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The present article is dedicated to numerical methods for the simulation of the response of PWR fuel assemblies under external mechanical loading such as earthquakes. It proposes new algorithms to manage impact sequences within the time multiscale resolution of a strongly coupled fluid-structure partitioned problem. Preserving the computational efficiency imposes an adaptive strategy to adjust the time scale to force the solution of the costly pressure problem for the fluid only when it is necessary to account for the brutal variations in the structure acceleration resulting from significant impacts. The adaptation criteria must be built upon a thorough monitoring and characterization of all impacts, including the duration of the flight sequence before it occurs and the relative velocity between impact entities. Finally, solutions to mitigate the consequences of missed and unresolved impacts in time are provided to avoid spurious amplification of the variation of the acceleration under impact in the fluid velocity field through the time integration scheme. This leads to two classes of adaptive time multiscale algorithms, extensively tested and qualified through two chosen cases of growing complexity. The paper is completed by a full experimental validation of the proposed fluid-structure framework with contact and impacts, using the results available for a row of six fuel scale assembly immersed in water and submitted to a seismic excitation on a shaking table.

Introduction

Fuel assemblies in cores of nuclear power plants are immersed in a heat transfer fluid to convey the power produced by the reaction to exchangers and finally to the electricity producing components. In many plant designs and concepts, this fluid is a liquid, strongly interacting with the structure dynamics in the case of external solicitations such as earthquakes. For the case of Pressurize Water Reactors (PWR), where the fluid is highly turbulent water, a model dedicated to the accurate representation of this kind of fluid-structure interaction at the assembly and core level has been proposed in [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]) and validated against experiments for the case of advanced hydraulic couplings between structures and no structure-to-structure interactions such as contact and impacts. This work must be complemented with the management of the latter interactions to cover all the relevant phenomena occurring in a PWR core during a representative dynamic transient. The proposed model was built already including, with no reservation, the possibility for nonlinear time varying kinematic constraints, placing the focus for the current paper on both the numerical performance of the coupled solver in presence of impacts and the global validation of the numerical model with all its features against experiments.

Regarding numerical performance, the first challenge is the efficient management of the different time scales of the problem. The fluid-structure problem is indeed cast a partitioned coupling between an incompressible porous problem for fluid dynamics and a beams and plates problem for the structure involving significantly less degrees of freedom but exhibiting a restrictive stability condition. The latter is related to the chosen explicit time integration for structural motion, well suited to robustly handle the strong nonlinearity of the dynamic problem, both material for the equivalent beam representing a full assembly with internal rod-to-grid friction, and kinematic with numerous contacts and impacts occurring during simulations. Complete discussion and justification of the modelling and algorithmic choices can be found in [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]). The key to ensure the best performance for the coupled resolution is thus to benefit from the more favorable stability condition applying to the fluid problem to reduce the number of required solutions of the pressure problem in the fluid, representing most of the computational cost of a simulation. This time multiscale topic has again already been positively addressed in [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]), but only in the case without contact. Contacts and impacts deeply change the way the various time scales for fluid and structure interact, taking them into account is a complete new and crucial problem to solve for the proposed numerical framework to completely achieve its goals.

Multiscale methods with contacts for time dependant problems is a widely addressed research topic with an extensive literature. We can cite, for a wide view among numerous references, [START_REF] Pinto Carvalho | An efficient multiscale strategy to predict the evolution of the real contact area between rough surfaces[END_REF]) for the time-evolutive contact surfaces in the framework of tribology, [START_REF] Yang | A multiscale molecular dynamics approach to contact mechanics[END_REF]) for a combination of contact mechanics and molecular dynamics, [START_REF] Giacoma | A multiscale large time increment/FAS algorithm with time-space model reduction for frictional contact problems[END_REF] for the combination of time-space model reduction and multigrid solvers inside a large time increment methodology. Regarding fluid structure interaction, applications of great interest involving contact come from biomechanics and vascular system modelling, such as (Terehara et al. (2020)) implementing major concepts established in the framework of isogeometric analyses in (Takizama and Tezduyar (2011)). The proposed work is somewhat original in that it appears at the crossroads of several scales and methods. On the one hand, structures are represented at the assembly and core levels, contact surfaces are simplified and multiple contacts are considered, with a succession of very different impact sequences during a transient simulation. On the other hand, the representation of the fluid flow is relatively detailed, especially regarding the prediction of cross flows within the full core, and goes beyond what is classically associated with simplified structural models, relying on added quantities to the structures and no actual flow modelling. When fully computing the fluid flow, considering impacts tends to couple the scales between structure and fluid to accurately account for the effect of the brutal changes in structural acceleration. To preserve the computational efficiency, this must be done in an adaptive way, introducing the second main algorithmic challenge for this research. Again, adaptive methods dedicated to contact and impact management are often encountered in the literature, from statics to dynamics (see for instance [START_REF] Ramière | Original geometrical stopping criteria associated to multilevel adaptive mesh refinement for problems with local singularities[END_REF]) and [START_REF] Casadei | An algorithm for mesh refinement and un-refinement in fast transient dynamics[END_REF]) respectively). There is also an important activity dedicated to fluid-structure interaction, among which as examples (Jansonn et al. (2017)) addresses adaptive fluid remeshing with finite structural motion and in [START_REF] Faucher | High resolution adaptive framework for fast transient fluid-structure interaction with interfaces and structural failure -Application to failing tanks under impact[END_REF]), mesh adaptation is performed simultaneously in structure and fluid to provide an accurate solution for a liquid flowing through failing plates. However, adaptation in the simulation often comes first from the spatial discretization, time discretization being forced to adapt in many cases where the stability of the integration is associated to the mesh size. In the situation of interest in the current paper, time adaptive algorithms are directly addressed, adaptation criteria being related to impact detection and characterization.

To provide some answers to the challenges introduced above and taking into account the need for full experimental validation of the proposed numerical framework for PWR core dynamics with fluid-structure interaction, the article is structured as follows. First, the basics of the porous fluid-structure model built to represent fuel assemblies are recalled. The second section introduces contact and impact models in the problem and two classes of adaptive time multiscale algorithms are designed to handle as accurately and efficiently as possible the succession of flight sequences and impacts in the transient simulation. The third section is dedicated to the extensive qualification of the proposed algorithms with two tests of growing complexity. The fourth section finally provides the expected experimental validation, exploiting the results obtained for a row of full scale assemblies placed on a shaking table available in [START_REF] Queval | Seimic tests of interacting full-scale fueld assemblies on shaking table[END_REF]). 2 Reminder of the coupled problem for fuel assembly fluid-structure dynamics

In this section, the main features of the previously introduced fluid-structure model for the PWR fuel assembly are recalled. It is the result of a long range work described in (Ricciardi et al. (2009a), Ricciardi et al. (2009b), [START_REF] Ricciardi | Fluid-structure interaction modelling of a PWR fuel assembly subjected to axial flow[END_REF]). It has been concretized into an research software application named FS-Core presented in [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]), to which the reader is referred for full details. For the sake of conciseness and to put the focus on the new contributions of the current paper, only the main concepts building the model are provided in next sections.

2.1 Porous approach and equivalent models for fluid and structure 2004)) to account for the structural velocity at the boundaries, supposed uniform over the control volume defined in 2:

ρ ∂v ∂t + ρ v - ∂u ∂t • ∇v = div σ div v = 0, (1) 
where v is the local unfiltered fluid velocity, u is the locally uniform structural velocity and σ is the fluid stress tensor given by:

σ = -pI d + µ ∇v + ∇v T , ( 2 
)
where p is the unfiltered fluid pressure and µ is the fluid viscosity.

Under the assumption that the grids of the assembly manage to keep the relative distance between the rods constant in time, the control volume introduced above repeats itself in the section of the assembly. Integrating over this volume, setting V = 1 VΩ f Ω f (x,y,z) v dΩ and introducing the porosity as ϕ = VΩ f VΩ t yield after some manipulations the equations for the newly defined average velocity:

ρ eq ∂V ∂t + ρ eq divV ⊗ V = -∇P + µ T eq ∆V + 2ρ eq ∂u ∂t • ∇V -ρ eq V • ∇ ∂u ∂t + 1 V Ωt As(x,y,z) σ n dS divV = 0 (3) 
where:

□ ⊗ is the cross product, □ the equivalent fluid density ρ eq = ϕρ and the equivalent fluid viscosity µ T eq = ϕ (µ + µ T ) are functions of the density ρ and the viscosity µ of the fluid and the porosity ϕ, □ the continuity equation is kept unchanged for the average velocity due to the uniform porosity.

Modelling fluid-structure forces

The forces applied by the fluid onto the structure seen as a rod bundle, and their opposite approximating the remaining surface integral in the momentum equation in (3), are derived from the semi-empirical model from [START_REF] Païdoussis | Fluid-Structure Interactions : Slender Structures and Axial Flow[END_REF] considering a moving cylinder in a mostly axial flow (see Figure 3). The forces accounts for added mass effect F I , flow induced damping F N , damping in still water F D and axial drag force F L and express as (using averaged kinematic variables for fluid and structure):

F I = -m f ∂ ∂t ∂u x ∂t -V x + V 2 z ∂ 2 u x ∂z 2 + 2V z ∂ ∂z ∂u x ∂t -V x e x -m f ∂ ∂t ∂uy ∂t -V y + V 2 z ∂ 2 uy ∂z 2 + 2V z ∂ ∂z ∂uy ∂t -V y e y , F N = - 1 2 ρDC N V z ∂U x ∂t -V x + V z ∂u x ∂z e x - 1 2 ρDC N V z ∂u y ∂t -V y + V z ∂u y ∂z e y , F L = - 1 2 ρDC T V 2 z e z , F D = -C D ∂u x ∂t -V x e x -C D ∂u y ∂t -V y e y , (4) 
where m f is a virtual mass per unit length, D is the fuel rod diameter, C N , C T are drag coefficients and C D is a damping coefficient.
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The resulting forces applied by the structure to the fluid in (3) are thus:

1 V Ωt As(x,y,z) σ n dS = -F I -F N -F D -F L .
(5)

Averaged model for the structure

To compute its kinematics, one fuel assembly is approximated by an equivalent beam aligned along the vertical axis, i.e. Z-axis of the space frame in the general 3D case (see Figure 4). The resulting equations of motion for 130 the structure are finally, taking into account the modelled fluid forces defined in the previous section:

Figure 4: fuel assembly seen as an equivalent porous beam

m F A ∂ 2 u ∂t 2 = ∂Q ∂z + T 0 ∂ 2 u ∂z 2 + 1 d 2 g S F A (F I + F N + F D -z|F L | ∂ 2 u ∂z 2 )dS, I F A ∂ 2 θ ∂t 2 = ∂M ∂z + e z ∧ Q, (6) 
where m F A and I F A are the mass and inertial moment per unit length of a fuel assembly, T 0 is the tension force at the bottom of the fuel assembly, d g is the distance between fuel rods centers, S F A is cross-section area of the equivalent beam, Q is the shear force and M is the bending moment.

The constitutive laws of the fuel assemblies are given by :

Q = G eq S F A ∂u ∂z -θ + µ G S F A ∂ ∂t ∂u ∂z -θ , M = E eq I F A ∂θ ∂z + µ E I F A ∂ 2 θ ∂t∂z + M fret , (7) 
where G eq is the shear modulus, E eq is the Young's modulus, µ G and µ E are structural damping coefficients.

M fret accounts for a progressive fretting and is computed at the location of the grids.

Space and time discretization

Equations of the problem are spatially discretized using a Finite Element method. A three points quadratic element is used for the structure variables. For the fluid, a quadratic 27 points hexahedral element is used in 3D to interpolate the velocity and a linear 8 points element is used for the pressure.

This yields the spatially discrete system:

M F V + M FI Ü = N F (V) V + B F T P + C FI (V Z ) U (fluid equilibrium) + K FI (V Z )U + F BF M SI V + M S Ü = N SI (V Z )V + C S (V Z ) U + K S (V Z , U)U + F BS (structure equilibrium) (8) 
where :

□ M F and M S are regular mass matrices for fluid and structure respectively, □ M FI and M SI account for the inertial coupling terms introduced in the expression of force F I in System 4, □ N F (V) V is the discrete expression of the fluid convective term, □ B F expresses the discrete gradient for pressure variables, □ C FI , K FI and N SI result from the coupled displacements and velocities for fluid and structure in System (4), □ C S and K S are the structural damping and stiffness matrices respectively, the latter depending non-linearly on the displacement to account for the fretting model, □ vectors F BF and F BS are additional body forces applied to the system, such as gravity or drive acceleration for a system placed in a moving frame].

System (8) is completed by a set of kinematic constraints acting on both fluid and solid variables and expressing incompressibility for the fluid, boundary conditions for both, and potential contact/impact conditions for structures. They take the form below. The major challenges to handle in System (8) to reach the aforementioned goals are:

□ on the one hand, its native non-symmetric and ill-conditioned nature, due to the coupling of fluid and structures with significantly different mass and stiffness and the management of the additional kinematic constraints,

□ on the other hand its high-level of non-linearity, coming first from the convective fluid terms and the structural constitutive model and possibly aggravated by multiple time-evolving structural contacts.

Regarding time discretization, the chosen scheme for the structure problem is the Central Difference scheme of the Newmark family. It is explicit for the displacement, providing a robust and efficient management of both material and contact non-linearities. It is conveniently written introducting mid-step velocities Un+ 1 2 as:

Un+ 1 2 = Un + ∆t 2 Ün U n+1 = U n + ∆t Un+ 1 2 Un+1 = Un+ 1 2 + ∆t 2 Ün+1 (10) 
The time integration scheme for the fluid kinematics is naturally derived from the scheme selected for the structure. It is also explicit to handle easily the non-linear convective term N F (V) V and simply writes, using again mid-step velocities:

Vn+ 1 2 = Vn + ∆t 2 Vn Vn+1 = Vn+ 1 2 + ∆t 2 Vn+1 (11) 
It can be seen as a variation of the explicit forward Euler scheme, where velocities and accelerations are shifted of one half-step to improve accuracy. Both schemes exhibit stabilty constraints over the time-step, for which a classical sufficient condition is given by the Courant-Friedrich-Levy relation (CFL, see [START_REF] Belytschko | Computational methods for transient analysis[END_REF]). It is related to the stress wave propagation for the structure and to the convection velocity for the fluid.

∆t stab < min structure elements E L E c E (12) 
where L E is smallest length of Element E and c E is the local sound speed obtained from the Finite Element formulation and the material constitutive relation.

∆t stab < min fluid elements E min space direction i L iE V iE (13)
where V iE is now the maximum nodal velocity in Element E in direction i, with L iE the size of the element in the same direction.

The combination of Systems ( 8) and ( 9) can now be rewritten using time-step indices, providing the system of equations to solve at each step of the integration process:

M F Vn+1 + M FI Ün+1 = F C V n+ 1 2 + B F T P + C FI V n+ 1 2 Z Un+ 1 2 + K FI V n+ 1 2 Z U n+1 + F BF t n+1 + F RF M SI Vn+1 + M S Ün+1 = N FI V n+ 1 2 Z V n+ 1 2 + C S V n+ 1 2 Z Un+ 1 2 + F I V n+ 1 2 Z , U n+1 + F BS t n+1 + F RS B F Vn+1 = 0 D F Vn+1 = Sn+1 F = 2 ∆t S F t n+1 -D F V n+ 1 2 D S Ün+1 = Sn+1 S = 2 ∆t S S t n+1 -D S Un+ 1 2 D SV U n+1 Ün+1 = Sn+1 SV = 2 ∆t S SV U n+1 -D SV Un+ 1 2 (14)
Non-linear convection forces for the fluid and internal forces for the structure are intentionally rewritten as right-hand side vectors

F C V n+ 1 2 and F I V n+ 1 2 Z , U n+1 thanks to explicit time integration.
The dependence of Matrices C FI , K FI , N FI , C S and Vector F I on axial velocity V n+ 1 2 Z is handled specifically. Either the velocity can be replaced by the average axial velocity in the case of large imposed axial flow rates in the fluid domain, or the velocity to consider can be obtained by a local average over each fluid cell. In both cases, for the sake of clarity, this dependence is omitted in the subsequent description of the solution procedure.

Reaction force vectors to fluid and structure imposed motion conditions and kinematic constraints are added to equilibrium equations as F RF and F RS . These vectors are unknown in the problem at this stage and do not need a time-step superscript since they are not predicted through the time integration scheme. For the same reason, the pressure variables P do not have any superscript either.

Finally, the incompressibility conditions are expressed directly on discrete fluid accelerations in System ( 14). The latter system is conveniently recast into a coupled problem in a partitioned way by identifying both a structure and a fluid problem to be solved alternatively until convergence.

Structure problem

M S Ün+1 + M SI Vn+1 + F RS = N FI V n+ 1 2 + C S Un+ 1 2 + F I U n+1 + F n+1 BS D S Ün+1 = Sn+1 S D SV U n+1 Ün+1 = Sn+1 SV Fluid problem M FI Ün+1 + M F Vn+1 + B F T P + F RF = F C V n+ 1 2 + C FI Un+ 1 2 + K FI U n+1 + F n+1 BF B F Vn+1 = 0 D F Vn+1 = Sn+1 F ( 15 
)
where the time dependence of the body forces has been rewritten in a more compact way as F n+1 BS and F n+1 BF .

Iterative solution

The final step, original in the proposed computational context, is thus to fully separate the structure and fluid problems and solve them successively, by inserting them both into a blocked Gauss-Seidel iterative solver over the coupling terms (see [START_REF] Ciarlet | Introduction à l'analyse numérique matricielle et à l'optimisation[END_REF]), starting with the initial guess { Vn+1 } 0 = 0 and going from iteration k to iteration k + 1 through:

(a) Solve structure problem

M S { Ün+1 } k+1 + {F RS } k+1 = -M SI { Vn+1 } k + N FI V n+ 1 2 + C S Un+ 1 2 + F I U n+1 + F n+1 BS D S { Ün+1 } k+1 = Sn+1 S D SV U n+1 { Ün+1 } k+1 = Sn+1 SV (b) Solve fluid problem M F { Vn+1 } k+1 + B F T {P} k+1 + {F RF } k+1 = -M FI { Ün+1 } k+1 + F C V n+ 1 2 + C FI Un+ 1 2 + K FI U n+1 + F n+1 BF B F { Vn+1 } k+1 = 0 D F { Vn+1 } k+1 = Sn+1 F (16) 
Convergence is checked over the stationarity of the right-hand side vector of the structural equilibrium, i.e. the first line in System (16-a). A classical relaxation is added to the solver to enhance the regularity between iterations and ensure a smooth convergence in every situation including potential contact between structure. This is achieved by replacing in the same equation the quantity { Vn+1 } k from the previous iteration by:

{ Ṽn+1 } k = (1 -α){ Vn+1 } k + α{ Vn+1 } k-1 ( 17 
)
where α is the relaxation parameter, set to classical value of 0.3 in all tests.

One last benefit of the proposed partitioned-like strategy is that, provided the proper expression of the reaction forces to the kinematic constraints , symmetry can be retrieved for the fluid and structure problems individually, allowing the implementation of state-of-the-art resolution procedures for each problem.

3 Adaptive time multiscale algorithms managing impacts between structures

Due to the choice of explicit time integration schemes duly justified in [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]), complementing the proposed strategy with time multiscale algorithms is of primary importance to enhance the numerical performance of the solution of Problem (15). It accounts for the large difference between the stability time steps for fluid and structure respectively. The stability time step for the structure is indeed lower than that for the fluid by several orders of magnitude, whereas the fluid problem is the more computationally expensive. A subcycling algorithm has already been successfully implemented in [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]) for the case with no impact between structures.

The current section aims at assessing the consequences of adding contact/impact to the problem, as well as providing and evaluating solutions in response to the resulting issues. Grid-to-grid and grid-to-plane contacts are considered. Grids are assumed rigid and their frames are shown in Figure 5 only to locate the actual contact points represented in red. For grid-to-grid contact, structural unknowns are located at the nodes represented in black. The distance between the node and the contact points for one given grid i is equal to its half-width denoted w i . It is the same for grid-to-plane contact, except that contact point and node have the same abscissa in the contact direction, hence w i = 0 for a plane entity. In the proposed modelling, rigid planes can be either blocked or attached to a spring if the flexibility of the casing around the assemblies must be taken into account.

As mentioned in the introduction and with no loss of generality, only the single row configuration case is studied in the present paper. Each structural node i thus has one single degree of freedom, denoted U[i]. The extension to the array configuration (i.e. for a full nuclear core) is straightforward. The contact conditions between two entities i and j then write at time t n+1 :

x 0 i + U n+1 [i] -x 0 j + U n+1 [j] ≤ w i + w j x 0 i + U n+1 [i] -x 0 j + U n+1 [j] Ũn+1 [i] - Ũn+1 [j] ≤ 0 (18) 
where:

□ x 0 i and x 0 j are initial horizontal coordinates of nodes i and j respectively, □ Ũn+1

[i] and Ũn+1

[j] are unconstrained velocities predicted at time t n+1 such that (given for i, similar for j):

Ũn+1 [i] = Un+ 1 2 [i] + ∆t 2 Ũn+1 [i] Ũn+1 [i] = 1 ms i N FI V n+ 1 2 + C S Un+ 1 2 + F I U n+1 + F n+1 BS -M SI Vn+1 [i] (19) 
In Equation ( 19), the considered acceleration to build the unconstrained velocity is that obtained from System (15) with no contact force and m si is the diagonal mass term for node i. The first condition in (18) expresses the interpenetration between the two entities at contact points level. The second condition is mandatory to accurately detect loss of contact. Once the two conditions are satisfied, the following relation is added to the pool of time varying kinematic constraints for structure:

Un+1 [i] = Un+1 [j]
(20)

Remark: The proposed porous model cannot directly account for the fluid pressure effects close to contact, due to potentially trapped fluid between impacting structures. This is an ongoing research topic out of the scope of the current paper. The potential pressure increase is strongly influenced at the local scale of the contact entities by the fluid viscosity and the actual shape and roughness of the structures, so that its effect on the impact forces at the assembly scale is yet to be accurately predicted using a proper upscaling strategy. To account for this effect however, the proposed perfect contact model chosen for its simplicity in the proposed article can easily be enriched with additional well-calibrated springs, with no loss of generality regarding the following methodological developments.

3.2 Two classes of time multiscale algorithms and their adaptation to impact management 3.2.1 Subcycling approach and issues related to structural impacts

The first class of algorithms is the continuation of what was implemented in [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]), derived from classical subcycling methods well adapted to the current multiscale problem (see for instance De Moerloose et al.

(2019) for a relevant review). It consists in introducing a enduser-defined ratio giving the number of resolutions of the structure problem between two resolutions of the fluid problem. Obviously, this ratio is automatically limited if it exceeds the actual ratio between the stability time steps of the structure and fluid problems respectively. For the steps where only the structure problem is solved, the fluid velocity and acceleration requested in Problem (16-a) are simply kept constant to the value computed after the last fluid problem solution. An illustration of the corresponding algorithmic flow chart is provided in Figure 6. 

∆t f = min (N sub , N stab ) ∆t s (21)
where N sub is the prescribed subcycling ratio and N stab is the current maximal ratio ensuring N stab ∆t s <= ∆t stab for the fluid.

The specific issue resulting from authorizing impacts between structures is related to the regularity in time of the term M FI Ü in the fluid equilibrium equation of System (8). Isolating the contribution to the fluid acceleration of this particular force coming from the structure acceleration, this is illustrated in Figure 7. The green curves are the reference curves where no subcycling is used, to be compared to the red curves where subcycling is implemented. The case without structural impacts is given in Figure 7-a. Acceleration curves are staircased, since acceleration is constant within one time step in the integration scheme (11). If the contribution of term M FI Ü to the fluid acceleration is smooth over time, then the total acceleration is also smooth. Assuming similar accelerations are obtained with and without subcycling each time the fluid problem is solved, time integration yields velocity histories in both cases in good agreement with one another, represented with dashed lines in Figure 7-a. A small discrepancy is observed, but it remains in the acceptable range.

On the contrary, impacts induce severe discontinuities in the structural accelerations and thus in the M FI Ü contribution to the fluid accelerations. Such discontinuities are modelled in Figure 7-b by Dirac-like variations appearing in the fluid acceleration at the reference fine scale, each representing the response to a structural impact. Two situations can then be encountered when subcycling is implemented:

1. the impact occurs between two fluid problem solutions and its contribution to the fluid velocity is simply missed, 2. the impact occurs at a time step where the fluid problem is solved and it induces a jump in the fluid acceleration to be propagated to the velocity with a large time step instead of a small one.

Both situations combined yield a severe discrepancy on the velocity, one order of magnitude higher than in the case without impacts in this simple illustration. Considering in addition that the variations in the acceleration in response to impacts are likely to be much larger than those appearing in Figure 7, kept relatively small for the sake of clarity of the graphics, the need for a dedicated management of impacts within subcycling becomes obvious.

It is worth noticing here that the case without subcycling is taken as the reference to assess the effects of subcycling, with no consideration regarding its quality in terms of mesh convergence or physics. The objective is to basically preserve the same solution while enhancing the numerical performance with subcycling.

Subcycling algorithm with impact monitoring

To overcome the two situations described above, the subcycling algorithm is made adaptive through a monitoring of all structural impacts. For each one (i.e. a detected change from a free status to a contact status for any couple of contact candidates in the problem), a solution of the fluid problem is forced, solving the first issue related to missed impact contribution in the fluid velocity. An illustration of the updated algorithm including impact monitoring is now given in Figure 8. The second issue yet remains and can be expressed as follows. Assuming a similar acceleration Vn+1 [i] for a fluid node i in response to the same impact encountered at time t n+1 with and without subcycling and starting from a similar constant fluid velocity prior to the impact, the velocity update due to the modified acceleration writes:

Vnew [i] = V t n+1 + N next ∆t 2 [i] = V t n+1 -N prev ∆t 2 [i] + (N prev + N next ) ∆t 2 Vn+1 [i] (w. subcycling) Vnew [i] = V t n+1 + ∆t 2 [i] = V t n+1 -∆t 2 [i] + ∆t Vn+1 [i] (w/o subcycling) ( 22 
)
where ∆t is the time step of the fine scale, N prev is the number of steps since the last fluid problem solution and N next is expected number of steps until the next fluid problem solution.

With the assumption made above that

V t n+1 -N prev ∆t 2 [i] = V t n+1 -∆t 2 [i]
, the velocity jump due to the impact is basically amplified by the ratio Nprev+Nnext 2

in the subcycling case. With the proposed impact monitoring, it is easy to set N next to 1 and to restart subcycling only after a prescribed number of time steps following an impact (see Figure 8 for some details regardig the latter parameter). Setting N prev also to 1 to fully cancel the spurious amplification requests subcycling to be stopped one time step prior to actual contact. To this extent, an anticipation of the contact condition can be derived from Equation (18).

x 0 i + Ũn+2 [i] -x 0 j + Ũn+2 [j] ≤ w i + w j (23) 
where:

Ũn+2 [i] = U n+1 [i] + ∆t Ũn+ 3 2 [i] Ũn+ 3 2 [i] = Un+ 1 2 [i] + ∆t Ũn+1 [i] (24) 
When the condition ( 23) is satisfied and not the conditions (18), the contact is considered pending and it triggers the suspension of the subcycling process. The upcoming impact at next time step is then qualified as resolved on the fine scale for the fluid. Due to coupled contacts and associated kinematic constraints not accounted for in the next displacement prediction (24), the pending condition ( 23) is however not fully reliable. This has little consequence if one pending contact is not followed by an actual contact. On the contrary, it also leaves the possibility for impacts to occur without prior detection as pending contacts. Those impacts are qualified as unresolved and must be dealt with specifically by mitigating the velocity jump illustrated in Equation ( 22).

The proposed update in the coupled problem solution accounting for both missed impacts (if any, see primary and secondary impacts introduced in Section 4.2) and unresolved impacts is to replace the actual force M FI Ün+1

in the fluid equibrium equation by an expression of this force filtered over the time steps since the last fluid problem solution:

M FI Ũn+1 = 1 N prev n+1 m=n last+1 M FI Üm ( 25 
)
where the previously introduced time steps number N prev simply equals to n -n last .

The proposed expression preserves in particular the impulse of the force over the time interval since the last fluid problem solution, i.e.:

(N prev ∆t) M FI Ũn+1 = n+1 m=n last+1 ∆tM FI Üm (26) 
Even with with proposed mitigating strategy, the consequences of unresolved impacts on the fluid velocity field are yet to be thoroughly assessed and are discussed in the proposed tests in Section 4.

Alternative algorithms based on adaptive convergence criteria for the coupled fluid-structure problem

The complex management of resolved and unresolved impacts suggests considering another class of time adaptive algorithms, where only one scale is formerly kept to update kinematic quantities for fluid and structure. The expected performance enhancement due to the coarser time scale for the fluid will come in this case from acting on the convergence loop between fluid and structure problems.

Instead of being skipped for a series of time steps as in the subcycling case, the computationally costly fluid problem is solved less often by allowing for the same steps not to reach convergence in the Gauss-Seidl coupling algorithm ( 16). In the present paper, the non-converged Gauss-Seidl loop is even reduced to one single iteration for previously skipped time steps, accordingly making the approach an implicit/explicit strategy.

Regarding impact management, fluid and structure kinematic quantities are advanced with the same time scale, making the time integration insensitive to resolved or unresolved impacts. However, since full convergence of the Gauss-Seidl coupling loop is expected to provide the sufficient accuracy in the representation of the effects of impacts on the fluid velocity field, time adaptivity and impact monitoring are conserved. Detected impacts simply force the full convergence of the coupling loop when needed.

A more aggressive strategy can even be considered, based on the fact that what is expected for the robustness of the time integration regarding impacts is that the fluid acceleration correctly accounts for the brutal variations of structure acceleration at each impact. This suggests skipping the pressure and reaction forces computation in the fluid solver during the explicit steps for the fluid-structure coupling, since it is the main source of computational cost for Problem (15-b) (see [START_REF] Faucher | Numerical implementation and validation of a porous approach for Fluid-Structure Interaction applied to PWR fuel assemblies under axial water flow and dynamic excitation[END_REF]) for the details on this topic). This calls for two remarks and a practical consequence for the fluid solver.

1. The latter strategy, called extended implicit/explicit, must be considered experimental since it is difficult to predict the effects of the temporary release of the incompressibility constraint.

2. While the previously introduced time multiscale algorithms were relatively generic and could be derived for other partitioned fluid-structure coupling problems, modifying the fluid solver is on the contrary rather intrusive.

3. As a consequence of the release of the kinematic constraints in the fluid solver during the explicit coupling time steps, the mid-step velocity field is no more divergence free when the fluid problem is completely solved during the implicit coupling steps. This adds a right-hand side to the incompressibility condition in Problem (15-b), now expressing as:

B F Vn+1 = - ∆t 2 B F Vn+ 1 2 ̸ = 0 (27) 
Impact monitoring and time adaptivity are obviously implemented also with the extended implicit/explicit strategy and possibly even more needed than for the initial implicit/explicit strategy.

Qualification tests for both classes of algorithms

The current section is dedicated to the numerical qualification of the adaptive time multiscale algorithms introduced in Section 3.2, by comparison to reference solutions obtained with no multiscale strategy. Final experimental validation of the fluid-structure solver with contact and impacts is then provided in Section 5. Parallel computing is not in the priority scope of current paper. However, to demonstrate the full compatibility of the multiscale algorithms with the distributed memory parallel solver implemented in EPX/FS-Core application, tests are run on a multicore server with several MPI processes: 4 for the first test and 8 for the second.

To minimize the parameters to consider and focus on the main insights provided by the tests regarding all algorithm, a unique maximum time step ratio is used for all algorithms with all tests. It is set to 20, which is a classical and representative value.

Finally, in order to provide quantitative measures allowing to rank the methods in terms of accuracy, metrics for fluid and structure related fields respectively are first provided.

Metrics for accuracy quantification

As far as structures are concerned, variables of primary interests are horizontal displacements and velocities at the grid levels for all assemblies in the considered row. Exploited data will then be time histories plotted for several grid points. Normalized measures are obtained by comparing each curve to the reference provided with no multiscale algorithm and the chosen norm is L2-norm, writing for one curve C:

S = i∈curve instants (C[i] -Ref[i]) 2 i∈curve instants Ref[i] 2 (28)
Regarding the fluid, the two-dimensional velocity field and its evolution over time are the key elements. To avoid managing a great number of time history curves, the field is extracted along a slice in the mid-plane of the fluid domain (see for instance Figures 14 and23 for illustrations) and a collection of snapshots is taken for a series of significant instants. For each snapshot, the normalized measures are obtained by point-to-point comparison with the reference. Two norms are used in this case, L2-norm to provide the global error compared to the reference and Inf-norm to emphasize on local errors:

S L2 = i∈nodal dofs on slice (V[i] -V Ref [i]) 2 i∈nodal dofs on slice V Ref [i] 2 S Inf = max i∈nodal dofs on slice |V[i] -V Ref [i]| max i∈nodal dofs on slice |V Ref [i]| (29)

Elementary test

The first test implements a simple configuration with two reduced scale fuel assemblies clamped at their extremities. Assemblies are 2m long and have three 10cm wide grids. They contain 12x12 rods of diameter 9 mm with a pitch of 12.5 mm for the bundle. The dimensions of the fluid domain are 20cm x 10cm x 2m. An harmonic horizontal motion is imposed to the mid-grid of the left assembly. Contact between all grids is allowed and the grids of the right assembly can also impact a rigid plane. Materials properties are given in Tables 1 and2 and the fluid-structure coupling parameters are given in Table 3. Contact mostly occurs between the mid-grids of the left and right assemblies and between the mid-grid of the right assembly and the rigid plane. The position of the contact points for the fuel assembly mid-grids are plotted over time in Figure 10-a, whereas the grid horizontal velocities are plotted over time in Figure 10-b. On both graphs is also shown the distribution of impacts, with the relative velocity of the contacting entities on the vertical axis. A close look at the impact distribution introduces the important notion of primary and secondary impacts. Primary impacts, appearing in green on the graphs, occur after a significant flight time (i.e. time between two consecutive impacts involving the same entities) and involve large relative velocities. On the contrary, secondary impacts represented in red on the graphs are numerous and repeated impacts due to the vibrating motion of both assemblies during a global contacting phase where the concerned entities mostly share the same velocity. Secondary impacts are likely to involve much lower relative velocities than primary impacts, which is clearly demonstrated in Figure 11, giving the velocity distribution for all impacts of both kinds. It is noticeable that the graph also shows some very low velocity primary impacts, which corresponds to the other grids of the assemblies and are of little interest for the current test. From a computational point of view, primary impacts are easy to resolve and must be handled in priority in the adaptive time multiscale strategies. On the contrary, secondary impacts are difficult to separate and produce low structural accelerations due to their relative velocities lower than the ones for significant primary impacts by several order of magnitudes. They are better left unresolved to preserve the computational efficiency. To select between primary and secondary impacts and ignore the latter, a simple criterion is used: every impact occurring less than 10 time steps after the last impact between the same entities is considered a secondary impact. The number of time steps is obviously a changeable parameter and the value above has proven efficient for the current test and the next in Section 4.3. For the sake of clarity, the practical definition and characteristics of primary and secondary impacts are gathered in Table 4. Table 4: Practical structural impacts classification ; N is a parameter classically set around 10

Primary impact

Secondary impact

Definition

Impact between two given entities occurring more than N time steps after the last impact between the same entities Impact between two given entities occurring less than N -1 time steps after the last impact between the same entities

Characteristics

□ Occurs after a significant flight time (isolated and well-defined impacts)

□ Is likely to involve high relative velocities and impact forces □ Results from the vibrations of structures close to contact (numerous and repeated impacts)

□ Generally involves relative velocities and impact forces significantly lower than primary impacts

The time history curve selected to rank the time multiscale algorithms regarding to the structural response is the horizontal velocity of the mid-grid of the right assembly. The results for all algorithms, including subcycling with no impact monitoring are displayed in Figure 16. The result with no fluid-structure interaction is provided as an indication of the fluid influence in this particular case. All the solutions with fluid-structure are rather satisfactory for this measure, even with no impact monitoring. However, the solution obtained with the extended implicit/explicit approach yields a small phase shift in the response. This is the reason of its significantly higher score in Figure 13 and should be looked into. The obtained solution is yet close enough to the reference not to discard this approach on this evaluation alone. As far as the fluid velocity field is concerned, the considered snapshots are given in Figure 14. They focus on the effects of the first impact between the mid-grids of the assemblies, where two vortex are created by the impact and convected to the top and bottom of the fluid domain. Ranking scores for L2-norm and Inf-norm are given in Figure 15. The case with subcycling and no impact monitoring is severely worse than the others, especially since it misses the first primary impact. This is confirmed in Figure 16 where the horizontal velocity 465 at the mid-grid level of the right assembly is inverted compared to the reference and the other solutions. The solution with subcycling and impact monitoring is slightly less accurate than the solutions obtained with both implicit/explicit algorithms, with no clear explanation at this stage. Figure 16 shows that it remains widely acceptable. impact monitoring performs significantly better than the implicit/explicit algorithms, which was expected for a case with few well defined primary impacts to consider. It confirms the relevance of subcycling approaches each time high flight times are encountered in the simulation. The reduction of the computation time by a factor higher than 10 also matches the objective for this elementary test. 

Advanced test in Cadix configuration

This second test is representative of the complexity of the industrial application. It implements six full scale PWR fuel assemblies in the exact configuration of the Cadix experimental program providing the final validation of the proposed numerical framework in Section 5. The dynamic excitation is however simplified for the sake of simplicity in comparing the different resolution algorithms.

Practically, the details of the modelling and material parameters for structure and fluid are given in Section 5. The excitation is a drive acceleration applied to the entire model, here with a simple harmonic motion with a frequency of 2 Hz. The setup is illustrated in Figure 17. Simulations are run for a physical time of 0.5 s.

Assemblies are clamped at their extremities and grids can impact the casing represented with two vertical planes on the left and right sides of the domain, shown in red in the figure. In the following, assemblies are numbered 1 to 6 from the left to the right. Four computational meshes are tested to find the optimal compromise between accuracy and flexibility for the comparisons between resolution algorithms. They are shown in Figure 18. The first mesh, labelled x1, is very coarse with one beam and one fluid element per span of each assembly. The other meshes, labelled x2 to x8, are built with a recursive refinement with a 2 factor in all space directions. Refinement along the depth of the computational domain is basically useless since the problem and its solution are two-dimensional, but it is more systematic to generate the meshes this way. However, plotting the relative velocity distribution for primary and secondary impacts (see Figure 20) brings something new compared to the elementary test. If the most probable velocities are still separated by three orders of magnitude, the distributions overlap over a range of impact velocities between 10 -2 and 10 -1 m.s -1 with a significant number of secondary impacts which should not be left unresolved with time multiscale algorithms. A feature is thus added to the impact monitoring piloting the adaptive time multiscale approaches, where a threshold relative velocity is introduced for secondary impacts. Secondary impacts with relative velocity above this enduser-defined parameter are no more ignored in the adaptive process. As far as subcycling algorithm is concerned, it is noticeable that even if they correctly trigger the fluid resolution process each time they are detected, all considered secondary impacts may not be fully resolved since by nature some of them are likely to occur without a proper pending contact identification. Simulations with subcycling algorithm are finally run for five values of the threshold velocity, four chosen in the overlapping area in Figure 20 (10 -2 m.s -1 , 2.5x10 -2 m.s -1 , 5x10 -2 m.s -1 and 7.5x10 -2 m.s -1 ) and one infinite value, for which all secondary impacts are simply ignored in the adaptive process. The new parameter appears less critical for implicit/explicit and extended implicit/explicit algorithms and in these cases, simulations are run with a single chosen value of 5x10 -2 m.s -1 . The threshold velocity has obvious consequences on the computational performance, increasing the number of impacts forcing the solution of the fluid problem most contributing to the total time needed for one simulation.

Regarding the ranking of the multiscale algorithms with respect to structural motion, the displacement curves of the mid-grids of assemblies 1 and 6 are used. Figure 21 shows rather good agreement for all the solutions with the reference. The solution with no fluid-structure interaction is again provided for information purposes. The proposed numerical methods rank roughly as expected in Figure 22, with two comments:

1. for the same threshold velocity, the implicit/explicit algorithm ranks better than the subcylcling algorithm, suggesting it provides a better management of missed or unresolved impacts, which should actually be called more accurately unconverged impacts for the implicit/explicit case, 2. a slight frequency shift is again observed in the structural response with the extended implicit/explicit algorithm, explaining its worst score and suggesting further analysis. The latter observations are confirmed by the field comparisons provided in Figure 25. More and more artefacts appear for the subcycling algorithm as the threshold velocity increases. However, these artefacts are mainly located 550 in the vicinity of the grids and elsewhere, the flow patterns are rather correctly reproduced, even for the 7.5x10 -2 m.s -1 value of the threshold velocity. On the contrary, the solutions obtained with the implicit/explicit algorithms are free of artifacts as expected. While keeping a good overall agreement with the reference, they fail yet to reproduce some elements of the flow patterns visible in Figure 25-a. This is particularly the case with the extended implicit/explicit algorithm. Finally, computational times are given in Table 6, with the following main comments.

1. Contrary to the previous elementary test, the implicit/explicit algorithms compete better with the subcycling algorithm. This is justified because impacts with forced solution of the fluid problem contribute mostly to the total computational cost. If regularity is a priority for the fluid velocity field, these algorithms represent a relevant alternative to classical subcycling and the extended implicit/explicit algorithm behaves well in particular.

2. Due to the increased number of contacts to be resolved in time, the reduction of the computational time that can be expected in this complex situation is lower than for the elementary test. It is however still significant, with a reduction factor around 6 justifying the implementation of such multiscale approaches. It is moreover noticeable that longer rows or a full PWR core should present increased cumulative gaps between the grids of the assemblies and thus lead to more favorable flight times. 

Validation by comparison to Cadix experiments

In this section, simulations with the proposed FS-Core modelling framework are compared to reference experimental results for fuel assembly dynamics in fluid-structure interaction involving impacts.

Experimental apparatus

The experimental device is composed of six full scale fuel assemblies representative of a 900 MW PWR reactor core [START_REF] Queval | Seimic tests of interacting full-scale fueld assemblies on shaking table[END_REF]. The fuel assemblies, numbered 1 to 6 from the left to the right, are immersed in stagnant water. The six fuel assemblies are on a shaking table able to reproduce seismic excitation (Figure 26) . They are surrounded by a casing made of thick stainless steel plates. Force sensors are located at the ends of the row at the mid-grid level in order to measure the impact forces between the fuel assembly and the casing. Displacements sensors are located on the mid-grid of each fuel assembly.

Figure 26: Acceleration imposed to the shaking table

Tests were performed with and without water, for several representative seismic loadings at several level ranging from 0.05 g to 0.4 g. Fuel assemblies are homogeneously spaced with respect to their relative distances and to the distance between the left and right assemblies and the casing. The distance between two fuel assemblies and between fuel assemblies and the casing will be referred to as the gap, which can take two values : 1.5 mm and 2 mm.

Results

Simulations were performed with the refinement level x4 presented in Section 4.3. Parameters used are given in Tables 7 to 9.

Figure 27 shows the displacements of the mid-grids of the six fuel assemblies (named FA 1 to 6 in all figures) for a whole test in water and under an acceleration of 0.4 g which is the maximal amplitude performed during the experimental campaign. In the figure, an initial displacement is given to assemblies, starting with a 0 value for Fuel Assembly 1 and applying an increment of 2 mm for Fuel Assemblies 2 to 6. Such a representation allows having the same maximum and minimum total displacement values for all the assemblies and locating the times where all the gaps between assemblies are filled.

Figure 28 displays the time history of impact forces between Fuel Assemblies 1 and 6 and the confinement for the same conditions as above. For the sake of clarity to distinguish between impacts on each of the assemblies, positive values for impact on the fuel assembly located at the extreme left, negative values stand for the fuel assembly located at the extreme right. Results show that the fuel assemblies are highly excited with frequent contact. One can observe that simulations reproduce the general trend regarding the displacement and impact. Even though some discrepancies can be observed, simulations seem to catch almost every impact event.

Figure 28: Impact forces between fuel assemblies and confinement for 0.4 g excitation in still water with a gap of 2 mm Zooms on selected time windows for the displacements and impact forces can be seen in Figures 29 and30, for the time interval [3 s, 7 s] and [13 s, 17 s] respectively. Display conventions are the same as for Figures 27 and28. The most damageable impacts occur when several fuel assemblies are in contact as it can be observed around 4.2 s or 16.6 s. This makes sense since the fuel assembly at the extremity is then subjected to the compression of all the others. This behavior is clearly observable both from the experiment and numerical results. On the other hand, simulations seem to miss-estimate the forces when the impacts are less important like between 13.5 and 14 s.

Nevertheless, one has to keep in mind that the proposed model for the structure is a simplified and idealized vision with perfect geometry of the real device. It is unlikely that the experimental device shows a perfectly homogeneous gap between the fuel assemblies and contact behavior and forces can be highly sensitive to the gap values. 

Conclusion

The present article proposes new algorithms to manage impact sequences within the time multiscale resolution of a strongly coupled fluid-structure partitioned problem. Preserving the computational efficiency imposes an adaptive strategy to adjust the time scale to force the solution of the costly pressure problem for the fluid only when it is necessary to account for the brutal variations in the structure acceleration resulting from significant impacts. The adaptation criteria must be built upon a thorough monitoring and characterization of all impacts, including the duration of the flight sequence before it occurs and the relative velocity between impact entities. Finally, solutions to mitigate the consequences of missed and unresolved impacts in time are provided to avoid spurious amplification of the variation of the acceleration under impact in the fluid velocity field through the time integration scheme. This leads to two classes of adaptive time multiscale algorithms, extensively tested and qualified through two chosen cases of growing complexity. The paper is completed by a full experimental validation of the proposed fluid-structure framework with contact and impacts, using the results available for a row of six fuel scale assembly immersed in water and submitted to a seismic excitation on a shaking table.

The proposed work introduces several perspectives. From an algorithmic point of view, the priority is to add to the model the specific representation of the bypass spaces between assemblies themselves and between assemblies and their surrounding casing. It will improve the prediction of the flow by including additional redistribution and especially handle the large velocity gradients close to the walls. Regarding the prospects in terms of applications, the next challenge is the production of validated simulations in the full core configuration illustrated for instance in Figure 1. The model and software are ready with no reservations to provide numerical results, but validation data must be found or built, to qualify potential scale effects and unpredicted flow patterns when switching from row configurations to full tri-dimensional setups.

  Figure 1: Configurations of interest

  Figure 2: Control volume for averaging of fluid equations

Figure 3 :

 3 Figure 3: Semi-empirical set of forces for an inclined cylinder in a mostly axial flow

  conditions written at fluid vertex nodes D F V = S F for fluid imposed motion at boundary conditions D S U = S S for structure imposed motion at boundary conditions D SV [U (t)] U = S SV [U (t)] for time-varying kinematic constraints such as contact (9)

3. 1

 1 Basic contact/impact model Time-varying constraints for the structure problem in System (15) do not assume any model to represent contact between assemblies. It occurs at grid levels from physical considerations and it can involve representative or simplified geometries for the grids, as well as friction if needed, with no modification of the overall solution strategy. Since the present research is dedicated to the analysis of the consequences of contact and impacts on the performance of the resolution of the coupled, and not on the representation of contact itself, simple models are preferred and those depicted in Figure5are used in the proposed simulations.

  Figure 5: Contact configurations

Figure 6 :

 6 Figure 6: Basic algorithmic flow chart with the reference subcycling algorithm

Figure 7 :

 7 Figure 7: Effect of structural impact on fluid velocity prediction with subcycling
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 8 Figure 8: Updated algorithmic flow chart for adaptive subcycling with impact monitoring

Figure 9 :

 9 Figure 9: Elementary test, setup

Figure 10 :

 10 Figure 10: Elementary test, grid motion and impact monitoring
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 11 Figure 11: Elementary test, impact velocity distribution

Figure 12 :

 12 Figure 12: Elementary test, structural velocity assessment

Figure 13 :

 13 Figure 13: Elementary test, ranking scores for structural motion compared to the reference

Figure 14 :

 14 Figure 14: Elementary test, snapshots for fluid velocity field assessment

Figure 17 :

 17 Figure 17: Advanced test, setup

Figure 18 :

 18 Figure 18: Advanced test, computational meshes

  (a) Mid-grids 1 and 6 with respect to mesh refinement (b) All mid-grids for refinement level x4

Figure 19 :

 19 Figure 19: Advanced test, structural motion of assembly mid-grids

Figure 20 :

 20 Figure 20: Advanced test, impact velocity distribution

Figure 21 :

 21 Figure 21: Advanced test, structural motion assessment

Figure 23 :

 23 Figure 23: Advanced test, snapshots for fluid velocity field assessment

  Figure 25: Advanced test, fluid velocity field comparison at time=0.3 s

Figure 29 :

 29 Figure 29: Zoom on [3 s, 7 s] time window in the case of 0.4 g excitation in still water with a gap of 2 mm

Figure 31 :

 31 Figure 31: Maximum impact forces for 1.5 mm (left) and 2 mm (right) gap values in still water

  

  

Table 1 :

 1 Elementary test, structural parameters

	Density	Young modulus	Shear Modulus	Rotational damping
	3450 kg.m -3	809 MPa	24.7 MPa	2.16 N.s.rad -1
	Shear damping	Rod Young modulus	Rod insertion force
	81000 N.s.m -1	200 GPa		23.25 N

Table 2 :

 2 Elementary test, fluid parameters

	Density	Porosity	Viscosity	Turbulent viscosity
	988 kg.m -3	0.5928	0.00546 kg.m -1 .s -1	0.1003 kg.m -1 .s -1

Table 3 :

 3 Elementary test, fluid-structure coupling parameters

	Added mass	Longitudinal drag coefficient	Transverse drag coefficient	Still water damping coefficient
	0.108 kg	0.35 m	0.02 m	0.68 N.s.rad -1

Table 5 :

 5 Elementary test, computation times

	Reference	Subcycling, no impact monitoring	Subcycling, impact monitoring	Implicit/explicit, impact monitoring	Extended implicit/explicit, impact monitoring
	1 666 s	118 s	130 s	532 s	459 s
	100%	7.1%	7.8%	31.9%	27.6%

Table 6 :

 6 Advanced test, computation times 

	Reference	Subcycling, impact monitoring, different threshold velocities for secondary impacts management (in m.s -1 )	Implicit/explicit, impact monitoring	Extended implicit/explicit, impact monitoring
		0.01	0.025	0.05	0.075	Inf		
	11 272 s	5 994 s 3 663 s 1 903 s	1 091	1 140	2 575	1 974 s
	100%	53.2%	32.5%	16.9%	9.7%	10.1%	22.8%	17.5%
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 5. In this area, the subcycling algorithm with