [START_REF] Batra | Indoor THz SAR Trajectory Deviations Effects and Compensation With Passive Sub-mm Localization System[END_REF] which relies on the deployment of passive tags and a synthetic aperture radar capable of millimeter-level localization accuracy. To the authors' knowledge, R-SLAM exploiting the imaging potential at THz has yet to be explored and validated experimentally.

Considering the limitations of the current literature on THz R-SLAM, the main contributions of our work can be summarized as follows.

' We develop an ad-hoc pre-processing scheme, including ghost-effect mitigation (GEM) and noise-masking (NM) strategies, to reduce the presence of outliers and artifacts that might appear in radar measurements, thus selecting the most informative range-angle information to be provided to the R-SLAM algorithm. A simplified version of the previous algorithm is also introduced, involving less computational complexity and thus facilitating its integration into personal devices. ' We provide a joint delay and angular characterization of the backscattering THz channel through an extensive measurement campaign carried out in an indoor environment. To the best of authors' knowledge, even if sub-THz and THz 1-way channels have already been modelled for communication purposes [START_REF] Pometcu | An Indoor Channel Model for High Data-Rate Communications in D-Band[END_REF]- [START_REF] Serghiou | Terahertz Channel Propagation Phenomena, Measurement Techniques and Modeling for 6G Wireless Communication Applications: A Survey, Open Challenges and Future Research Directions[END_REF] and THz backscattering measurements have been recently performed in bistatic configurations [START_REF] Adibelli | THz Bistatic Backscatter Side-Channel Sensing at a Distance[END_REF], the literature still lacks a characterization and understanding of the THz backscattering channel in a quasi-monostatic configuration for R-SLAM-based applications. ' Finally, the performance of the proposed R-SLAM schemes is compared with the state-of-the-art SLAM approach for Lidar measurements, namely the Laser Scan Matching algorithm [START_REF] Hess | Real-time loop closure in 2D LIDAR SLAM[END_REF]. It is worth noting that, to the authors' knowledge, no article provides such a comparison with experimental data at THz. Based on realworld radar measurements, the numerical results show the potential for achieving infrastructure-less indoor localization and mapping using radio-based techniques in the THz frequency range, offering accuracy at the centimeter level and even down to millimeter-level precision. This paper extends our previous works [START_REF] Guidi | Personal mobile radars with millimeter-wave massive arrays for indoor mapping[END_REF], [START_REF] Guidi | Indoor environment-adaptive mapping with beamsteering massive arrays[END_REF], [START_REF] Guerra | Occupancy grid mapping for personal radar applications[END_REF], which focused solely on mapping and targeted systems operating at millimeter waves. In this study, we take a step further by investigating the localization aspect and delving into operations within the THz frequency band, also providing experimental results to support our findings.

The rest of the paper is organized as follows: Sec. III introduces the R-SLAM problem, and radar-signal pre-processing schemes including mapping; Sec. IV describes the relative pose estimation algorithms considered and proposed in this paper; Sec. V illustrates the measurement campaigns and the delay-angular channel characterization; Sec. VI discusses the performance of the proposed R-SLAM algorithms; and Sec. VII draws the conclusions. 1 

B. Notation

Boldface lower-case letters are vectors (e.g., x). In contrast, boldface capital letters are matrices (e.g., A), I N and 0 N are respectively the identity and zero matrices of size N ˆN , while 0 M ˆN is the zero matrix of size M ˆN . The notation a n,m " rAs n,m represents the pn, mqth element of matrix A. p¨q T and p¨q ˚indicate the transpose and complex conjugate operators, respectively. 1 Part of the content of this manuscript appeared in our conference paper [START_REF] Lotti | Radio Simultaneous Localization and Mapping in the Terahertz Band[END_REF], which, however, did not include the original R-SLAM algorithms introduced in this manuscript nor the different scenarios considered here for their experimental validation. This paper also proposes additional results from the backscattering channel characterization campaign.

II. MOVING FROM MM-WAVE R-SLAM TO THZ R-SLAM: ADVANTAGES, DISADVANTAGES, AND CHALLENGES

Transitioning from mmWave R-SLAM to THz R-SLAM entails certain trade-offs. On the one hand, THz R-SLAM suffers from increased path loss, signal blockage, and reduced transmission power, which may constrain its operating range compared to mmWave R-SLAM. Moreover, THz technology is still in its early stages of development, with significant challenges such as the realization of low phase-noise oscillators, efficient power amplifiers, and compact MIMO antennas capable of electronic beamsteering. [START_REF] Akyildiz | 6G and Beyond: The Future of Wireless Communications Systems[END_REF], [START_REF] Boulogeorgos | Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G[END_REF].

On the other hand, however, THz R-SLAM can leverage larger bandwidths to increase spatial accuracy and highly directive antennas with low sidelobes to achieve improved angular resolution and reduce the occurrence of artifacts. Moreover, operating in the THz frequency range opens up new opportunities, as the increased precision of THz radars generates fairly accurate radio images of the environment. This, in turn, allows for the adoption of algorithms, originally conceived for image processing, that can be conveniently adopted for R-SLAM purposes.

It should also be remarked that at mmWave frequencies, reflections from obstacles are predominantly specular in nature. This implies that when a radar signal encounters an obstacle at a high incident angle, it may not be reflected back towards the radar, causing the object to appear transparent. Conversely, at THz frequencies, reflections from obstacles exhibit a predominantly diffuse nature because the wavelength becomes comparable to the roughness of typical materials, whereby the electromagnetic wave scatters in a multitude of directions, thus enhancing the probability of detecting an obstacle even at significant incident angles. These distinct propagation characteristics have a significant impact on the design of SLAM algorithms and their robustness to artifacts.

III. THZ RADIO SLAM

In this section, we introduce the proposed R-SLAM approach tailored to a mobile device offering THz-based radar functionalities. We first formalize the problem statement and then describe the processing chain that, starting with raw radar measurements, leads to the estimation of the user's trajectory and the automatic mapping of the environment.

A. Problem Statement

We consider a 2D scenario in which the state of a mobile user at the (discrete) time instant k, with time step T F , is denoted by

x k " rx k , y k , 9 x k , 9 y k , θ k , 9 θ k s T (1) 
which accounts for the user's position coordinates px k , y k q, orientation θ k and their variation speeds p 9 x k , 9 y k q and 9 θ k , respectively. Moreover, we denote by

p k " rx k , y k , θ k , s T (2) 
the absolute pose of the user.

Our objective is to devise a processing chain that, starting from raw measurements provided by the THz radar, is capable 12)-( 14) that transform the relative pose zk " r dx, dy, dθs T on the absolute pose pk . Possible implementations of the "Pose Estimation" block are depicted in Figs. 34. of estimating in real-time the trajectory of the mobile user up to time k, i.e., the sequence of states x r1:ks (and therefore of poses p r1:ks ), as well as the map of the surrounding environment.

Classical solutions to the joint localization and mapping problem are typically found in the realm of SLAM algorithms, which have been extensively explored in the literature in the context of laser-based measurement sources. In our case, however, the final objective must be achieved starting from radio measurements, which requires ad hoc strategies that fall within the far less investigated R-SLAM field.

B. Pre-Processing of Radar Signals

Radio signals backscattered by the environment have to be properly processed in order to infer the map of the scenario and, simultaneously, track the position of the user. In the following, we will discuss each step of the processing chain, which is depicted in Fig. 1. In order to keep our discussion general, we will not focus on a particular radar technology, but rather we suppose that the radar equipment provides the sampled channel impulse responses (CIRs) of the two-way channel for a set tφ 1 , φ 2 , . . . , φ N u of N angular directions. These can be obtained, for example, using a MIMO radar where the signal emitted by the transmitting antennas and backscattered by the environment is collected by an array of receiving antennas [START_REF] Budge | Basic Radar Analysis[END_REF]. Such outcomes are then processed as described below. How the sampled CIRs were obtained through measurements made in a real environment in the 300 GHz band will be explained in Sec. V.

1) Generation of the Angle-Delay Matrix: As mentioned above, let us assume that the radar sounder outputs M samples, with sampling time T s (time resolution), of the backscatter CIR for N different angles of view φ n uniformly distributed in the range r´90 ˝, 90 ˝s. The magnitudes of these samples are gathered into the Angle-Delay matrix 2) Ghost Effect Mitigation: Ideally, an antenna oriented in a given direction should only receive signals coming from the same direction, i.e., reflected from objects intercepted by the antenna axis. This property is a peculiar feature of Lidars because of the extremely narrow laser beam. Unfortunately, even though very narrow beams can be realized at THz frequencies, unwanted sidelobes of the antenna's radiation pattern might catch also echoes coming from other directions, then making R-SLAM much more challenging than classical Lidar-based SLAM. In fact, the radar might erroneously infer the presence of an object in the direction where the main beam of the antenna is oriented due to echoes coming from other directions, thus showing ghost artifacts [START_REF] Guidi | Joint energy detection and massive array design for localization and mapping[END_REF].

H " t|h n,m |u, n " 1, 2, . . . , N, m " 1, 2, . . . , M (3) 
As shown in Fig. 1, to mitigate this phenomenon a ghosteffect mitigation (GEM) procedure is performed, which operates on each column h m of H, with m " 1, 2, . . . , M . In particular, for each column vector

h m " r|h 1,m |, |h 2,m |, . . . , |h n,m |, . . . |h N,m |s T (4)
of H (that is, for each distance from the radar), the maximum value is determined as

ĥm " maxph m q (5)
where ĥm corresponds to the strongest echo detected at the considered distance. Then, we define a threshold

ξ pGEMq m " η CL ¨ĥ m , 0 ă η CL ď 1 (6) 
such that, for each column vector h m , we operate as follows

|h n,m | " # |h n,m | if |h n,m | ě ξ pGEMq m 0 if |h n,m | ă ξ pGEMq m . (7) 
In other words, by properly defining the parameter η CL , which depends on the sidelobes level, and hence, on the antenna radiation pattern, it is possible to mitigate the presence of artifacts. The rationale behind the GEM method proposed is that it is unlikely that multiple obstacles are present exactly at the same distance from the radar, whereas echoes captured by sidelobes appear exactly at the same distance. Fig. 2 shows an example of the beneficial impact of the GEM algorithm on a matrix H obtained from measurements taken in the 77 GHz band. Although in this paper we operate with measurements taken in the [235 ´320] GHz band, we purposely switched to the 77 GHz band for the purpose of generating Fig. 2 to better highlight the ghost artifact phenomenon, which is visually more evident in the millimeter-wave band because of the lower resolution of the radar.

3) Noise Masking: Another important impairment affecting the accuracy of measurements is the background noise, either received by the antenna or generated by the radar circuitry itself. Radars usually mitigate its impact by running a NM algorithm that eliminates all the signal components that fall below a certain masking threshold. In our case, the NM algorithm operates as follows. First, it detects the peak of the matrix H, that is,

h max " maxpHq . (8) 
Then, similarly to the GEM algorithm, it requires to define the threshold

ξ pNMq " η CF ¨hmax , 0 ă η CF ď 1 (9)
where η CF is a properly chosen parameter that depends on the background noise and it can be based, for instance, on the constant false alarm rate (CFAR) strategy [START_REF] Budge | Basic Radar Analysis[END_REF]. Given this threshold, the matrix H is cleaned of the unwanted noise contribution as follows

|h n,m | " # |h n,m | if |h n,m | ě ξ pNMq 0 if |h n,m | ă ξ pNMq . ( 10 
)
As shown in Fig. 1, after undergoing the GEM and NM processings, the response to matrix H is denoted as F k and is referred to as frame. The subscript k has been introduced to emphasize that a new frame is generated each time the radar performs a complete scan of the environment, which occurs at time instants k T F . As evident in Fig. 1, as soon as a new frame F k is generated, it is passed to the subsequent stage, which is in charge of updating the estimates of the mobile user's trajectory and of the environment map.

C. User's Trajectory Estimation

As shown in Fig. 1, the estimation of the user's trajectory is performed by means of a Kalman filter on the basis of the pose estimates pk obtained by comparing the current frame F k with that of the previous time instant, F k´1 . In this regard, it is worth emphasizing that F k and F k´1 are two-dimensional representations of the scanned area (in polar coordinates), hence they can be meant as "radar images" of the sensed environment in successive instants. This suggested us to derive the pose estimates by means of algorithms that were initially conceived for image processing.

The specific pose estimation algorithms considered in this manuscript, which represent one of the major contributions of our work, deserve detailed descriptions, which are therefore provided in the specially dedicated Section IV. In any case, whatever pose estimation algorithm is adopted, pk is derived starting from the estimated relative pose vector zk " r dx, dy, dθs T [START_REF] Chen | A Tutorial on Terahertz-Band Localization for 6G Communication Systems[END_REF] whose elements are the estimated horizontal shift, vertical shift, and rotation of the current pose with respect to the previous one, all referenced to the radar-based coordinate system, as well as a quality indicator q P r0, 1s of the estimates. It should be emphasized that zk refers to the local coordinate system of the mobile user, i.e., the radar point of view, therefore it has to be transformed into the absolute coordinate system by considering the latest available estimate of the mobile user's rotation θk´1 , that is,

z k " Up θk´1 q zk ( 12 
)
where

Upθq " » - cos θ sin θ 0 ´sin θ cos θ 0 0 0 1 fi fl ( 13 
)
denotes the rotation matrix of angle θ. Given z k , and the previous absolute pose estimate, denoted by pk´1 " rx k´1 , ŷk´1 , θk´1 s T , the current raw absolute pose estimate is pk " pk´1 `zk .

The processing steps outlined in ( 12), [START_REF] Cadena | Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[END_REF], and ( 14) are represented in Fig. 1 by the block labelled Ψ, which receiving as input zk generates as output pk . The latter is then passed to the Kalman filter, which is in charge of the trajectory estimation accounting for the user's mobility model and the quality of the relative pose estimates. In this regard, we point out that when it comes to tracking algorithms, it is customary to consider a Markovian state-space model to describe the evolution of the state, which is based on the following secondorder kinematic linear model [START_REF] Bar-Shalom | Estimation with applications to tracking and navigation: Theory algorithms and software[END_REF], [START_REF] Dardari | Indoor tracking: Theory, methods, and technologies[END_REF] x

k`1 " A x k `wk (15) 
where

A " » - I 2 T F I 2 0 2 0 2 I 2 0 2 0 2 0 2 Ã fi fl ( 16 
)
is the transition matrix and w k " N p0 1ˆ6 ; Qq is the process noise whose covariance matrix Q is [START_REF] Dardari | Indoor tracking: Theory, methods, and technologies[END_REF] Q " » --

w 0 T 3 F 3 I 2 w 0 T 2 F 2 I 2 0 2 w 0 T 2 F 2 I 2 w 0 T F I 2 0 2 0 2 0 2 Q fi ffi fl (17) 
with I N and 0 N being respectively N ˆN identity and zero matrices, w 0 being the power spectral density of the linear acceleration noise, and with à "

" 1 T F 0 1  , Q " « ω θ T 3 F 3 ω θ T 2 F 2 ω θ T 2 F 2 ω θ T F ff ( 18 
)
where w θ is the power spectral density of the angular acceleration noise (process noise), which depends on the expected mobility of the user [START_REF] Dardari | Indoor tracking: Theory, methods, and technologies[END_REF].

The evolution of the absolute state x k can be tracked by means of a Kalman filter, fed step-by-step with the current raw absolute pose estimate, pk , using the following observation model

pk " B x k `νk (19) 
where

B " » - 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 fi fl (20) 
and ν k " N p0 3 ; Rq is the estimation noise modelled as Gaussian random vector with covariance matrix [START_REF] Dardari | Indoor tracking: Theory, methods, and technologies[END_REF] R " diag `σ2

x {q 2 , σ 2 y {q 2 , σ 2 θ {q 2 ˘(21) that accounts for the reliability q of the current relative pose estimate, generated as will be explained in Sec. IV, being σ 2

x " σ 2 y , and σ 2 θ the estimation noise power expected by the specific relative pose estimator. At each time instant k, the Kalman filter provides an estimate xk of the state x k as well as its covariance matrix.

D. Automatic mapping

Concerning the mapping task, in this paper we employ an occupancy grid approach to represent the indoor environment [START_REF] Thrun | Learning metric-topological maps for indoor mobile robot navigation[END_REF]. This approach involves dividing the scenario into a fine grid of cells and solving the problem of determining the occupancy probability of each cell by utilizing measurements and estimated trajectories. In particular, for each cell, the likelihood of its occupancy must be calculated on the basis of the collected observations.

According to [START_REF] Guidi | Personal mobile radars with millimeter-wave massive arrays for indoor mapping[END_REF], the actual map at time instant k can be represented as a vector of cells as 2

m k fi rm 1,k , . . . , m i,k , . . . , m N cell ,k s T P B N cell ( 22 
)
where m i,k P B represents the true occupancy of the i-th cell (m i,k " 0 denotes an empty cell, whereas m i,k " 1 denotes an occupied cell), B is the Boolean domain, and N cell is the total number of considered cells. In the sequel, we consider a stationary map, that is m k " m, @k.

The goal of the mapping algorithm is to infer ( 22) by computing the maximum of the a-posteriori probability mass function (belief) given the history of frame observations and the estimated trajectories (see Fig. 1). Denoting with b k pm i q the belief of occupancy of the i-th cell at time instant k, the following steps are performed:

' Initialization: If no prior map information is available, a possible initialization is b 0 pm i q " 0.5, corresponding to a complete uncertainty, @i " 1, 2, . . . , N cell . ' Scan vector generation: The cleaned Angle-Range matrix F k , which is obtained as the output of the GEM and NM processing at the time instant k, is passed to the mapping algorithm (the Mapping block in Fig. 1), whose first task is to generate a 1-by-N vector of ranges v k similar to the one provided by a Lidar scan. Specifically, v k contains only one range value of the current frame F k for each considered steering angle, i.e., v k "

" v pkq 1 , v pkq 2 , . . . , v pkq N ı
, with v pkq n being the range of the object (if any) seen at the angle φ n by the radar. This result is achieved by comparing each row of the current frame, i.e., f n " r|h n,1 |, |h n,2 |, ¨¨¨|h n,M |s of F k , with a suitable threshold 0 ă η SV ď 1. The distance corresponding to the first element which exceeds η SV ¨fmax , with f max being the maximum value in f n , is saved in v k . Similarly, the angles φ n are collected into the angle vector φ " rφ 1 , φ 2 , . . . , φ N s. The final scan vector at time instant k is given by s k " " v T k , φ T ‰ . ' Log-Odd Update: Starting from s k , the beliefs are updated following a classic occupancy grid algorithm [START_REF] Thrun | Learning metric-topological maps for indoor mobile robot navigation[END_REF].

To avoid numerical instability during calculations, a practical solution is to map the belief into the log-odd quantity k pm i q fi log ˆbk pm i q 1 ´bk pm i q ˙. @ i " 1, 2, . . . , N cell (23) 2 The map might be time-varying due to moving obstacles, such humans or mobile furniture (e.g., chairs). Since the belief can be expressed as in [START_REF] Dardari | Indoor tracking: Theory, methods, and technologies[END_REF]Eq. 12], and by embedding all the prior information into the term k´1 pm i q, (23) becomes:

k pm i q "log ˆp ps k |m i " 1q p ps k |m i " 0q ˙` k´1 pm i q @ i " 1, . . . , N cell (24) 
where p ps k |m i " 1q (p ps k |m i " 0q) is the likelihood function considering the current scan s k given the presence of an occupied (empty) cell in m i . In our case, p ps k |m i " 1q can take two values, that is 0.9 when the polar coordinates of the ith cell are present inside the scan vector s k , and 0.1 otherwise. Finally, the likelihood of having an empty cell is simply given by

p ps k |m i " 0q " 1 ´p ps k |m i " 1q . (25) 
In [START_REF] Reddy | An FFT-based technique for translation, rotation, and scale-invariant image registration[END_REF] we assume that each cell is independent of all the others (including adjacent cells) as for laser observations. Nevertheless, inter-cell correlations can be considered in the observation model to further refine the mapping process [START_REF] Guerra | Occupancy grid mapping for personal radar applications[END_REF].

As a concluding statement regarding the above-described algorithm, we underline that the resulting map is obtained by considering the complete history of measurements collected from distinct radar positions. By capitalizing on the spatial diversity inherent in measurements obtained from various locations, this approach effectively mitigates potential issues stemming from signal blockage, suboptimal antenna radiation patterns, and low reflective characteristics of objects.

IV. RELATIVE POSE ESTIMATION

In this section, we present the details of the we have considered for estimating the relative pose, specifically referring to the Pose Estimation block in Fig. 1. Firstly, we introduce the Laser Scan Matching algorithm commonly adopted in Lidar-based systems, which is considered here as a benchmark. Then, inspired by the possibility of employing algorithms typically used for image processing, we propose a modified version of the Fourier-Mellin algorithm, specifically adapted to operate with signals provided by a THz radar. Finally, we propose a simplified version of the Fourier-Mellinbased algorithm that, having lower computational complexity, is better suited for use in portable devices implementing R-SLAM.

a) Laser Scan Matching Algorithm: This methodology was conceived for Lidar-based systems and it is here considered as a benchmark [START_REF] Hess | Real-time loop closure in 2D LIDAR SLAM[END_REF]. When fed with laser scans, it has been proved to achieve real-time loop closure and 5 cm resolution [START_REF] Hess | Real-time loop closure in 2D LIDAR SLAM[END_REF].

According to this algorithm, the user's relative pose in the current instant k, given by [START_REF] Chen | A Tutorial on Terahertz-Band Localization for 6G Communication Systems[END_REF], is derived starting from the current and the previous scan vectors s k and s k´1 , which are compared to estimate the corresponding translation increments p dx, dyq and rotation increment dθ using a grid-based search. 3 Specifically, the Laser Scan Matching algorithm converts v k , v k´1 and φ into probabilistic grids and finds the pose between 3 The scan vectors s k and s k´1 on which the Laser Scan Matching algorithm operates are derived as explained in Sec.III-D the two scans by correlating their grids [START_REF] Hess | Real-time loop closure in 2D LIDAR SLAM[END_REF]. The interested reader is referred to [START_REF] Clausen | Branch and Bound Algorithms-Principles and Examples[END_REF] for additional details on the strategy adopted by the algorithm to speed up the computation.

b) Fourier-Mellin-based Algorithm: With the goal of achieving improved performance compared to the Laser Scan Matching algorithm, in this paper we propose to estimate the relative pose between two consecutive frames F k and F k´1 by means of the Fourier-Mellin algorithm [START_REF] Chen | Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition[END_REF], [START_REF] Reddy | An FFT-based technique for translation, rotation, and scale-invariant image registration[END_REF], which is an FFT-based method used to register4 two different images searching for the optimal match in the frequency domain. In particular, the objective of the algorithm is to decouple the translation and rotation effects in order to facilitate their estimation.

This algorithm, which was designed to operate on Cartesian images, is here applied to consecutive frames in polar coordinates, which in fact can be interpreted as "radio images" of the environment. For the sake of clarity, in the following, we will highlight the dependence of the elements of F k on the distance ρ and the angle θ by treating the frame as a twodimensional function F k pθ, ρq. It is worth pointing out, in this regard, that ρ and θ are here meant as continuous variables, in contrast with the corresponding discrete variables d m and φ n introduced in Sec. III. This choice is aimed at simplifying the notation in the following analysis, the discrete version of which was implemented in our test bed.

The algorithm we propose consists of the main steps shown in Figs. 34 

where pdx, dyq are the translational offsets and dθ is the rotation angle from instant k ´1 to instant k, the relation between the corresponding 2D Fourier transforms is:

F k pξ, ηq " e ´j2πpξdx`ηdyq F k´1 pξ cospdθq `η sinpdθq, ´ξ sinpdθq `η cospdθqq. (27) 
' Step 3. Given [START_REF] Mullane | A random-finite-set approach to Bayesian SLAM[END_REF], the relation between the magnitudes of F k pξ, ηq and F k´1 pξ, ηq is

M k pξ, ηq " M k´1 pξ cospdθq `η sinpdθq, ´ξ sinpdθq `η cospdθqq. ( 28 
)
From ( 28) one can argue that the magnitude is translation invariant, as it does not depend on pdx, dyq. It turns 
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Fig. 3. Relative pose estimation implemented using the Fourier-Mellin-based algorithm. output is the relative pose zk " r dx, dy, dθs T . The details of the"Rotation Angle Estimator" are depicted in Fig. 4.

out, therefore, that possible differences between M k pξ, ηq and M k´1 pξ, ηq are found to be solely dependent on the rotation dθ. ' Step 4. By expressing [START_REF] Montemerlo | FastSLAM: A factored solution to the simultaneous localization and mapping problem[END_REF] in polar coordinates, it immediately results

M k pθ, ρq " M k´1 pθ ´dθ, ρq (29) 
that represents a convenient formulation for the derivation of the rotation angle dθ. Actually, converting the magnitudes from Cartesian to polar coordinates makes it possible to represent rotations as translations in the angular domain, as evident in [START_REF] Holder | Real-time pose graph SLAM based on radar[END_REF], thus allowing to exploit the translation property of the Fourier transform, as explained in Step 5. ' Step 5. By denoting M k pµ, νq and M k´1 pµ, νq the 2D Fourier transforms of M k pθ, ρq and M k´1 pθ, ρq, respectively, it results

M k pµ, νq " M k´1 pµ, νq e ´j2πνdθ (30) 
that features the nice property of having the rotation angle dθ included only in the exponential function, which can be easily isolated, as shown in Step 6. ' Step 6. By defining the cross-power spectrum CPS k pµ, νq of M k pθ, ρq and M k´1 pθ, ρq as

CPS k pµ, νq " M k pµ, νq M k´1 pµ, νq |M k pµ, νq M k´1 pµ, νq| (31) 
it immediately follows

CPS k pµ, νq " e ´j2πνdθ . ( 32 
)
' Step 7. Taking the inverse Fourier transform of (32) yields a Dirac δ-function centered at dθ. ' Step 8. Finding the location where the maximum of the inverse Fourier transform occurs, allows to derive an estimation dθ of the rotation angle dθ. When dealing with less-than-perfect images, the peak amplitude can serve as a quality indicator q for assessing the accuracy of the relative pose estimation to be used in [START_REF] Lotti | Radio Simultaneous Localization and Mapping in the Terahertz Band[END_REF]. c) Simplified Fourier-Mellin Algorithm: Considering that THz R-SLAM is intended as an additional feature for future portable devices, the objective of minimizing computational effort and, subsequently, energy consumption led us to develop a simpler, in principle less accurate, version of the above described Fourier-Mellin-based algorithm. The basic idea of this new version is to make the rotation-angle estimator (see the dashed red box in Fig. 3) work directly on F k pθ, ρq and F k´1 pθ, ρq, rather than on the magnitude of their Fourier transforms. This means that the steps from 1 to 4 of the original algorithm are skipped, thus leading to the much simpler block scheme shown in Fig. 4. The assumption that makes the simplified algorithm sufficiently accurate is that, passing from F k´1 pθ, ρq to F k pθ, ρq, the impact of translations is much lower than the impact of rotations, so that the Rotation Angle Estimator is not significantly affected by translations. This requires that a sufficiently small sampling time T s is chosen.

Regarding the complexity of the Fourier-Mellin and simplified Fourier-Mellin algorithms, it mainly depends on the number of FFTs involved. Given that the complexity of each FFT is OpN log N q, where N represents the data size, the Step 5

Step 6

Step 7

Step 8 Fourier-Mellin algorithm requires 5 FFT computations for each pose estimation, while the simplified algorithm requires only 3 FFT computations, resulting in a lower overall complexity for the latter. Despite its simplicity, the numerical results section will demonstrate that the simplified algorithm exhibits similar, and in some cases better, performance compared to the Fourier-Mellin-based algorithm.

Remark 1: The block diagram shown in Fig. 1 includes blocks that are specific to the THz band, as well as others that can also be used in the mmWave range. In particular, the macro-block denoted as Trajectory and Map Estimation, which incorporates the Fourier-Mellin algorithm, is specifically designed to leverage the ranging and angular accuracy of THz radars. This is because the Fourier-Mellin algorithm requires a fairly accurate radar image of the environment, which is difficult to obtain with mmWave radars. Contrarily, the blocks labelled as Ghost Effect Mitigation and Noise Masking could also be used to implement mmWave R-SLAM, provided that their parameters are appropriately adjusted.

Remark 2: It is important to highlight that the entire procedure described above relies on the estimation of the impulse response of the backscatter channel, which ultimately consists of the channel state information (CSI). As a result, this approach remains applicable regardless of the waveform utilized or the specific methodology employed to derive the CSI estimate. Indeed, the derivation of the CSI is the basis for most of the (de)modulation schemes proposed for ISAC (e.g., for OFDM).

V. INDOOR BACKSCATTERING CHARACTERIZATION IN

THE THZ BAND This section provides a comprehensive description of the measurement campaigns carried out at THz frequencies, along with the processing techniques employed. The real-world data collected during these campaigns served as input for the R-SLAM algorithms, whose outcomes are presented in Sec. VI.

A. Measurement Set Up

To emulate the radar operation, the measurement setup, shown in Fig. 5, was based on a four-ports Vector Network Analyzer (VNA) together with converters in order to cover the [235 ´320] GHz band. We employed two linearly polarized horn antennas with gain G TX " G RX " 20 dBi and Half Power Beam Width (HPBW) of 18 ˝. The backscatter channel acquisition was operated in a quasi-monostatic configuration, as the TX and RX were co-located on a linear -angular positioner, which allowed mechanical steering and displacement over a 2meter-long X-axis. Acquisitions were managed by an external computer, which was connected to both the VNA and the positioner controller using Ethernet cables.

B. Indoor Measurement Campaigns

Two measurement campaigns were carried out at CEA-Leti in a laboratory/office room (shown in Fig. 6) with a size of 10.2 ˆ8.6 m 2 . In the first measurement campaign, the radar scanned the laboratory in nine positions along a 2-meter straight path with an X-axis step of 0.25 m. This measurement was repeated twice, first with the radar pointed towards the direction of movement (Scenario A), then with the radar pointed perpendicular to the direction of movement (Scenario B).

In second measurement campaign (Scenario C), the radar scanned the environment in 46 positions along an oval path, characterized by diameters of 5 m and 3 m. In the straight segments, the X-axis step size was set at 0.40 m, while in the curved sections, the step sizes varied between 0.23 to 0.27 m to maintain the correlation between the channel responses in adjacent positions.

At each radar location, the positioner rotated the antennas with increments of 10 ˝within the steering range of r´90 ˝, 90 ˝s. To make it easy to read, the pictures of the three scenarios are reported together with the R-SLAM performance in Sec. VI. Specifically, the locations where the radar measurements were taken, denoted positions in the following, are shown in Figs.9 (top), 10 (top) and 11 (top), where they appear as red dots.

C. Generation of the Angle-Delay Matrix

The setup described above emulated a stepped-frequency continuous-waves (SFCWs) radar, with measurements spanning from 235 to 320 GHz and a step size of 10 MHz for each position and steering direction. These measurements yielded the channel frequency responses (CFRs), which were further processed to reduce sidelobe ringing by applying frequency domain filtering. To compute the CIRs, an inverse FFT was performed with a time resolution of T s " 1.56 ps. For R-SLAM purposes, the CIRs were computed for 181 steering angles φ n at each position using an interpolation process with a step size of 1 ˝within the r´90 ˝, 90 ˝s range, and then collected to form the Angle-Delay matrix H.

D. Backscattering Channel Characterization

Figure 7(a) presents an illustrative example of CIRs collected by the radar at position #15 of Scenario C, for 19 steering angles within the range r´90 ˝, 90 ˝s and angular step of 10 ˝. These CIRs, which have been normalized by removing the effect of the TX and RX antenna gains, provide valuable insights into the backscatter characteristics of the surrounding environment and, ultimately, its map. For example, still focusing on the measurements collected at position #15 of Scenario C (see Fig. 7(a)), we were able to derive a preliminary (albeit approximate and incomplete) map of the environment by combining the power delay profiles (PDPs) associated with the CIRs collected from all steering directions [START_REF] Haneda | A statistical spatio-temporal radio channel model for large indoor environments at 60 and 70 ghz[END_REF]. This resulted in the creation of the power angular delay profile (PADP) at the considered position, which allowed an estimate of the map to be derived immediately. In this regard, a visual comparison between the PADP obtained at position #15 and the actual locations of the walls is shown in Fig. 7(b). Each point corresponds to a detected path, characterized by a specific delay and arrival angle, with the color indicating the power normalized relative to the highest path power. Notably, the radar echoes detected are consistent with the expected echoes from the primary scatterers in the environment, namely the walls.

Interestingly, a part of the horizontal wall depicted in Fig. 7(b) shows a lack of backscatter response. It is noted, in this regard, that the wall is made of plasterboard, which has poor reflective properties. Additionally, the undetected part of the wall lacks any objects positioned in front of it that could have triggered radar reflections. It is essential to emphasize, however, that the map depicted in Fig. 7(b) was obtained solely from the measurements provided by the radar at position #15. In contrast, the methodology proposed in this paper derives the map by considering measurements collected throughout the entire radar path, resulting in significantly improved outcomes. In fact, the numerical results reported in Sec.VI will show that the entire wall is successfully mapped, thanks to the measurement taken when the radar gets closer to it.

In order to characterize the backscatter channel, it is of interest to investigate the root mean square (RMS) delay and the angular spread of paths detected after the GEM algorithm 5 . Specifically, for each position within a given scenario (A, B, or C) and considering all the paths collected in the PADP, which accounts for all steering directions, the RMS delay spread is defined as:

τ rms " g f f e ř K k"1 pτ k ´τm q 2 α 2 k ř K k"1 α 2 k ( 33 
)
where τ m is the mean arrival delay defined as

τ m " ř K k"1 τ k α 2 k ř K k"1 α 2 k ( 34 
)
and K, α 2 k , τ k are the number of detected paths, the power, and the arrival delay of the kth path, respectively. Similarly, the angular spread can be computed at each position of a scenario using Fleury's definition, as in [START_REF] Fleury | First-and second-order characterization of direction dispersion and space selectivity in the radio channel[END_REF] σ φ "

g f f e ř K k"1 |e jφ k ´µφ | 2 α 2 k ř K k"1 α 2 k ( 35 
)
where φ k is the arrival angle of the kth path and µ φ is the mean arrival azimuth defined as

µ φ " ř K k"1 e jφ k α 2 k ř K k"1 α 2 k . ( 36 
)
Based on the provided definitions, Fig. 8 displays the empirical cumulative distribution functions (ECDFs) of the RMS delay spread and angular spread of the paths detected in each scenario after applying the GEM algorithm. Since these metrics are calculated by considering all positions within each of the three scenarios depicted in Fig. 9 position and steering angle. Interestingly, these variations can be effectively characterized using a log-normal distribution. Notably, the maximum delay spread is twice the one measured in the classical one-way channel in a similar environment [START_REF] Lotti | Comparison of Indoor Channel Characteristics for Sub-THz Bands from 125 GHz to 300 GHz[END_REF], which is in line with the double convolution of the backscattering channel impulse response. Finally, we point out that the measurement data here discussed are the same used for R-SLAM purposes, which will be the subject of the next section. For the reader's convenience, the settings and parameters value adopted during the measurement campaigns are summarized in Table I.

E. Impact of the scenario on THz R-SLAM.

When operating within the THz frequency range, it could be the case that signal blockage, which becomes increasingly significant at higher frequencies, may impede the detection of objects located further away and potentially obscured by closer ones [START_REF] Lotti | Multiband sub-THz double angular characterization in indoor scenario[END_REF]. In principle, this is a critical issue in the context of environment mapping, as it can result in incomplete representations of the environment. The simplest solution to this problem is to observe the environment from multiple locations and derive the map by leveraging all available measurements, as provided by our methodology. Conversely, the existence of many reflective objects within the sensed area is beneficial for the localization procedure, as it provides the localization algorithm with multiple landmarks that can be utilized to determine the radar's position. This, in turn, enhances the accuracy of mapping, which relies heavily on precise knowledge of the radar's location.

VI. R-SLAM EXPERIMENTAL PERFORMANCE

In this section, we investigate the performance of the R-SLAM algorithms using the radar measurements as input. Since the state x k of the radar at instant k is estimated starting from relative pose estimations, the final estimated trajectory and map will be relative to its initial position. The lower sections of Figs. 9, 10, and 11 show the estimated trajectories derived from measurements taken in the corresponding scenarios depicted in the upper sections of the same figures. These estimated trajectories are then compared to the ground-truth trajectory, represented by the cyan curve. To define the ground-truth trajectory, a reference system was established within the area, with its origin p 0 " px " 0, y " 0q aligned with position #1. The actual coordinates of the radar's placement were determined thanks to the positioner and a laser meter, ensuring an accuracy of 1 mm.

To aid the reader's comprehension of the measurement environment, let us clarify that the wall with the open door in Fig. 6 for different approaches and scenarios is reported in Table II.

The RMSE was calculated using the measured coordinates and those estimated by the algorithm as

RMSE " g f f e 1 N N ÿ i"1 p i ´p i 2 (37)
with N being the number of positions considered in each measurement campaign, p i and pi the ith true and estimated positions of the radar, respectively. All algorithms provide the best trajectory estimation performance in Scenario A depicted in Fig. 9 (the three estimated trajectories appear overlaid with the true trajectory), with a RMSE of 5.7 mm (FM), 5 mm (SFM), and 6.5 cm (LSM). According to the achieved results, the millimeter-level accuracy achieved with FM and SFM is of great interest.

Somewhat more challenging is Scenario B in Fig. 10, where the same trajectory is followed while keeping the radar pointed perpendicular to the direction of movement. In this case, the relative pose relies mainly on CIR variations in the angular domain that might be difficult to be recognized because variations in the incident angle of the electromagnetic waves on walls typically correspond to significant backscatter intensity fluctuations. As a consequence, the RMSEs are higher than those obtained in Scenario A, that is 15 cm (FM), 15 cm (SFM), and 3.3 cm (LSM), denoting a higher sensitivity of FM and SFM algorithms to this effect.

Finally, a more elaborated trajectory following an oval path is considered in Scenario C (Fig. 11), where simultaneous translations and rotations are present. The RMSEs of the trajectory estimation for the three algorithms are 24 cm (FM), 12 cm (SFM), and 74 cm (LSM). Surprisingly, the SFM algorithm outperforms the others, while the LSM algorithm exhibits a relatively high estimation error. This result can be attributed to the fact that, although FM should theoretically provide the best estimate of the relative pose, this holds true only in the case of perfect images, that is, those that precisely correspond to rotated and translated versions of each other. Unfortunately, radar images are far to be perfect because of multipath, noise, and the above-mentioned backscatter intensity fluctuations that create several artifacts. Since FM and the LSM algorithms involve much more processing steps than SFM, the latter proves to be more robust to artifacts.

As far as the mapping is regarded, the color of the estimated map in Figs. 9 (bottom), 10 (bottom) and 11 (bottom) represents the occupancy status: black, grey, and white cells indicate the value of the belief at the end of the mapping process, being equal to 1 (occupied), 0.5 (complete uncertainty), or 0 (empty), respectively. Mapping has been obtained starting from the FM trajectory estimate. In fact, since all algorithms achieved cmlevel accuracies, the maps obtained with SFM and LSM show no significant differences visually. As evident, the estimated maps are consistent with the actual shape of the considered scenario.

In conclusion, these experimental results validate the feasibility of R-SLAM using backscattered signals in the THz band collected by a mobile radar. Furthermore, they demonstrate the potential to achieve cm-level localization accuracy without the need for any dedicated infrastructure.

VII. CONCLUSION

In this paper, we presented an R-SLAM algorithm based on Fourier-Mellin transforms, together with its simplified version, which can operate with signals generated by a mobile radar. An ad-hoc measurement campaign was carried out in the THz band with the aim of characterizing the THz backscattering channel model and assessing the performance of the proposed R-SLAM algorithms in a real-world scenario. The numerical results demonstrate the feasibility of infrastructure-less localization and mapping with a personal radar, in the perspective of 6G systems where integrated communication, localization, and mapping capabilities will be a requirement. Future work will address the problem of absolute pose estimation and improve the robustness to artifacts in radar images. To this purpose, ultra-high gain antennas [START_REF] Koutsos | Ultra-high Gain Transmitarray Antenna for Wireless Backhauling at 280 GHz[END_REF], with HPBW less than 1 ˝, could be used to approximate a near-pencil beam behaviour and reduce the outliers and artifacts in radar measurements, in order to simplify the GEM pre-processing.
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 1 Fig.1. R-SLAM: Proposed processing chain. We denoted with Ψ the operations of (12)-(14) that transform the relative pose zk " r dx, dy, dθs T on the absolute pose pk . Possible implementations of the "Pose Estimation" block are depicted in Figs.3-4. 

  so that the nth row of H contains the magnitudes of M (noisy) samples of the CIR in the angular direction φ n . In particular, for a given angular direction φ n , |h n,m | refers to the time instant t m " T min `pm ´1q T s , m " 1, 2, . . . , M , with T min denoting the minimum two-way propagation delay which is considered to remove the contribution of the direct coupling between the transmitting and receiving antennas of the radar. Clearly, by converting propagation delays into distances between the radar and the reflecting objects, the generic element |h n,m | corresponds to a range d m " d min `pm ´1q d in the angular direction φ n , where d min " c T min {2 is the minimum detection distance, d " c T s {2, and c is the speed of light.

  (a) H matrix before the GEM procedure.(b) H matrix after the GEM procedure.
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 2 Fig. 2. Impact of the GEM procedure. Single obstacle located at three meters in front of the radar working at 77 GHz with η CL " 0.4.
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' Step 9 .FFFF

 9 Given dθ, it is now possible to apply such rotation to F k´1 pθ, ρq, thus obtaining ñ k´1 pθ, ρq, which (ideally) is aligned in the angle domain with F k pθ, ρq.' Step 10. The angle-compensated ñ F k´1 pθ, ρq is then converted from polar to Cartesian coordinates, thus becoming ñ k´1 px, yq, in preparation for the comparison with F k px, yq. ' Step 11. After Steps 9 and 10, F k px, yq is (ideally) a translated replica of ñ k´1 px, yq. The estimation p dx, dyq of the translation offset pdx, dyq can now be derived following the same procedure adopted to estimate the rotation angle dθ, starting from Step 5 to Step 8. To avoid confusing the reader with an overly complicated diagram, these steps have been incorporated into the Translational Offset Estimator block of Fig.3, whose inputs, however, are F k px, yq and ñ k´1 px, yq.
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 45 Fig. 4. Relative pose estimation implemented using the simplified Fourier-Mellin algorithm. The output is the relative pose zk " r dx, dy, dθs T .
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 6 Fig. 6. Pictures of the environment.
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 7 Fig. 7. Normalized CIRs for all steering angles at position #15 of Campaign C (a), with delays mapped into distances; polar representation of the normalized PADP at position #15 of Scenario C compared to the actual map of the environment (b).

Fig. 8 .

 8 Fig. 8. Empirical CDFs of the delay spread and angular spread for all the positions of Campaign A (top), Campaign B (middle), and Campaign C (bottom).
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Fig. 9 .

 9 Fig. 9. Measurement Scenario A (top); Estimated trajectories and map (bottom).

  (a) corresponds to the rightmost vertical wall in Figs. 9 (top), 10 (top) and 11 (top), whereas the wall behind the wide desk in Fig. 6(b) corresponds to the upper horizontal wall in Figs. 9 (top), 10 (top) and 11 (top).The radar trajectories have been estimated using the Fourier-Mellin-based (FM), Simplified Fourier-Mellin (SFM), and the Laser Scan Matching (LSM) algorithms for the relative pose estimation. A summary of the trajectory estimation RMSE
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 10 Fig. 10. Measurement Scenario B (top); Estimated trajectories and map (bottom).
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 11 Fig. 11. Measurement Scenario C (top); Estimated trajectories and map (bottom).
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	processing, that accounts for the specific observation
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  , which are described hereafter.

' Step 1. The current and previous frames F k pθ, ρq and F k´1 pθ, ρq, which clearly refer to a polar coordinate system, are converted into the corresponding images C k px, yq and C k´1 px, yq in Cartesian coordinates. ' Step 2. Given C k px, yq and C k´1 px, yq, the corresponding 2D Fourier transforms F k pξ, ηq and F k´1 pξ, ηq are computed. Assuming that C k px, yq is a perfectly (i.e., not affected by noise and artifacts) rotated and translated replica of C k´1 px, yq, that is C k px, yq " C k´1 px cospdθq `y sinpdθq ´dx, ´x sinpdθq `y cospdθq ´dyq

TABLE I MEASUREMENT

 I CAMPAIGN: PARAMETERS AND SETTINGS

	Description	Parameter	Value
	Measurement setup	
	Frequency sweep range	-	235-320 GHz
	Frequency sweep step	-	10 MHz
	Number of CIR samples	M	8501
	Angular range	-	r´90 ˝, 90 ˝s
	Angular steering step	-	1 Number
	of steering angles	N	181
	Transmit antenna gain	G TX	20 dBi
	Receive antenna gain	G RX	20 dBi
	Half Power Beam Width	HPBW	18 Detection
	threshold	-	-100 dB
	Delay resolution	Ts	1.56 ps
	Measurement data processing	
	NM algorithm threshold	η CF	10 ´2
	GEM algorithm threshold	η CL	0.4
	Scan vector threshold	η SV	0.9
	Kalman filter parameters	
	Power Spectral Density (PSD) of	w 0	10
	the linear acceleration noise		
			´4
	Time step	T F	1 s
	Position estimation error std	σx " σy	4.7 ¨10 ´3 m
	Angle estimation error std	σ θ	1.7 ¨10 ´3 rad

´4

PSD of the angular acceleration noise w θ 10

TABLE II TRAJECTORY

 II ESTIMATION ROOT-MEAN-SQUARE ERROR (RMSE) FOR DIFFERENT APPROACHES AND SCENARIOS.

		Scenario A	Scenario B		Scenario C
	FM	5.7 mm	15 cm		24 cm	
	SFM		5 mm	15 cm		12 cm	
	LSM	6.5 cm	3.3 cm		74 cm	
	-6	-4	-2	0	2	4	6	8
				x [m]				
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Image registration is an image processing technique used to align multiple scenes into a single integrated image, compensating rotations, translations and different scaling.

The characterization of the backscatter channel was performed without using the NM algorithm to avoid the elimination of weak paths, which could potentially be present.
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