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Abstract. Exploratory visual analysis of multidimensional labeled data
is challenging. Multidimensional Projections for labeled data attempt to
separate classes while preserving neighborhoods. In this work, we con-
sider the case where instances are assigned multiple labels with probabili-
ties or weights: for example, the output of a probabilistic classifier, fuzzy
membership functions in fuzzy logic, or the votes of each voters for each
candidate in an election. We propose a new technique to better preserve
neighborhoods of such data. Our experiments show improved qualitative
results compared to unsupervised, and existing dimensionality reduction
techniques.

1 Introduction

Multidimensional Projection (MDP) techniques [1] are used for visualization and
analysis of multidimensional data. They use Dimensionality Reduction (DR)
techniques to visualize the data in a two-dimensional projection space graphically
encoded as a scatterplot.

Supervised learning deals with soft labeling, while in DR, this practice has
to be adopted. Whereas in a traditional scenario, data would each be anno-
tated, with one of several categories, in soft labeling, each sample has partial
membership or assignment into multiple categories. For example, a person may
work part-time in multiple jobs, having multiple job categories, a piece of music
may be a mix of various music style categories, or a handwritten digit may be
in between symbolic writing style categories. The soft labeling may represent
true partial membership, the uncertainty of the annotator, or a combination of
both. Regardless it represents the best available ground truth for the samples
and should be taken into account in DR.

We propose SoftClassNeRV, a supervised DR technique capable of consider-
ing soft classes in the embedding process. With the soft labels as ground truth,
our method works towards avoiding the separation of classes where a continuum
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exists. The soft labels become the main counter for the penalization degree in
the embedding process. We show the essential aspects of our approach in fig. 1.

2 Related work

Unsupervised techniques such as Principal Component Analysis (PCA) [2], Iso-
metric feature mapping (Isomap) [3], Uniform Manifold Approximation and Pro-
jection (UMAP) [4], Stochastic Neighbor Embedding (SNE ) [5], t−distributed
SNE (t-SNE ) [6], Neighborhood Retrieval Visualizer (NeRV ) [7, 8], focus on
multidimensional neighborhoods. Labels are simply ignored, even if this infor-
mation is available.

Supervised techniques such as Neighborhood Component Analysis (NCA)
[9], supervised Isomap (S-Isomap) [10, 11], supervised NeRV (S-NeRV ) [12],
supervised UMAP (S-UMAP) [4] pursue the projection while seeking at the
same time to preserve the class structure. However, those objectives might be
contradictory, leading to class separation in the layout even if they substantially
overlap in the data space. Whatever the method, it is achieved by modifying
the original distances according to classes.

Recently ClassNeRV [13] was proposed to limit over-separation of the classes
by balancing the type of distortion in the stress function. ClassNeRV focuses on
data structure preservation but increases class preservation when it is compatible
with the data organization. Our proposal extends ClassNeRV to soft classes
preserving all information provided in the dataset during the MDP.

3 Supervised MDP without changing original distances

We present here SoftClassNeRVwhich extends the ClassNeRV technique detailed
below.

3.1 ClassNeRV stress function

Neighborhood Embedding (NE) techniques aim at the preservation of the local
manifold structures following the rules indicated through a probabilistic frame-
work. A probabilistic distribution for a point j to the neighborhood of point i
is estimated in the original and projection space. In ClassNeRV [13, 14], this
distribution is denoted in the data space as β i := {β ij} j ̸= i and in the embedded

space as b i := {b ij} j ̸= i, defined as follows:
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where the Greek characters are used exclusively to describe the data space (in-
put) while the Latin letters are used for the embedded space (output). The
distances between points i and j are denoted as ∆ij and Dij . Further, σi and
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Fig. 1: 2D mappings of four Gaussian clusters dataset with several methods. Insert
(a) presents the original dataset. The purple/blue cluster has a hard linear separation,
while the light blue/yellow cluster has a soft linear separation; one cluster is pure
blue and in the last cluster, pink and dark green items overlap. t-SNE (insert (b))
(unsupervised) has flatted these clusters somehow that the intra-class organization is
lost. ClassNeRV (insert (c)) accounts for the hard blue/purple separation but the
embedding of the light blue/yellow cluster is partially mixed. SoftClassNeRV (insert
(d)) reveals that soft linear separation is possible.

si are scale parameters for data space respectively embedded space. ClassNeRV
stress function is defined as a weighted sum over four Bregman (B) divergences:
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ClassNeRV takes advantage of classes to preserve neighborhood structures, thanks
to the trade-off parameters τ ∈ and τ ̸∈, set according to within-class and between-
class relations correspondingly, both belong to the segment [0, 1]. Moreover, with
B-divergence DB = (β ij log (β ij/ bij) + b ij − β ij) the positivity of the stress
function is ensured over the four intervals. When the values for the trade-off
parameters are set to be equal (τ ∈ = τ ̸∈), ClassNeRV reduces to NeRV.

Soft labels provide a superior level of information describing the relations
among points. These points may interact with elements from other classes shar-
ing the same cluster or not. This information cannot be directly included as part
of the input variable as it assumes the order of the labels while they have no spe-
cific ordering. Therefore, we cannot adopt an approach similar to “regression”
by just using weight for each label as additional inputs.

3.2 SoftClassNeRV

As in ClassNeRV, we target the preservation of data structures. In that pursuit,
we take advantage of soft classes to drive the possible distortions where they
impact less the classification. We advocate that the projection should take into
account the soft labels assigned to each instance.

We designate α and γ, two user-defined inputs, taking values within the
segment [0, 1] to tune the degree to which the method is accounting for the



soft labels. Parameter α describes the level of supervision: α = 1 leads to
full supervision while α = 0 corresponds to no supervision at all. Parameter γ
controls the balance between penalization of false and missed neighbors: γ = 0
denotes the least amount of false neighbors while γ = 1 denotes the least amount
of missed neighbors.

We designate ω the soft label assigned to each instance. Further, we deter-
mine the class community, the degree of similarity between two points according
to the soft classes distribution: λij := 1 −

∑
i,j ( |ω i − ω j | / 2 ). Then, we re-

define the stress function with the introduction of a parameter Λ dependent on
the class community and the user-defined parameter:

Λ ∈ := (1− α) γ + αλ. (3)

Therefore, SoftClassNeRV stress function can be recast to a linear summa-
tion over two B-divergences:

ΦSoftClassNeRV =
∑
i

Λ∈DB (β i, bi) +
(
1− Λ∈)DB (bi, β i) . (4)

In ClassNeRV, τ∈ prescribes the penalties degree of false and missed neigh-
bors within classes, while τ ̸∈ prescribes the penalties between classes. In Soft-
ClassNeRV, those parameters balance the contribution of the class commu-
nity has in the embedding process. The connection between ClassNeRV and
SoftClassNeRV is dictated by the synergy between the user defined parameters
α and γ and the trade-off parameters through an internal rescaling process:
τ∈ = (1− α) γ+α and τ ̸∈ = (1− α) γ. Therefore, the method reduces to Class-
NeRVwhen the ground truth is available as hard labels and it leads to NeRV in
the absence of any labels.

4 Experiment

To illustrate the characteristics of our method and to evaluate its performance we
compare it with NeRV (unsupervised) and ClassNeRV (hard class supervised).

The four Gaussian clusters dataset highlights the behavior of the mapping
methods on data with hard and soft labels related or unrelated to the spatial
organization.

The “Pacman” dataset highlights the behavior of projecting data with soft
labels when distortions are unavoidable.

4.1 Datasets

The “four clusters dataset” (fig. 1(a)) embodies Gaussian clusters summing up
to 800 points distributed equally between the clusters. The points are dispersed
in a x−y plane with noise along z−axis. The clusters are split in six unbalanced
classes: a cluster composed purely of one class (purple); a cluster of two hard
classes separated in half by a surface parallel with the x−y plane (purple, blue);
a cluster of two randomly distributed hard classes (dark green, pink) and a
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Fig. 2: Method’s sensitivity to the labels definition is displayed on the “Pacman”
dataset(a) described in section 4.1, the continuum in the green hue codes for the soft
labels between class blue and yellow. The map reached by NeRV (b) (which does not
consider classes) shows overlapping. ClassNeRV (which only consider hard classes)
unnecessary tears the soft class (c). SoftClassNeRV maps accounted for soft classes
which allows tearing the sphere only between yellow and blue classes (d).

cluster exhibiting two soft classes (light blue and yellow) melting into each other
according to a linear function, along z−axis, into a soft representation (encoded
as a continuum of green tints from light blue to yellow). Each point of this
cluster can be seen as a soft distribution of green tints between yellow and blue,
according to their position in the data (original) space relative to the separation
plane.

The “Pacman” dataset embedded in fig. 2 represents a collection of 500 uni-
formly distributed points on the surface of a sphere. The hemispheres identified
along the z−axis embody three categories of classes. One hemisphere is split by
a surface parallel with the x−y plane and in the middle of the z−axis exhibiting
two hard classes (light blue and yellow points). The other hemisphere illustrates
a soft class collection of points (encoded as a continuum of green tints from
light blue to yellow). The level in green tint for each point is determined by the
position on the sphere in rapport with the light blue and yellow classes.

4.2 Discussion

Distortions are unavoidable in the embedding process. The difference among
various embeddings lies in the choice of the type and the position of distortions.

Our experiments show that when soft labels convey the data structure, the
positioning of unavoidable distortions may be directed to a position where they
disturb the mapping less. When soft structures are disregarded, tears or overlaps
may appear anywhere, including where they unnecessarily blur the organization
of classes leading to confusion in the visualization and interpretations process.

5 Conclusion

This work presents an extension of an existing DR technique. Due to the curse
of dimensionality, the incomplete sampling, or the synergy between the dataset



and the technique, distortions are unavoidable in MDP. Our work contributes
in diminishing the severity of distortions for samples annotated with soft labels.
The soft labeling may come from the way the data is annotated or from a
pre-processing step. Moreover, the method provides a way to project the hard
label data, either by reverting to ClassNeRV [13] or with a pre-processing step,
creating subsequent soft labels, for example, a classifier’s output. This technique
may provide another way to visualize incertitude in the data, it may be a way
to visualize and explore the output of a classifier, or it may be a solution to
evaluate different classifiers.
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