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Machine learning without jeopardising the training data
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Several techniques to achieve privacy 2 I.

"Data is the new oil"

• Importance of the data for machine learning and even more for deep learning

Data privacy

• Increasing concern for privacy (GDPR in EU, HIPAA in the USA), especially for military, medical data

VS

• Anonymization: removing information that may enable to identify the person  not sufficient (cf. Netflix prize and Narayanan & Shmatikov, 2008)

• Secure aggregation (masking with noise)

 requires communication between the clients before each learning round

• Homomorphic encryption (HE)

• Differential privacy (DP)

• Numerical measure of the indistinguishability of two adjacent databases → theoretical guarantees

• (ε, δ)-DP :

• In general, DP is achieved by adding some random noise.

• Post-processing does not impact the DP guarantees.

Problem

7 Scenario :

• Several entities owning sensitive data want to collaborate in order to train a model.  e.g., hospitals that have patients' data and wish to train a model to detect a specific disease.
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9 Scenario :

• Several entities owning sensitive data want to collaborate in order to train a model.  e.g., hospitals that have patients' data and wish to train a model to detect a specific disease.

• The data owners do not want to share or outsource their data. → approach : collaborative learning, with use of an aggregation server.

Problem :

The data are sensitive and anyone is a potential adversary.

• Collaborative architecture inspired from Papernot et al., 2016.

• Task of labeling a public unlabeled dataset to train a student model.

• The data owners (teachers) pretrained local models using their sensitive data.

• For each student's query, each teacher votes to label the sample using its local model.

• The aggregation outputs the most frequent class.

• Agnostic to the type of teacher and student models.

• Summing of the noisy counts (one-hot encoded) via homomorphic addition:

• A secure framework 17

• Federated learning (FL) architecture

• DP: distributed addition of Gaussian noise (the server is not trusted for adding the noise). This also requires clipping.

• HE: the noised updates are encrypted before they are sent to the server  the noised updates have to be discretised  quantisation can be viewed as a postprocessing -> no impact on the DP guarantees and

• Same DP guarantees as the Gaussian mechanism, even for colluding participants, just by changing the value of the noise standard deviation in the analysis

• Only homomorphic addition -> mild computational overhead (+3,6% in time)

• Side-effect: the parameters of the model are protected from the server

• The distributed noise generation would allow to use verifiable computing techniques, as in A secure federated learning framework using homomorphic encryption and verifiable computing, Madi et al.(2021) (which lacks DP)

• Secure and verified inference thanks to homomorphic encryption (HE) and verifiable computing (VC)

• Leverages transfer learning (and dimensionality reduction) to simplify computations for HE and VC Two full workflows for collaborative learning addressing a large scope of threats, coming from any honest-but-curious entity.

A secure and verifiable inference process going beyond the honest-butcurious assumption.

Perspectives :

• Lighter argmax operator for HE

• Robust aggregation operator (against Byzantine attacks) easily implementable in HE (no comparison nor division)

 adapt median, Krum

• Verifiable computing for integrity

Thank you for your attention
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Commissariat à l'énergie atomique et aux énergies alternatives

Problem

8 Scenario :

• Several entities owning sensitive data want to collaborate in order to train a model.  e.g., hospitals that have patients' data and wish to train a model to detect a specific disease.

• The data owners do not want to share or outsource their data. → approach : collaborative learning, with use of an aggregation server.

SPEED -data protection

12 Assumption : the server is honest-but-curious. • Poisson distribution is not bounded but the encryption automatically applies a modulo operation  the modulo operation does not affect the DP guarantees (postprocessing) and, in practice, does not affect the model accuracy either

Source of threat