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ABSTRACT
Recent years have shown unprecedented growth of interest in
Vision-Language related tasks, with the need to address the inher-
ent challenges of integrating linguistic and visual information to
solve real-world applications. Such a typical task is Visual Question
Answering (VQA), which aims to answer questions about visual
content. The limitations of the VQA task in terms of question re-
dundancy and poor linguistic variability encouraged researchers
to propose Knowledge-aware Visual Question Answering tasks as
a natural extension of VQA. In this paper, we tackle the KVQAE
(Knowledge-based Visual Question Answering about named Enti-
ties) task, which proposes to answer questions about named entities
defined in a knowledge base and grounded in visual content. In
particular, besides the textual and visual information, we propose
to leverage the structural information extracted from syntactic
dependency trees and external knowledge graphs to help answer
questions about a large spectrum of entities of various types. Thus,
by combining contextual and graph-based representations using
Graph Convolutional Networks (GCNs), we are able to learn mean-
ingful embeddings for Information Retrieval tasks. Experiments
on the ViQuAE public dataset show how our approach improves
the state-of-the-art baselines while demonstrating the interest of
injecting external knowledge to enhance multimodal information
retrieval.

CCS CONCEPTS
• Information systems → Question answering; Test collec-
tions; Multimedia and multimodal retrieval.

KEYWORDS
Multimedia retrieval, Knowledge injection
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1 INTRODUCTION

Figure 1: Examples of Question and Passage Text+Image Pairs
in the ViQuAE dataset and Knowledge Base.
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Active research effort has been spent on methods that relate
linguistic and visual information to efficiently solve several down-
stream tasks such as visual question answering and image caption-
ing. Multimodal extensions of traditional Natural Language Pro-
cessing (NLP) tasks, e.g. Multimodal Machine Translation (MMT)
[19], Multimodal Named Entity Recognition (MNER) [27, 57], and
Multimodal Entity Linking (MEL) [1, 2], can also benefit from vision-
language integration. However, understanding the interactions that
exist between language and vision poses several challenges. In
particular, recent deep learning approaches require multimodal rep-
resentations to capture the existing alignments between language
and vision. The Visual Question Answering (VQA) task has been at
the forefront of benchmarks for evaluating such multimodal inte-
gration. In its early definition, VQA aim to answer simple questions
given an input image, which allows assessing the reasoning abilities
of models on visual and language understanding. More recent work
[26, 37, 47, 48] proposed a Knowledge-based VQA task formulation
that requires reasoning abilities that go beyond counting objects
and color recognition. In contrast, Knowledge-based VQA datasets
include questions that require external commonsense knowledge
to be correctly answered, as the image content does embed only
partial information. To further expand the scope of possible im-
provements, recent work [18, 38] pointed out the limitations of the
knowledge-based VQA datasets, which restrict the reasoning to
commonsense knowledge, arguing with the necessity to answer
questions that require knowledge about named entities. Following
[38], who had previously introduced questions focusing on named
entities with text and image, [18] more specifically proposed the
Knowledge-based Visual Question Answering about named Enti-
ties (KVQAE) task, a VQA problem formulation where answering
questions requires knowledge about named entities defined within
a knowledge base (KB). They proposed the ViQuAE dataset, which
covers hundreds of entity types whereas the KVQA dataset [38] is
limited to person entity types.

In this context, we classically tackle the KVQAE task as a two-
step process: a first Information Retrieval (IR) step followed by a
Reading Comprehension (RC) step. As illustrated by Figure 1, the
IR step starts from a (question, image) pair and aims to retrieve a
restricted set of (passage, image) pairs from the reference KB. This
KB is assumed to have unstructured content, made of texts and
images. The RC step aims to extract and rank answers from the pas-
sages retrieved by the first step. In this work, we more particularly
focus on the IR step and propose two main contributions.

The first and main contribution enhances the IR step by integrat-
ing structural information about named entities under the form of
various relations from a knowledge graph. This integration is more
specifically performed by combining a dual encoder architecture
with Graph Convolutional Networks (GCNs). Besides contextual
information, GCNs allow exploiting structural information to learn
richer question and passage representations that help retrieve the
relevant passages.

The second contribution has a more indirect benefit. As demon-
strated in [18], the KVQAE task is both conceptually and computa-
tionally challenging because the IR is done on a KB with millions of
passages. Thus, we propose a smaller version of the ViQuAE dataset
in which the KB is drastically reduced. We show experimentally
the interest of such a reduced version for fast prototyping, i.e. the

performance obtained on the reduced version is a good proxy of the
performance on the large dataset with a positive impact in terms
of computational resources.

2 RELATEDWORK
Visual Question Answering
VQA focuses on answering questions conditioned on visual input.
It has been a longstanding benchmark for vision and language in-
tegration/reasoning. Early research effort [3, 24] has been spent
on developing many datasets that include questions about object
names, colors, and attributes. With the rapid improvement of image
understanding techniques, answering such questions boils down
to a visual recognition task since images contain all the necessary
knowledge to answer questions. Similar to Knowledge-based Tex-
tual Question Answering [23, 40, 54–56], Knowledge-based VQA
received attention [29, 30, 47, 48, 51] to further explore common-
sense/visual reasoning abilities. Several datasets have been devel-
oped, such as FVQA [47] and KB-VQA [48], where external knowl-
edge is leveraged to answer questions whose image does not carry
all the required knowledge. However, such small-scale datasets
comprised only trivial questions that required knowledge about
common nouns, involving simple reasoning schema such as KB
retrieval. Alternatively, [26] proposed OK-VQA, a dataset for visual
reasoning with open knowledge, i.e., the external knowledge is not
restricted to a predefined (closed) Knowledge Graph (KG). More-
over, the required commonsense knowledge is not involved in the
dataset building process, resulting in unbiased questions. Likewise,
[37] proposed A-OKVQA, an open-domain KB-based VQA dataset
that improves the previous one with more qualitative questions
and varied commonsense knowledge that alleviate the single re-
trieval problem. Thus, questions require multiple steps of reasoning
to be correctly answered. Different from knowledge-based VQA,
KVQAE questions rely on knowledge about named entities defined
in a KB rather than commonsense knowledge. [38] first built the
KVQA dataset with entities being limited to named persons from
theWikidata KG. However, the lack of diversity of entity types leads
VQA systems to rely too much on face recognition, ignoring the
unstructured knowledge about entities. In this context, we tackle
the KVQAE task by focusing on the ViQuAE dataset [18], which
offers more entity type diversity and being more challenging.

Vision-Language Pretrained Models
Joint representations learned from text/image pairs are used in var-
ious multimodal downstream tasks such as VQA, image captioning,
and cross-modal retrieval [3, 43, 46]. Recently, Vision-Language
Pretrained Models demonstrated significant performance gains,
which led to a proliferation of architectures and pretraining ob-
jectives. Taking inspiration from the advances made in studies
about attention, these models mainly rely on transformers [45].
Inspired by BERT [6], they are pretrained on a large amount of
aligned text/image pairs to address text+imagematching and Visual-
Language Mask-based modeling objectives. Specifically, LXMERT
[42] and ViLBERT [22] employ two separate encoders pretrained
on Masked multimodal learning and multi-modal alignment. Con-
trastive learning is another Vision-Language pretraining strategy
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illustrated in the recent work on Contrastive Language-Image Pre-
training (CLIP) [33], ALIGN [11], and CoCa [58]. Contrastive rep-
resentation learning consists in learning a mapping function that
projects similar inputs in close regions in the embedding space
according to a distance metric such as the Cosine distance or the
Euclidean distance. CLIP has demonstrated good zero-shot per-
formance on image-text retrieval tasks and few-shot abilities on
some multimodal tasks [39]. Thus, fine-tuning CLIP features on the
KVQAE task might be relevant, although it fails to perform well on
several other language-vision tasks [16].

Knowledge Injection into Language Models
After pretraining a language model (LM), it undoubtedly acquires
linguistic knowledge but also factual (facts about entities), relational
(relation between concepts/entities), and commonsense knowledge
[32, 35]. However, they also tend to suffer from some issues such as
(1) catastrophic forgetting after fine-tuning on a downstream task
despite any type of regularization, (2) the hallucination problem,
for example in dialogue systems (pretrained LMs generate factu-
ally incorrect statements) [8, 34], and (3) the fact that they rely on
memorization during pretraining, which makes them struggle with
unseen entities [4, 21]. To alleviate these issues, a certain number of
recent approaches focused on solutions to better implicitly incorpo-
rate knowledge in Pretrained Language Models (PLMs). For exam-
ple, [15] proposed a label-aware masked language model to solve
the sentiment classification task. Using the same principle, [41]
employed phrase-level and entity-level masking strategies to learn
knowledge-enhanced language models. LUKE [52] distinguishes
tokens and entities by pretraining a LM using a new entity-aware
self-attention mechanism on two different tasks, a standard Masked
Language Modeling (MLM) objective for words and an entity-level
MLM for named entities. In contrast, explicit knowledge injection
approaches learn how to directly leverage knowledge (e.g., unstruc-
tured texts, structured knowledge bases) from an external source.
While such approaches do not integrate knowledge into the model,
they are more suitable for contrastive-based information retrieval
tasks [53].

3 PROBLEM FORMULATION AND DATASET
3.1 Task definition
Our work addresses the KVQAE task originally defined in [38] for
person entities but adopts its extension by [18] for many more
types of entities. Hence, we consider 980 types of entities rather
than one (person) only and we apply our approach to the ViQuAE
dataset [18]. The target task can be seen as a multimodal infor-
mation retrieval (IR) problem where the objective is to retrieve
relevant textual passages given input questions and their visual
content. Specifically, text passages are part of unstructured texts
from Wikipedia articles; thus each passage can be mapped to a
Wikidata entity. Formally, given a text-image pair (𝑄𝑇 , 𝑄𝐼 ) repre-
senting a natural language question associated with visual con-
tent and a knowledge base KB = {(𝑃𝑇 , 𝑃𝐼 )} of text-image pas-
sage pairs, the goal is to retrieve the k most relevant passage pairs
{(𝑃𝑇 , 𝑃𝐼 )1 · · · (𝑃𝑇 , 𝑃𝐼 )𝑘 } with respect to the query question pair.

The ViQuAE dataset is very large, with 1.5 million entities. As
each article is divided into passages of 100 words, it results in

12 million passages. Computing new representations with a deep
model is thus very costly in terms of computational resources.
We propose to create a reduced version of ViQuAE on which the
experiments can be conducted much faster while remaining a good
proxy for the performance on ViQuAE itself.

3.2 Knowledge Base Reduction
We identified 2.4k unique entities in the questions and correspond-
ing answers. Many of the answers are directly present in the entity
Wikipedia article. Therefore, we matched the entities with their
Wikipedia articles thanks to the key Wikidata ID. However, all the
entities do not have their paired article in the KB, which means
that the answers are present in other articles. Indeed, answers can
be found in the entity article and/or in other linked articles (e.g.
some answers about the entity James Bond can be found in the
articles dedicated to the movies about James Bond). Such cases
were removed, which brings the number of entities in the dataset to
2,337 (against 2,397 in ViQuAE) and 3,618 questions (against 3,697
in ViQuAE). After matching the articles, we have 2.4k articles to
build the KB. Then we add 2,663 randomly chosen non-relevant ar-
ticles to add some noise while maintaining the proportion of entity
type with regard to the original KB (human and non-human). After
dividing the retained articles into passages, the new KB size is 170k
passages, which is 1.4% of the original size (12𝑀 passages). The
computation time is reduced accordingly, as verified in Section 4.3.
We keep the same train/val/test split as in ViQuAE.

To assert whether the resulting miniViQuAE benchmark is a
good proxy of the larger one, we reproduce all the IR experiments of
the ViQuAE paper1. From the DPR model pretrained on TriviaQA
[13] (filtered from the same questions as ViQuAE), we fine-tuned
the model on the reduced dataset and passages and computed the
embeddings of the dataset and passages with the best fine-tuned
model. We also extract features with BM25 from this textual data.
For visual features, we extracted embeddings with CLIP, a Resnet-50
pretrained on ImageNet and ArcFace [5].

We compute the retrieval score 𝑠𝑚𝑒𝑡ℎ𝑜𝑑 for each feature, then
apply a late fusion scheme [28] similar to [18]:

𝑃 = 𝑟𝑚𝑠𝑏𝑚25 + (1 − 𝑟𝑚)𝑠𝑑𝑝𝑟
+𝐹𝛼1𝑠𝑎𝑟𝑐 𝑓 𝑎𝑐𝑒 + (1 − 𝐹 )𝛼2𝑠𝑐𝑛𝑛 + 𝛼3𝑠𝑐𝑙𝑖𝑝

(1)

where 𝑟𝑚 is a binary variable to choose whether to use BM25 or
DPR for the textual modality, 𝐹 takes a binary value at inference
depending on face detection, and

∑
𝑖 𝛼𝑖 = 1. All hyperparameters

are determined on the validation set.
The results of the evaluation are reported in Table 2 for text-

only and multimodal settings and can be compared to those of [18]
also reported in Table 3. Although the performances are higher on
miniViQuAE, which is easily understood since the dataset is smaller
and less noisy, one finds the same relative order of the methods,
showing the relevance of our reduced benchmark as a proxy.

4 METHOD
The Dense Passage Retrieval (DPR) dual encoder proposed by [14]
is a state-of-the-art approach to retrieve passages from a large cor-
pus (see Figure 2). However, it only relies on the information that is
1Code will be released at: https://github.com/OA256864/MEERQAT_Entity

https://github.com/OA256864/MEERQAT_Entity
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Figure 2: Dual Encoder Architecture Overview.

Figure 3: Enhanced Contextual Passage Representation with
Graph Structural Information Using GCNs.

available in the corpus, which is quite limiting for practical applica-
tions that need “commonsense” or external knowledge that is not
explicit in the corpus. Usually, such knowledge can be available in
the form of a knowledge graph in an external source. The approach
we propose leverages such structural information from external
sources (see Figure 3) and includes it in the passage representation.
In practice, to address the task defined in Section 3.1, we propose
question/passage knowledge-enhanced encoders ETKQ (·) and ETKP (·)
that leverage contextual, syntactical, and structural information2.

Text Encoder
We consider baseline textual encoders ETQ(·) and ETP (·) to get dense
vector representations for respectively the input question and pas-
sage texts. Specifically, ETQ(·) and ETP (·) are two pretrained BERT-
based models similar to those used in [18] with two pretraining
stages: the original MLM and next sentence prediction pretraining
[6] followed by a Question Answering fine-tuning on the TriviaQA
[13]. Given an input sequence, its contextual representation 𝐻𝑇

𝑖
is

the 768-dimensional vector of the [CLS] wordpiece token of the
last hidden layer of BERT.

Graph Encoder
Using Graph Convolution Networks [17], we leverage the struc-
tural information of a knowledge graph by encoding the local graph
of neighbor nodes for each node of interest, i.e., the nodes associ-
ated with the entities extracted from the passages (see Figure 3).
GCNs have been widely used to encode undirected graphs and solve
graph-related tasks such as node classification and link prediction
but also downstream tasks such as VQA [29]. During training, node
representations are learned by aggregating information from the
local neighboring nodes of each node, which allows capturing the
inherent structural information of the graph. Formally, GCNs en-
code a graph G = {V , E } defined by a set of N nodes V and
a set of edges E using the adjacency matrix 𝐴 ∈ R𝑁×𝑁 , that re-
flects the graph structure. Specifically, the entry 𝐴𝑖 𝑗 = 1 if an edge
exists between the 𝑖𝑡ℎ and 𝑗𝑡ℎ nodes; otherwise, 𝐴𝑖 𝑗 = 0. A deep
2The code will be released at https://github.com/OA256864/MEERQAT_Entity

graph convolution network stacks L hidden layers and iteratively
propagates information following the rule:

𝐻 (𝑙+1) = 𝜎 (�̃�− 1
2 �̃��̃�− 1

2𝐻 𝑙𝑊 𝑙 ) (2)
where �̃� = 𝐴 + 𝐼𝑁 is the adjacency matrix augmented with self-

connections, 𝐼𝑁 being the identity matrix; �̃� is the degree matrix
of A used for normalization purposes where �̃�𝑖𝑖 =

∑
𝑗 �̃�𝑖 𝑗 ;𝑊 𝑙 is

a trainable weight matrix at the l-th layer and 𝜎 (.) denotes a non-
linear activation function (RELU in our case). Let X = 𝐻0 ∈ R𝑁×𝐷

be the input node feature matrix with D=768, as we apply the
passage encoder on the entity descriptions to initialize node features.
We feed X to the L-layer GCN, which performs L hops of message
passing and aggregation over the N nodes of G to obtain the final
node embeddings 𝐻𝐿 ∈ R𝑁×𝐷 .

4.1 Knowledge-Enhanced Representation
Our retrieval approach aims to enhance textual representation
with external knowledge thus expecting a better alignment be-
tween questions and relevant passages. Specifically, given an in-
put sequence, we apply named entity recognition and disambigua-
tion using a state-of-the-art zero-shot Entity Linking (EL) system,
BLINK [20]. It allows linking the detected mentions to the 5.9 mil-
lion article entities in English Wikipedia. While its dual+cross en-
coder architecture makes the 12M of passages annotation quite
computationally expensive, it guarantees fewer entity annotation
errors compared to faster EL systems. Thus, we obtain for a given
passage 𝑃𝑖 a set𝑀𝑖 = {𝑚1 · · ·𝑚𝑛} of mention spans and their corre-
sponding set 𝐸𝑖 = {𝑒1 · · · 𝑒𝑛} of linked entities. This allows relating
entity-level information of each passage to external knowledge
resources. For this last, we leverage Wikidata5M (W5M) [49], a
large-scale knowledge graph (KG) with nearly 5 million nodes and
20 million edges (subject-relation-object triples). It was built upon
the July 2019 dump of Wikidata and Wikipedia where each entity
in Wikidata is aligned to its Wikipedia page while entities with
no pages or with descriptions of fewer than 5 words are discarded.
We first map each linked entity 𝑒𝑖 ∈ 𝐸𝑖 to a node 𝑛𝑖 in the W5M
KG, resulting with the corresponding node set 𝑁𝑖 . Ideally, in order
to leverage KG structural information, we would have built for

https://github.com/OA256864/MEERQAT_Entity
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Figure 4: Example of a local neighbor subgraph built from a
relevant passage. Edges between Linked entities nodes are in
bold. The local neighbor graph for each entity node, extracted
from theknowledge graph, is highlightedwith the same color.
The illustrated subgraph is built with 𝑘𝑛𝑏 = 2 and 𝑑 = 2.

each passage 𝑃𝑖 the induced W5M subgraph that connects either
directly the corresponding nodes in 𝑁𝑖 or through all the interme-
diate nodes in the KG. Besides the hard computational complexity
of subgraph extraction, our preliminary empirical analysis showed
that two node entities in 𝑁𝑖 can be very far (hundreds of interme-
diate nodes) in the KG, leading to large extracted subgraphs whose
encoding is unfeasible. Instead, we build a heterogeneous subgraph
G𝑖 where nodes in 𝑁𝑖 are connected sequentially following the
order in the original passage 𝑃𝑖 , which allows the propagation of
entity-level information. In addition, to leverage KG structural in-
formation, we build for each node in 𝑁𝑖 a local neighborhood graph
extracted from W5M KG (see Figure 4 for an example). Given a
W5M KG node 𝑛𝑖 , we randomly sample 𝑘𝑛𝑏 neighbor nodes with a
depth 𝑑 using a Depth-First Search (DFS) approach. The hyperpa-
rameters 𝑘𝑛𝑏 and 𝑑 that control the size of G𝑖 are determined on
the validation set.

After applying an L-layer GCN following the update rule in Eq.2
over the subgraph G𝑖 of a passage 𝑃𝑖 , we obtain the node represen-
tation matrix 𝐻𝑔𝑐𝑛

𝑖
∈ R𝑁G𝑖 ×𝐷 , where 𝑁G𝑖

is the number of nodes
in the subgraph G𝑖 . Node features are initialized by encoding the
textual description of their corresponding Wikipedia entities using
ETP (·), enabling the GCN to fine-tune BERT layers during training.
The number of GCN layers L determines how many information
aggregation hops it performs on the local subgraph. Therefore, we
set L equals to 𝑑 . In our experiments, we also found that encoding
edge directions and types using relational GCNs (R-GCNs) [36]
did not improve performance, likely due to over-parameterization
[25, 44]. Indeed, the number of relation types (more than 800 in

WD5M) requires a reasonable number of training examples for each
type. Table 1 shows statistics about the number of linked entities
in question and passage texts. One can observe that questions in
the validation set have poor entity-level information and a great
proportion of questions do not exhibit any named entity. Indeed,
the KVQAE is a challenging task that requires leveraging visual
content. To alleviate this challenge, we propose to enhance question
representations with incorporating syntactic information instead.
We use Spacy3 to annotate question sequences with dependency
parsing labels and build a syntactic dependency graph we encode
using GCNs as in [25] (see Figure 5).

Table 1: Statistics about the Number of Linked Entities in
Input Sequences

KB/Dataset mean median std min max

𝑝𝑎𝑠𝑠𝑎𝑔𝑒 6.44 6 3.31 1 101
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 0.495 0 0.738 0 6

In order to obtain a graph-level representation, we apply a graph
pooling (max,mean) function that maps the 𝐻𝑔𝑐𝑛

𝑖
∈ R𝑁G𝑖 ×𝐷 node

representation matrix to a vector 𝐻𝐾
𝑖

∈ R𝑁G𝑖 ×𝐷 . Lastly, the final
knowledge-enhanced representation 𝐻𝑇𝐾

𝑖
is obtained using con-

catenation in order to preserve the contextual information during
retrieval such that: 𝐻𝑇𝐾

𝑖
= Concat(𝐻𝑇

𝑖
, 𝐻𝐾

𝑖
)

Learning Objective
Like standard DPR training, given an input query question 𝑄𝑖 , a
relevant passage 𝑃+

𝑖
, and an irrelevant passage 𝑃−

𝑖
, which represents

a hard negative we mined using BM25, we compute the dot product
similarity scores sim(𝑄𝑖 ,𝑃+𝑖 ) and sim(𝑄𝑖 ,𝑃−𝑖 ) as:

𝑠𝑖𝑚(𝑄𝑖 , 𝑃+𝑖 ) = ETKQ (𝑄𝑖 )𝑇 .ETKP (𝑃+𝑖 ) . (3)

During training, the encoders learn to project relevant passage
vectors closer to question vectors in the embedding space while
maximizing the distance with irrelevant passage vectors. Formally,
the objective is to minimize the contrastive log-likelihood loss
function L as follows:

L = − log
exp (𝑠𝑖𝑚(𝑄𝑖 , 𝑃+𝑖 ))

exp (𝑠𝑖𝑚(𝑄𝑖 , 𝑃+𝑖 )) +
∑𝑀
𝑗=1 exp (𝑠𝑖𝑚(𝑄𝑖 , 𝑃−𝑖 𝑗 ))

(4)

where M is the number of negative (irrelevant passages) examples
per question. This loss also takes advantage of in-batch negatives
to increase the number of training examples without any additional
computational cost. Indeed, for example, consider B questions in a
mini-batch, B relevant passages and B × M BM25 mined irrelevant
passages; thus, each question is trained on (B ×M) + (B-1) negative
examples since relevant+irrelevant passages for other questions
are considered hard negatives for a given question.
3https://spacy.io/

https://spacy.io/
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Figure 5: Dependency Parsing Example of a Question in the ViQuAE Dataset.

4.2 Image Retrieval
As mentioned earlier, the ViQuAE knowledge base exhibits various
entity types, but with a prevalence of named person entities. Similar
to [18], we distinguish images with faces using MTCNN [59], an im-
age face detector, from images without faces, assuming that images
with faces are more likely to refer to person entities. Thus, images
with faces are encoded using ArcFace [5] while images without
detected face are represented with ImageNet-ResNet [10] and CLIP,
both with a ResNet-50 backbone (see [18] for more details).

4.3 Inference
In this work, we easily embed question texts using ETKQ (·) while
embedding all the KB passages with ETKP (·) is computationally ex-
pensive. It takes on average 25 hours to embed the 12M passages
in the KB using the textual encoder ETP (·). The same computation
using the proposed knowledge-enhanced encoder ETKP (·) is 3 times
longer, due to our online local neighborhood graph sampling. Al-
though this step can be parallelized, it motivated us to build the
reduced KB as explained in Section 3.2. Hence, on miniViquAE, the
embedding computation is reduced to 22 minutes rather than 25
hours, allowing to conduct more experiments. At retrieval time,
top-100 passage embeddings are retrieved based on their cosine
similarity scores with question embeddings.

4.4 Late Fusion and Indexing
Following [18], we adopt a late fusion information retrieval ap-
proach since our work focuses on enhancing text retrieval encoders
with the ability to integrate external knowledge. Indeed, late fu-
sion involves a single modality search at a time before fusing the
resulting scores. We thus encode question and passage texts using
the proposed knowledge-enhanced text retrieval encoder ETK and
then, using a visual encoder EI, we compute a representation for
all questions and passage associated images. Once texts and images
for each question and passages are mapped to a dense vector repre-
sentation, the most relevant passages are retrieved according to a
similarity measure such that their vector representations are the
closest to question ones in the embedding space.

Given the multimodal representations of all questions in the
dataset and all passages in the KB, we index them using the Faiss
[12] library and perform a dense similarity search to retrieve the
top-100 closest passage vector representations to the question ones
using the maximum inner product. The resulting scores for each
modality are normalized to zero mean and unit variance in order to
have comparable distributions [14, 18]. Finally, the scores are fused
according to Eq.1.

Similarly to the experiment in Section 3.2, a grid search is applied
on the validation set in order to fix the interpolation hyperparame-
ters 𝛼 𝑗 , retaining those that maximize the Mean Reciprocal Rank
(MRR) metric.

5 EXPERIMENTS
We fine-tuned the proposed knowledge-enhanced dual encoder
on the ViQuAE dataset following the official split: train (1,190),
validation (1,250), and test (1,257). The ViQuAE KB comprises 12M
passages whose maximum length equals 100 words. The associated
Wikipedia article title is added to each passage header. Note that
a single visual content is associated with the passages extracted
from the same Wikipedia article while the ViQuAE KB comprises
on average 8 passages per article. Hence, the visual content is not
helpful in discriminating between passages originating from the
same article.

Table 2: Overall IR Results on the Reduced KB

Model MRR@100 P@1 P@20 Hit Rate@20

DPR 0.354 0.246 0.141 0.669
DPR + GCN 0.367 0.264 0.146 0.666

resnet 0.030 0.022 0.012 0.055
clip-RN50 0.044 0.034 0.021 0.080
arcface 0.169 0.136 0.059 0.255
fusion 0.409 0.307 0.164 0.686

Our fusion 0.414 0.313 0.159 0.696

5.1 Experiment Settings
Experiments are performed on a multi-GPU setup (4xGPUs), which
is favorable for in-batch negative training. Given 1 relevant + 1
BM25 mined irrelevant passages for each question, with a batch
size of 16 per GPU, the total batch size across GPUs equals 4 × (1 +
1)×16 = 128. Questions and passages are truncated to amaximumof
256 tokens and entity descriptions to 16. We performed grid search
on the graph sampling hyperparameters and obtained the best
performance with a graph depth 𝑑 = 2 and a number of neighbors
𝑘𝑛𝑏=2. Similarly, we optimized the interpolation hyperparameters
and found: 𝛼𝑑𝑝𝑟 = 0.3, 𝛼𝑟𝑒𝑠𝑛𝑒𝑡 = 0.1, 𝛼𝑎𝑟𝑐𝑓𝑎𝑐𝑒 = 0.4 and 𝛼𝑐𝑙𝑖𝑝 = 0.2.

Loss optimization is performed using Adam over 40 epochs with
a learning rate of 4.10−5 and a linear schedule. We perform model
selection according to the best Mean Reciprocal Rank score on the
validation set. The implementation relies on PyTorch [31], Trans-
formers [50], and PyTorch Geometric [9] for graph modeling.
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Table 3: Overall effectiveness of the models. The best results are highlighted in boldface. Superscripts denote significant
differences in paired Student’s t-test with 𝑝 ≤ 0.01. BL denotes previously published baseline results [18].

# Model MRR@100 P@1 P@5 P@20 Hit Rate@5 Hit Rate@20

BL BM25, text-only 0.190 0.131 0.87 0.59 0.239 0.395
BL DPR text-only 0.328 0.228 0.200 0.164 0.436 0.612
BL fusion 0.379 0.278 0.225 0.175 0.495 0.657

a Ours (text+graph) 0.336𝑏𝑐𝑑 0.241𝑏𝑐𝑑 0.207𝑏𝑐𝑑 0.166𝑏𝑐𝑑 0.434𝑏𝑐𝑑 0.599𝑏𝑐𝑑
b resnet 0.019 0.012 0.009 0.009 0.022 0.044
c clip-RN50 0.036𝑏 0.025𝑏 0.018𝑏 0.017𝑏 0.041𝑏 0.081𝑏

d arcface 0.145𝑏𝑐 0.111𝑏𝑐 0.074𝑏𝑐 0.052𝑏𝑐 0.188𝑏𝑐 0.222𝑏𝑐

e Our fusion 0.383𝑎𝑏𝑐𝑑 0.290𝑎𝑏𝑐𝑑 0.223𝑎𝑏𝑐𝑑 0.171𝑏𝑐𝑑 0.478𝑎𝑏𝑐𝑑 0.644𝑎𝑏𝑐𝑑

Table 4: Examples of top-1 retrieved passages where only the knowledge-enhanced representations allowed to select relevant
passages containing the correct answer

Q𝐼 Q𝑇 P𝐼 P𝑇

Which film opens with this
fictional universe perform-
ing a bungee jump from a
dam?

Canton of Ticino [SEP] The opening of the Gotthard Railway in 1882 led to the establishment of a sizeable tourist
industry mostly catering to German-speakers, although since the early 2000s the industry has suffered from the
competition of more distant destinations. In 2011, 1,728,888 overnight stays were recorded. Themild climate throughout
the year makes the canton a popular destination for hikers. The Verzasca Dam, known for the opening scene of the
1995 film “GoldenEye”, is popular with bungee jumpers.

Who was the principal vil-
lain in the 2004 movie with
this character?

Doctor Octopus [SEP] Doctor Octopus has begun wearing a full-body armor suit due to a crippling illness caused
by the amount of punishment he has sustained over the years, made even worse by the fact that his ability to “take”
damage is still at a human norm, even if he can deliver a superhuman level of punishment; he relies completely on his
arms to prevent opponents with superhuman strength getting in close enough to damage his relatively unfit physical
form even before his illness.

In which city would you
find this high-rise build-
ing?

Royal Park,Melbourne [SEP] While the move attracted some opposition from green groups, it was promoted with
the claim that there would be no net loss of parkland at Royal Park. The basis of area calculations used to support this
claim is unclear. Relocation of the Hospital’s helipad onto the roof of the new building has removed this impact from
the park, but after completion of construction it appears that the hospital buildings now occupy a substantially larger
area than previously, and parkland has been lost.

On which island is this
city?

Sicily [SEP] After taking Carthage the Vandals personally led by King Gaiseric laid siege to Palermo in 440 as the
opening act in an attempt to wrest the island from Roman rule personally. The Vandals made another attempt to take
the island one year after the sack of Rome in 455, at Agrigento, but were defeated decisively by Ricimir in a naval
victory off Corsica in 456. The island remained under Roman rule until 469.

On Which castle was the
last stronghold of this
monarch?

Powis Castle [SEP] Unlike the case of castles at Conwy, Caernarfon, Harlech and nearby Montgomery which were all
built by the English to subdue theWelsh, Powis castlewas built by aWelsh prince in the thirteenth century. Following
the end of the Welsh Wars (1282) and for his loyalty to Edward I, the King permitted Gruffydd ap Gwenwynwyn to
begin building Powis Castle circa 1283.

5.2 Quantitative results
In order to analyze the impact of knowledge enhancement on text
and multimodal retrieval, we conduct performance evaluation with
Precision@K (P@K), Mean Reciprocal Rank (MRR@k), and Hit
Rate metrics. Retrieval systems are evaluated on their ability to
retrieve the relevant passages i.e., passages containing the ground
truth strings. Note that, given a Wikipedia entity, all its aliases
are considered ground truth. Table 3 reports the performance of
our approach against state-of-the-art baselines, namely BM25 and
DPR dual-encoder, for the aforementioned metrics. The Fisher’s
randomization test is used for statistical significance tests.

Without surprise, BM25-based sparse retrieval has a worse per-
formance compared to dense retrieval systems, which have the
ability to capture more semantic information than traditional IR
approaches. In the text-only retrieval setting, our approach per-
forms better than DPR on all metrics, showing that our knowledge-
enhanced encoders provide additional discriminative power with
richer question and passage representations. It is worth mentioning
that our experiments were carried out using a batch size per GPU
of 16 compared to 32 used in [18] due to GPU memory limitations.
This suggests that some implementation optimizations could po-
tentially lead to greater performance gains, as contrastive learning
benefits from more in-batch hard negatives during training. We
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also observe that our approach performs best at retrieving (+1.3pt
P@1) the top-1 relevant passages, which confirms the benefit of
incorporating external knowledge with contextual information.

In the multimodal setting, as pointed out in [18], visual content
provides substantial improvement for both BM25 and DPR due to
the entity type bias in the dataset. Indeed, their fusion analysis
showed that image encoders greatly help to retrieve relevant pas-
sages for questions about person entities compared to non-person
entity types. In particular, a subset of the ViQuAE KB images over-
laps with theMS-Celeb dataset used to pretrain the ArcFace encoder,
which allows a straightforward alignment between question and
passage image representations. Thus, our approach naturally ben-
efits from this bias, but also further achieves improvement over
the DPR-based fusion baseline. This suggests that our knowledge-
enhanced approach effectively captures additional information and
enriches contextualized representations with structural informa-
tion. The evaluation results on the reduced KB reported in Table 2
follow the same trend as for the full KB, confirming that the reduced
KB is a good proxy.

5.3 Qualitative Analysis
Table 4 shows some qualitative examples of top-1 passages correctly
retrieved using our approach (with only knowledge-enhanced rep-
resentations) whereas DPR and image features failed to. These
examples illustrate typical cases where question and passage im-
ages depict heterogeneous contents. For instance, the first question
is about a film in which a character is performing a bungee jump
from a dam. It is associated with the photography of the 007 mu-
seum whereas the image of the relevant passage is the flag of a
Switzerland canton. More generally, an entity can admit a vari-
ety of illustrations, e.g. statues, logos, maps, etc., making visual
retrieval difficult when a question and a passage are illustrated very
differently. Visual encoders naturally project those image repre-
sentations in subspaces far from each other, resulting in a visual
miss-alignment. DPR also failed to retrieve relevant passages despite
its ability to capture lexical variations and contextual information.
This is likely due to the high lexical and semantic overlap between
the question and many passages in the knowledge base, including
the relevant ones. For the first example, the DPR wrongly retrieved
a passage about the Niagara Falls, which has been a featured loca-
tion for several movies. Keywords like “film” and “dam” mislead
the search for passages that include them. By combining contextual
and graph-based representations, our approach can learn additional
signals between question vectors enhanced with syntactic infor-
mation and knowledge-enhanced passage vectors, which helps to
discriminate passages with lexical and semantic overlaps. We em-
pirically observe that our approach can better handle entity type
variety, which is beneficial for the ViQuAE task.

5.4 Limitations
In our approach, we fine-tune the proposed knowledge-enhanced
dual encoder on a relatively small dataset, which can rapidly lead
to overfitting. A pre-training stage on large QA datasets and knowl-
edge graphs would potentially help to produce richer represen-
tations. Moreover, our approach is agnostic to the type of entity

a passage is related to. Some work [7] on comparable tasks sug-
gests that the explicit injection of such knowledge may improve IR
performance. Another limitation of our work is the random-based
neighbor graph sampling, which is likely to inject noisy informa-
tion into representations. Future work includes investigating more
deterministic neighbor graph-building strategies beyond random
sampling, for example by exploring more relevant paths in the
knowledge graph that better integrate meaningful information de-
pending on the target passage.

6 CONCLUSION AND PERSPECTIVES
We presented an explicit knowledge integration approach for in-
formation retrieval on the KVQAE task. We proposed to leverage
external resources such as knowledge graphs in order to enhance
dense contextual vector representations. In this work, questions be-
ing mainly visual with poor entity-level information, we proposed
to enhance their representation using syntactic information in the
form of dependency parsing trees. On the other hand, entity linking
is performed on passages, which allows the building of local sub-
graphs using an external knowledge graph. Altogether, syntactic
dependencies and local knowledge subgraphs are encoded using
graph convolutional networks. By combining contextual and graph-
based representations, we demonstrated through experiments the
benefit of such integration while improving the state-of-the-art
IR on the ViQuAE dataset. The proposed method is orthogonal to
existing approaches and can be integrated with various architec-
tures. Finally, experiments being computationally expensive, we
proposed a reduced version of the original KB that stands as a good
proxy that facilitates the experiments.

In this work, we have considered the integration of knowledge
at the passage level, which was the most obvious level for such
integration due to the number of named entities that can be found
in them. One direct extension of the work would be to consider the
integration of knowledge at the level of questions as well. The num-
ber of named entities in questions is much lower than in passages
but questions also include references to two "ghost" entities that we
can exploit through their type: the target of the question and the
entity of the image associated with the question. The knowledge
brought by a KG can also be exploited more indirectly for taking
into account the fact that an entity, especially abstract entities, can
be represented visually in many different ways, as for the example
about a film in Section 5.3. More precisely, the relations between
entities in a KG can be used for enlarging selectively the set of
images associated with an entity, which can be viewed as a form of
predictive visual semantic expansion.
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