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M Check for updates

Heat waves are causing declines in coral reefs globally. Coral thermal
responses depend on multiple, interacting drivers, such as past thermal
exposure, endosymbiont community composition, and host genotype. This

makes the understanding of their relative roles in adaptive and/or plastic
responses crucial for anticipating impacts of future warming. Here, we
extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites
on 11 islands across the Pacific Ocean to characterize host-photosymbiont
fidelity and to investigate patterns of gene expression across a historical

thermal gradient. We report high host-photosymbiont fidelity and show that
coral and microalgal gene expression respond to different drivers. Differences
in photosymbiotic association had only weak impacts on host gene expression,
which was more strongly correlated with the historical thermal environment,
whereas, photosymbiont gene expression was largely determined by micro-
algal lineage. Overall, our results reveal a three-tiered strategy of thermal
acclimatization in Pocillopora underpinned by host-photosymbiont specificity,

host transcriptomic plasticity, and differential photosymbiotic association
under extreme warming.

Coral reefs are ecologically and economically important ecosystems
whose existence depends upon the mutualistic, photosymbiotic, asso-
ciation between certain Cnidarian hosts and their dinoflagellate sym-
bionts. Breakdown of this association can lead to expulsion of algal
symbionts (i.e., bleaching) and ultimately result in coral mortality and
reef loss'. Recent environmental perturbations, particularly rising sea
surface temperatures and increasing frequency of extreme heating
events (i.e., marine heatwaves), are disrupting coral-dinoflagellate
photosymbioses worldwide, increasing the frequency and severity of
coral bleaching events®. There is therefore growing concern about the
potential for heating-driven local extirpation of coral species and severe
reef loss in the current century. However, in some regions, corals exhibit
higher than average heat tolerances* or show the ability to rapidly
respond to and recover from acute thermal challenges’. Repeated

sublethal exposure to elevated sea surface temperatures can also drive
positive acclimatization (phenotypic plasticity) and/or selection for
thermotolerant genotypes (i.e., local adaptation). However, in other
species, warm pre-conditioning had no or negative effects on holobiont
performance during subsequent thermal challenges®’. The capacity for
thermal acclimatization and/or adaptation may therefore play an
important role in determining potential winners and losers among coral
species in the face of global change®®. Determining whether acclimati-
zation capacity can keep pace with projected environmental change
and in which symbiotic assemblages, is therefore of paramount
importance for predicting responses of the coral-dinoflagellate photo-
symbiosis under a warming climate.

Understanding how corals will respond to ongoing climate
change requires prior knowledge regarding their capacities for
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thermal acclimatization (e.g., holobiont flexibility and transcriptomic
plasticity) and adaptation’™. The mechanisms underlying these
capacities as well as their limits and extent among different coral
holobiotypes and the relative roles of each symbiotic partner remain
under intense investigation. In some cases, alteration of the dominant
photosymbiont lineage, from thermally sensitive to thermally toler-
ant Symbiodiniaceae for example, confers a higher resistance of the
coral holobiont to heat stress'>". In other cases, thermal acclimati-
zation is achieved through altered gene expression in the host and/or
symbiont, including high basal expression (i.e., gene frontloading) of
certain stress response genes, resulting in increased holobiont ther-
mal tolerance®'*", Coral holobiont thermal sensitivity is therefore
dependent on an array of interacting drivers, including environmental
history*'**?, endosymbiont community composition?>*, and host
genotype>* %, However, the relative role of each of these factors in
determining holobiont expression in natura remains poorly resolved.
A remaining challenge, therefore, is to better understand how envir-
onmental context affects the complex interplay between the host and
symbiont and to what extent certain genotypes and or host/symbiont
pairings might confer resilience or resistance to projected environ-
mental change. Finally, acclimatization or adaptation of a coral
holobiont at the local (reef) scale is often not representative of
capacities at larger (ocean) scales and therefore does not allow for
accurate global projections of the survival or decline of a species or of
reef ecosystems®,

Given the variety of components involved in maintaining the
coral-dinoflagellate mutualism against environmental perturbation,
recent analyses have begun to adopt a more integrative and multi-
disciplinary approach to understanding the impacts of climate change
on coral health. Integration of various analysis methods (genomic,
transcriptomic, barcoding, imaging, etc.) is needed to draw a global
picture of coral holobiont adaptation and acclimatization capacities®”.
The Tara Pacific expedition provides a unique opportunity to address
these important questions because it allows for comparative analyses
of differences in holobiont community composition and photo-
symbiotic regulation among environments and species across the
tropical Pacific Ocean’.

To this end, we investigated gene expression profiles of 102 colo-
nies of Pocillopora spp. and their associated photosymbionts alongside
metagenomic sequences and environmental context data from 11
islands across the Pacific Ocean (Fig. 1a) in order to assess the relative
contributions of environmental and genetic factors in determining coral
holobiont gene expression in natura. We used dual RNA-seq expression
profiling, and variation partitioning to examine the effects of a historical
sea surface temperature gradient on transcriptomic plasticity among
various Pocillopora hosts and their associated dinoflagellate endo-
symbionts (Symbiodiniaceae) across the Pacific Ocean.

Here we show that multiple Pocillopora lineages exhibit a high
degree of host-photosymbiont fidelity across environments with
instances of symbiotic flexibility and/or breakdown associated with
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Fig. 1| Pocillopora and Symbiodiniaceae lineages identified in each sample
across the Pacific Ocean. a Map showing the 11 islands sampled during the Tara
Pacific expedition alongside annual mean sea surface temperature (SST) climatol-
ogies over the period 1981-2010 (NOAA OI SST V2 High-Resolution SST data).

b Lineage assignments of sampled colonies for both the photosymbiont (Sym-
biodiniaceae icon, top panel; Cladocopium genetic lineages and Durusdinium
glynnii when also present) and Pocillopora host (Coral colony icon, middle panel).
Lineages were identified from an analysis of single nucleotide polymorphisms
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(SNPs) performed using metagenomic reads for the Pocillopora host and on
metatranscriptomic reads for the Symbiodiniaceae. In colonies containing both
Durusdinium and Cladocopium, the latter were assigned to C. latusorum LS using the
ITS2 pairwise distance clustering (Supplementary Fig. 3). Also displayed are his-
torical mean sea surface temperatures (2002—sampling date) at each reef site
(bottom panel, S01/S02/S03—sites 01, 02, and 03). Source data are available for
this figure'®®.
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corals living on reefs which have historically experienced elevated sea
surface temperatures (SSTs). We also describe how host and photo-
symbiont expression profiles respond to different drivers and discuss
how these mechanisms may represent a three-tiered strategy of thermal
acclimatization/adaptation in Pocillopora corals. Finally, we discuss the
implications of this strategy for continued persistence of Pocillopora
holobionts under current and projected future ocean warming.

Results

Pocillopora and Symbiodiniaceae identification

Pocillopora hosts were taxonomically identified using genome-wide
SNPs clustering and coalescent (SVD quartet) analysis as described in
ref. 27. They obtained five distinct genetic lineages (SVD1 to SVDS5),
which were further assigned to the species level based on a set of
Pocillopora reference sequences from refs. 27,28 and the mtORF
sequences from ref. 29. This resulted in the identification of 12 colonies
as belonging to P. cf. effusa (SVD1, GSHO1, haplotypes 2 and 11), 19
colonies to P. meandrina (SVD2, GSHO9b, haplotypes 1a and 8a), 17
colonies to P. verrucosa (SVD3, GSH13c, haplotypes 3a,b,f,h), 33 colo-
nies to P. grandis (SVD4, GSHOO9ctsp, haplotype 1a) and 21 colonies to a
cryptic P. verrucosa species (SVD5, GSH14, haplotype 10), hereafter
referred to as SSH5_pver (Fig. 1b). We also identified one hybrid colony
P. meandrina/P. verrucosa (SVD2/SVD3). The mtORF phylogeny and
Pocillopora species name connections with previously published stu-
dies are reported in Supplementary Fig. 1. Although several studies
corroborate these species assignments based on various genomic
data®?°, complementary analyses of skeletal morphology will be
necessary to confirm these species names with the respective type
specimen vouchers®. We used two different genetic markers (nuclear
ITS2 sequences and plastid-encoded psbA™ sequences) alongside
transcriptome-wide SNPs to identify Symbiodiniaceae lineages in each
Pocillopora colony. The ITS2 sequence profiles revealed that 84 Pocil-
lopora colonies hosted Cladocopium CI1/C42-based profiles, 9 colonies
hosted Durusdinium D1-based profiles, and 9 colonies contained both
Cladocopium and Durusdinium in varying proportions (Supplementary
Fig. 2). For Durusdinium-containing colonies, the majority ITS2 se-
quences were D1 for 15 colonies with D1/Dlas, D1/D2d, and D1/Dlaa
accounting for the 3 remaining colonies (one representative each).
These ITS2 profiles are all associated with Durusdinium glynnii. To
identify the different Cladocopium lineages, we aligned metatran-
scriptomic reads of Pocillopora colonies on the predicted genes of the
C. goreaui genome® and called the SNPs for each Pocillopora colony
hosting only Cladocopium. We clustered the frequencies of 3712 bial-
lelic SNPs distributed across 1354 transcripts and obtained an optimal
number of five different clusters potentially corresponding to five
different lineages hereafter named L1 to L5 (Fig. 1b and Supplementary
Fig. 3a). We then compared the SNP clustering with the clustering of
ITS2 profile distances which also include samples containing both
Cladocopium and Durusdinium symbionts (Supplementary Fig. 3b).
The topologies of these two dendrograms are highly similar and this
clustering reveals that only Cladocopium L5 is present in Pocillopora
colonies hosting both Cladocopium and Durusdinium. Finally to link
each Cladocopium lineage to formally described species, we created a
phylogeny based on the mapping of metagenomic reads on the non-
coding region of the psbA gene (psbA™) recently sequenced in three
Cladocopium species: C. goreaui, C. latusorum, and C. pacificum®**. The
psbA™" sequence robustly separated Cladocopium L1 from L2/L3 and
L4/L5. Cladocopium L1 is most similar to C. goreaui, whereas L2/L3 are
two different taxa within C. latusorum and L4/L5 are two different taxa
within C. pacificum (Supplementary Fig. 3c). Notably, the positioning
of two Cladocopium samples (105S03C001 and 105503C006) was
incoherent between the three methods. They were assigned to L3, L2,
or L5 according to the SNP, ITS2 and psbA™ analyses, respectively.
Given that the SNP analysis is based on a larger number of variants
distributed across the entire transcriptome, in comparison to the short

and multi-copy (ITS2) or plastid-encoded (psbA™") marker sequences,
we consider that these two Cladocopium populations belong to L3.

Host-symbiont associations and holobiont biogeography
Three Pocillopora species that we sampled (P. cf. effusa, P. meandrina
and P. verrucosa) exhibited near perfect symbiotic fidelity—i.e., a one
to one pairing of photosymbiont lineage and host—which persisted
across all sampled environments (Fig. 1b). P. cf. effusa colonies
(present on Ducie, Gambier, and Moorea) were always found
in symbiosis with C. pacificum (L2). Similarly, P. meandrina colonies
(present on several islands in the Western Pacific) always hosted
C. latusorum (LS). Finally, P. verrucosa which was present in
both the Central and Western Pacific, displayed near perfect sym-
biotic fidelity with C. pacificum (L3) across its range, with only
one instance of a difference in photosymbiont association
(one colony in Guam hosting D. glynnii) which we discuss, below. The
P. meandrina/P. verrucosa hybrid on Niue island (109S03C010) hos-
ted C. pacificum (L3).

The two other Pocillopora species (P. grandis and SSH5_pver)
suggest symbiont flexibility. Pocillopora SSHS_pver was the only lineage
sampled on Rapa Nui and is in symbiosis with C. goreaui. SSH5_pver
was also present on Ducie and Moorea islands in symbiosis with
C. pacificum (L3). The two symbionts of SSH5_pver perfectly match to
two genetic subclades of SSH5_pver (Fig. 2a) that are geographically
separated. P. grandis was the sole lineage present among colonies
sampled from the far Eastern Tropical Pacific (Isla de Las Perlas, Coiba,
and Malpelo) and hosted C. latusorum (L5) and/or D. glynnii. P. grandis
was also present on Ducie and Gambier islands where it was found in
association with C. latusorum (L4). Similarly, the two Cladocopium
symbionts of P. grandis match two genetic subclades that are geo-
graphically separated.

To understand whether the observed host-symbiont fidelity is the
result of long-term cospeciation of Pocillopora with its Cladocopium
symbionts, we performed a cophylogeny analysis by testing phyloge-
netic congruence using the procrustean approach*. The host-symbiont
associations that contributed the most to the global phylogenetic con-
gruence between Pocillopora and Cladocopium (i.e., lowest squared
residuals) were the dependence of P. grandis, P. meandrina, and
P. verrucosa on C. latusorum 14, L5, and C. pacificum respectively
(Fig. 2b). Conversely, the weakest contributor to the global phylogenetic
congruence was the dependence of P. cf. effusa on C. pacificum (L2) and
SSH5_pver on C. goreaui and C. pacificum L3 in the central Pacific.

Main drivers of holobiont gene expression variances across the
Pacific Ocean
The variation partitioning approach allowed us to identify genes
whose expression levels were driven primarily by the sampling
environment, the host genetic lineage, or the photosymbiont geno-
type (see “Methods”). For the host, among the 1821 genes with
greater than 50% of their expression variation attributed to these
three factors, 57% (1042 genes) were linked to the environment, 33%
(606 genes) were associated with the host genetic lineage, and 9.5%
(173 genes) were attributed to the photosymbiont genetic lineage
(Fig. 3a). Functional annotations for the subset of these genes with
corresponding annotations are presented in Supplementary Data 1.
Similarly, we identified 2424 photosymbiont genes above the 50%
explained variation threshold. In contrast to the host, 80% of these
genes (1950 genes) are best explained by the genetic lineage of
the photosymbiont, and only 10% (251 genes) and 9% (223 genes)
of the genes are linked to the sampling island and the host
lineage, respectively (Fig. 3b). Functional annotations for the subset
of these genes with corresponding annotations are presented in
Supplementary Data 2.

We investigated functional enrichments among these top var-
iant genes and the results are presented in Supplementary Data 3-8.
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Fig. 2 | Pocillopora and Cladocopium cophylogeny. a Cophylogeny of Pocillopora
and its Cladocopium photosymbiont. The Pocillopora dendrogram (left) is obtained
from the maximum likelihood phylogenetic tree of ref. 27. The Cladocopium den-
drogram (right) is obtained from the hierarchical clustering of the frequency of
3712 SNPs detected on the metatranscriptomic reads aligned on 1354 genes of C.
goreaui. Edge colors correspond to host species assignments. b Contributions of
individual host-photosymbiont links to the Procrustean fit with jackknifed squared
residuals resulting from PACo applied to the patristic distance matrices generated
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from the n = 81 biologically independent samples (colonies hosting Durusdinium
and the hybrid colony were excluded). Host lineage is indicated by the fill color and
bars display sample means and standard deviations (whiskers). The median mean
squared residual value is shown in red (dashed line). Lower squared residual values
indicate a stronger contribution to host-photosymbiont cophylogeny. Source data
for the phylogenies in this figure are available'*. Source data for the Procrustean
analysis are provided as a Source Data file.

In the Pocillopora host, genes with expression dependent on the
sampled island were enriched in biological process ontologies rela-
ted to lipid and carbohydrate metabolism (n =12 of 68 and 17 of 125
genes, respectively), ion transmembrane transport (16 of 82 genes)
including transmembrane transport of ammonium (3 of 11 genes),
and calcium (9 of 64 genes), as well as regulation of DNA repair
(9 of 102 genes) and autophagy (3 of 11 genes; Fig. 3c and Supple-
mentary Data 3). In Cladocopium, genes whose expression was
dependent on the sampled island were associated with Pfam domains
involved in heat shock response (HSP70, 2 genes), active transport of

protons across membranes (E1-E2 ATPases, 2 genes), and oligo-
saccharide processing (Glucosidase Il beta subunit-like, 1 gene;
Supplementary Data 2).

Host genes whose expression was dependent on the Pocillopora
genetic lineage were enriched in biological processes related to car-
bohydrate (3 of 29 genes) and xenobiotic transport (3 of 77 genes),
DNA recombination (8 of 156 genes), and response to ionizing radia-
tion (1 of 1 gene; Fig. 3d and Supplementary Data 5). Cladocopium
genes whose expression was correlated with the photosymbiont line-
age included Pfam enrichments related to ion transport (57 genes) and
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Fig. 3 | Contribution of environmental and genetic variables to Pocillopora and
Cladocopium gene expression and functional enrichments of top variant
genes. a, b Distribution of genes for which more than 50% of expression variation is
explained by one of three predictor variables: sampled island, Pocillopora genetic
lineage, and Cladocopium lineage. a Gene expression of Pocillopora across 101
samples (the hybrid colony was excluded). b Gene expression of Cladocopium
across 70 samples. Samples of mixed lineage, from Rapa Nui island, and those
containing Durusdinium were excluded. The number of genes in each distribution is
indicated above each violin plot. Boxplots within violins display group medians
(horizontal dark bar), interquartile range (bounds of box) and the minimum and
maximum values (whiskers). Potential outliers are denoted as solid dots. ¢ Gene

Ontology enrichment analysis dot plots showing the top enriched biological pro-
cess GO terms identified for each gene from comparison to a Wallenius noncentral
hypergeometric sampling distribution allowing for P value calculation after
accounting for selection bias and correction for multiple testing (FDR < 0.05) using
GOSeq (v1.40.0). Pocillopora genes with the highest explained variance under the
island of sampling (left panel), host genetic lineage (middle panel), and photo-
symbiont lineage (right panel) variables are indicated. The x axis position and size
of each dot reflects the proportion and absolute number of enriched genes (N)
sharing that GO term, respectively, and the color of the dot indicates the enrich-
ment significance. Source data are provided as a Source Data file.
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aquaporin-like or neutral solute transporters (Major intrinsic protein
family, 9 genes; Supplementary Data 6).

Pocillopora genes whose expression was dependent on the pho-
tosymbiont lineage were enriched in biological process ontologies
related to ion transmembrane transport (6 of 256 genes) particularly of
calcium (3 of 64 genes), nitric oxide biosynthesis (1 of 1 gene), and
assembly of the mitochondrial respiratory chain complex IV (1 of 2
genes; Fig. 3e and Supplementary Data 7). Among Cladocopium genes
whose expression is dependent on the host, 14 are involved in carbo-
hydrate metabolism (galactose oxidase, glucan synthase, glycosyl
hydrolase) and gluconeogenesis (fructose-bisphosphate aldolase,
enolase, phosphofructokinase-2). Thirteen calcium-transporter and
calcium-dependent protein kinases that have been shown to play arole
in the establishment of symbiosis® are also dependent on the host
lineage (Supplementary Data 2).

Discriminant analysis of principal components (DAPC) of gene
expression

To determine the main factors controlling gene expression variation in
the host and the symbiont, we also performed a discriminant analysis
of principal components (DAPC) of gene expression. For the host, the
11 PCs retained after a-score maximization in the DAPC explained
55.18% of total gene expression variance (Supplementary Fig. 4a).
Discriminant axis eigenvalue scores were roughly equivalent between
the first (DF1) and second (DF2) discriminant functions for the envir-
onmental grouping model (Supplementary Fig. 4b), but were notably
higher for DF1 than for DF2 in the two other grouping models (Sup-
plementary Fig. 4c, d). For the photosymbiont, the 11 retained PCs
explained 73.86% of total gene expression variance (Supplementary
Fig. 4e). Discriminant axis eigenvalue scores were highest for DF1 for all
three grouping models (Supplementary Fig. 4f-h).

For the Pocillopora host, when colony expression profiles were
assigned to pre-defined groups according to their environment, host
lineage, or photosymbiont lineage, we were able to correctly reassign
96%, 100%, and 99% of colonies to their respective groups (Supple-
mentary Data 9). These groups were statistically distinct for all three
models (Supplementary Data 10, all PERMANOVA P<0.001). In Cla-
docopium, when colonies were assigned to pre-defined groups based
on the environment, host lineage or photosymbiont lineage, we were
able to correctly reassign 89%, 99%, and 99% of colonies to their
respective groups (Supplementary Data 9). These groups were also
distinct for all three photosymbiont models (Supplementary Data 10,
all PERMANOVA P < 0.001). Therefore, based on proportions of colo-
nies correctly re-assigned to pre-defined groups, our DAPC results
revealed a marginally stronger influence of the genotype (or the gen-
otype of the symbiotic partner) than of the environment for both the
host and the symbiont. However, in the host we observed a higher
number of genes associated with the environment (4386 genes) than
associated with the host and symbiont lineages (1396 genes, Fig. 4a) in
contrast to the symbiont where the number of genes were roughly
equivalent (2495 for the environment and 2041 for the host and sym-
biont lineages, Supplementary Fig. 5a).

In the coral host under the environmental model, DAPC differ-
entiated expression profiles by geography along DF1 and by environ-
mental factors (especially historical thermal stress anomaly, TSA,
severity) along DF2 (Fig. 4b). Colonies from the Eastern Tropical Pacific
(Isla de Las Perlas, Coiba, and Malpelo) clustered around negative
values of DF1 whereas colonies from the Western Pacific (Aitutaki,
Niue, Upolu, and Guam) clustered at the positive end of this axis. Along
DF2, colonies from islands with historically elevated SST and TSA
values (Upolu, Guam, Isla de Las Perlas, Coiba, and Malpelo) clustered
around negative DF2 values and colonies from the coldest islands
(Rapa Nui and Ducie) clustered around positive values (Fig. 4b). In
Cladocopium under the environmental model, DF1 primarily separated
colonies from Rapa Nui from all others. The DF2 axis followed a similar

pattern to that observed in the host, namely that colonies were dis-
tinguished from one another on this axis based on historical SST and
TSA (Supplementary Fig. 5b).

We also investigated gene ontology enrichments among genes
that contributed most strongly to the two discriminant functions in
each environmental model (i.e., discriminant genes). The results of
these analyses are presented in Supplementary Data 3-8. Under the
environmental model, host genes which discriminated between
islands along DF1, the geographical axis, were enriched in biological
processes related to carbohydrate binding and transport (27 and 15
genes, respectively) and glycolipid biosynthesis (13 genes, Fig. 4c).
Host genes which discriminated along DF2, the TSA axis, were enri-
ched in processes related to protein ubiquitination and repair (32 and 2
genes, respectively) and mitochondrial respiratory chain complex
assembly (four genes, Fig. 4c). Functional enrichments shared across
both axes included processes related to ion transmembrane transport
(28/45 genes for DF1/DF2, respectively), generation of precursor
metabolites and energy (2/1/4 genes for DF1/DF2/shared, respectively),
immune response (3/4/7 genes), response to oxidative stress (2/3/8
genes), and cytolysis in other organism involved in symbiotic inter-
action (3 shared genes). In Cladocopium, genes whose expression
strongly distinguished photosymbionts from Rapa Nui from all others
(DF1 contributing genes) were enriched in protein family (Pfam)
domains related to chlorophyll A-B binding (35 genes) and ion trans-
port (91 genes; Supplementary Data 4). Cladocopium genes which
contributed to DF2 were not significantly enriched in any Pfam
domains (Supplementary Data 4). DAPC models based on the host and
photosymbiont lineages are presented in the Supplementary Results
(section 1) and in Supplementary Figs. 5c, d, 6, and 7.

Top environmental variables contributing to gene expression
divergence (CCA)

Using automatic stepwise selection of the top explanatory environ-
mental variables for constrained correspondence analysis (CCA), we
identified 10 environmental variables (or variable clusters) that best
explained the dispersion among host gene expression profiles (Fig. 5a,
Supplementary Data 11, and Supplementary Fig. 8). Similarly, for the
photosymbiont, we identified 8 environmental variables (or clusters)
that best explained the gene expression dispersion (Fig. 5b, Supple-
mentary Data 11, and Supplementary Fig. 8). For the coral host, cli-
matological degree heating week (DHW) associated data were among
the strongest contributors to gene expression variation between
colonies whereas in the Cladocopium photosymbiont, mean climato-
logical SST associated data were the strongest contributors (Supple-
mentary Data 11). The genetic lineage also contributed strongly to
expression profile differences in both the host and photosymbiont. In
the Pocillopora host, separation of gene expression profiles along both
constrained correspondence axes (CCAl and CCA2) was primarily
driven by differences in degree heating week severity between sam-
pling locations. Colonies from islands with low DHW values (e.g., Rapa
Nui) clustered around positive CCA1 values, whereas colonies from
islands with historically elevated SSTs (e.g., Upolu) clustered around
negative CCALl values (Fig. 5a). In contrast, CCA2 was primarily tied to
SST variability (Fig. 5a). Negative CCA2 values were associated with
islands with the highest maximum surface temperature anomalies
(e.g., Las Perlas and Coiba) or those with extreme DHW events. Con-
versely, positive CCA2 values were associated with islands with long
recovery periods between extreme heating events (i.e., large degree
heating week recovery period, e.g., Rapa Nui) and/or long degree
cooling week durations (e.g., Moorea).

In the Cladocopium photosymbiont, historical SST was strongly
negatively correlated with CCAL1 (Fig. 5b). Colonies from cooler islands
(e.g., Rapa Nui) clustered around positive CCAl values whereas those
from warmer locations tended to cluster around negative CCA2 values
(e.g., Upolu). As in the coral host, CCA2 was primarily associated with
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Fig. 4 | Discriminant analysis of principal components (DAPC) of Pocillopora

host gene expression data grouped by the environment and biological process
functional enrichments of top discriminant genes. a Loading scores of top dis-
criminant genes revealed a roughly equivalent influence of the environment and of

genetic lineage on gene expression in the Pocillopora host, but with a greater
number of genes associated with the environment. b DAPC scatter plot showing
expression profiles for the Pocillopora host when colonies were grouped by the

environment. Points represent individual colony expression profiles and are
colored by genetic lineage. Shaded ellipses denote 95%-confidence intervals
around the group (island) mean and are colored by climatological mean thermal
stress anomalies (TSA, 2002— sampling date). Group-specific proportions of cor-

rect reassignments are indicated within each cluster (labels) and the overall model

proportion of correct reassignment (mean + standard deviation) is presented in the
bottom right. ¢ Gene Ontology enrichment analysis dot plots showing the top
enriched biological process GO terms identified for each gene from comparison to
a Wallenius noncentral hypergeometric sampling distribution allowing for P value
calculation after accounting for selection bias and correction for multiple testing
(FDR < 0.05) using GOSeq (v1.40.0). Data are shown for Pocillopora host genes
contributing most strongly to the first (left panel) and second (right panel) dis-
criminant function. The x axis position and size of each dot reflects the proportion
and absolute number of enriched genes (DEGs) sharing that GO term, respectively,
and the color of the dot indicates the enrichment significance. Source data are
provided as a Source Data file.
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Fig. 5 | Constrained correspondence analysis (CCA) of Pocillopora host and
Cladocopium symbiont gene expression profiles from colonies collected across
the Pacific Ocean. Scatter plots showing (a) Pocillopora host (coral colony icon in
upper right) and b Cladocopium photosymbiont (Symbiodiniaceae icon in upper
right) expression profiles for individual colonies with data colored by island and
clustered by genetic lineage (i.e., Pocillopora SVD clade or Cladocopium genetic
lineage; shaded ellipses). Length (strength) and direction (towards increasing

values) of vector arrows denote the relative influence of the top explanatory
environmental variables for each dataset. For variables that were strongly corre-
lated (> 0.7), a single representative is listed alongside a numeric superscript
denoting the corresponding correlation cluster in Supplementary Fig. 8. Descrip-
tions of top environmental variable abbreviations are given in Supplementary
Data 11. Source data are provided as a Source Data file.

DHW intensity. Colonies from islands with elevated DHW exposure
tended to cluster around negative CCA2 values. Conversely, colonies
from islands with prolonged exposure to cooling events clustered
together around positive CCA2 values (Fig. 5b). These results suggest
that whereas gene expression profiles in both the coral host and
photosymbiont are primarily structured by climatological SST, it is
the frequency of exposure to extreme heating/cooling events that
drives substructuring of gene expression in the host/photosymbiont,
respectively.

Genes differentially expressed between Cladocopium- and
Durusidinium-containing colonies

According to unconstrained analysis, global gene expression profiles
of colonies from the Eastern Tropical Pacific (Isla de Las Perlas, Coiba,
and Malpelo) differed between islands (PERMANOVA, P< 0.05), but
not between Cladocopium- and Durusdinium-containing colonies
(Supplementary Fig. 9, PERMANOVA, P> 0.05). In addition, intra-island
comparison of expression profiles between colonies in the Eastern
Tropical Pacific revealed only a small number of genes that were dif-
ferentially expressed between Cladocopium- and Durusdinium-con-
taining hosts (Supplementary Data 12). We observed 294 +363,
129 +53, and 110 £15 genes upregulated in Durusdinium-containing
colonies (FDR-adjusted P<0.05 and a LFC >2) on the three islands,
respectively (Supplementary Fig. 10a). We also observed 171+164,
211+102, and 200 +59 genes downregulated in Durusdinium-con-
taining colonies (FDR-adjusted P<0.05 and a LFC<-2) on the
three islands, respectively (Supplementary Fig. 10b). On average, we
found 129 genes differentially expressed between Cladocopium- and

Durusdinium-containing Pocillopora colonies in the Eastern Tropical
Pacific (Supplementary Data 10) with very few DEGs shared between
pairs of islands. The number of pairwise shared DEGs ranged
from three (upregulated in both Las Perlas and Coiba) to nine
(downregulated in both Las Perlas and Coiba) and no gene was com-
monly differentially expressed across all three islands (Supplementary
Fig. 10a, b and Supplementary Data 12).

We also examined functional enrichments among genes differen-
tially expressed between Cladocopium- and Durusdinium-containing
colonies and these results are listed in Supplementary Data 4. In general,
genes upregulated in Durusdinium-containing colonies on Las Perlas,
were enriched in GO biological processes related to bioluminescence,
xenobiotic transport, gluconeogenesis, mitochondrial protein catabolic
process, base-excision repair, and transmembrane transport (Supple-
mentary Data 12). Genes downregulated in Durusdinium-containing
colonies on Las Perlas, were enriched in GO biological processes related
to calcium ion transmembrane transport, and phospholipid biosyn-
thetic processes. Genes upregulated in Durusdinium-containing colo-
nies on Coiba, were enriched in GO biological processes related to
protein phosphorylation and proteolysis whereas downregulated genes
were enriched in processes related to chaperone-mediated protein
folding, chaperone-mediated protein transport, synaptic vesicle trans-
port, nuclear envelope organization, protein phosphorylation, cell
adhesion, neuron projection development, and intermediate filament
cytoskeleton organization (Supplementary Data 12). Finally, genes
upregulated in Durusdinium-containing colonies on Malpelo, were
enriched in GO biological processes related to bioluminescence, reg-
ulation of signaling receptor activity, vacuolar transport, and xenobiotic
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transport (Supplementary Data 12). Genes downregulated in Dur-
usdinium-containing colonies on Malpelo, were enriched in GO biolo-
gical processes related to bioluminescence, regulation of apoptotic
process, protein phosphorylation, S-adenosylmethionine biosynthesis,
regulation of pH, notch signaling pathway, MyD88-dependent toll-like
receptor signaling pathway, proteolysis, signal transduction, protein
ubiquitination, and netrin-activated signaling pathways.

Discussion

Pocillopora corals exhibit high symbiotic fidelity with distinct
Cladocopium lineages

Strong fidelity between genetically distinct coral hosts and specific
Symbiodiniaceae species has been described for a wide variety of reef-
building species** including pocilloporids®***°, although exceptions
do exist*. Across the Pacific ocean, we found evidence for near perfect
fidelity for three Pocillopora species (P. cf. effusa, P. meandrina, and
P. verrucosa), and limited flexibility for two species (P. grandis and
SSHS pver). For P. grandis and SSHS pver, their two Cladocopium
symbionts match to two distinct subclades that are geographically
separated (discussed below). P. grandis/P. meandrina associated with
C. latusorum and P. verrucosa with C. pacificum in concordance with
previous observations®>*. The association of SSH5_pver with C. gor-
eaui or C. pacificum and P. cf. effusa with C. pacificum has not been
previously reported.

Our findings, therefore, support the general consensus that fide-
lity to a single putative symbiont species is the dominant pattern in
most scleractinian corals*? including those inhabiting some of the
hottest reefs in the world®***, Previous studies have suggested that
this tendency for high symbiotic fidelity in corals, and within pocillo-
porids specifically, reflects an underlying cospeciation between the
Pocillopora host and its photosymbiont*?*, which supports the per-
sistence of distinct holobiotypes which maximize holobiont fitness in a
given environment.

Despite this overarching tendency towards symbiotic fidelity in
corals, symbiotic associations are also sometimes flexible indicating a
potential role for acclimatory phenotypic plasticity to modulate
holobiotypes under certain conditions, particularly acute heat
stress'>?>*'*5, We detected two broad instances of symbiont flexibility
among the sampled Pocillopora species including a differential asso-
ciation with D. glynnii among P. grandis hosts in the Eastern Tropical
Pacific (Isla de Las Perlas, Coiba, and Malpelo islands) and within a
single colony of P. verrucosa on Guam. Pocillopora - Durusdinium
associations have been reported on previously. For example, in the far
Eastern Tropical Pacific, P. meandrina (mtORF type 1) and P. verrucosa
(mtORF type 3) hosts are known to flexibly alter their symbiotic
associations between certain lineages of Cladocopium and D. glynnii
depending on local thermal conditions®*'. Similarly, on Guam, Pocil-
lopora colonies hosting D. glynnii were shown to have better main-
tained photosynthetic productivity under acute heat stress than those
hosting Cladocopium*®. Because these associations appear to be stable
and persistent in these locations across time, it can be argued that this
photosymbiotic association is stable between pocilloporids and D.
glynnii, particularly in the far Eastern Tropical Pacific where the asso-
ciation is common, may indicate a stable strategy for survival on these
warm reefs as discussed below.

The association of one Pocillopora species with two different
Cladocopium lineages was always observed in geographically distant
islands supporting the hypothesis of speciation driven by niche
diversification within Cladocopium genera®. In addition, this flexibility
of symbionts matches perfectly with two different subclades of each
Pocillopora species. Therefore this apparent flexibility is probably
stable and not due to recent changes in the environment.

In general, the Pocillopora phylogeny is similar to the Cladoco-
pium phylogeny suggesting that the symbiont speciation is driven by
the host in agreement with the cospeciation hypothesis®’. However, we

observed two major breaks in this cospeciation not previously repor-
ted. In the first instance, the association of SSH5 pver with two
genetically distant Cladocopium could be due to the relative isolation
of SSH5_pver colonies from Rapa Nui and consequent adaptation to
the unique local environmental conditions in this location (e.g., cool
SSTs). The presence of C. pacificum in P. cf. effusa in the central Pacific
is also incoherent with the cospeciation pattern, but the reasons for
this difference in symbiotic association remain to be studied.

Coral host transcriptomic plasticity maintains regulatory
homeostasis across environments
Altered gene expression can act to maintain symbiotic homeostasis
under changing environmental conditions (i.e., transcriptomic plasti-
city). However, assessing coral holobiont transcriptomic plasticity is
complicated by the fact that many different drivers (e.g., genetic
diversity, environmental stressors, and biotic associations) may inter-
act to determine expression profiles in natura. For the Pocillopora host,
we identified a greater number of genes whose expression profiles
were correlated with variation in the environment than with either the
host- or symbiont-genetic lineages. However, both analyses also indi-
cated that the most influential genes (i.e., those with the highest
explained variance and/or loading scores) had expression profiles that
were linked to the host genetic lineage. This mixed result, suggests that
the steady-state expression profiles we measured in Pocillopora hosts
are jointly responsive to the host genetic lineage and to the local
abiotic environment. Host gene expression therefore reflects the
classical conception of the phenotype as an integrated expression of
the genotype and the environment. The high proportion of colonies
that were correctly re-assigned to their genetic lineage based on their
expression profiles (100%, Supplementary Fig. 6b) in the lineage-
informed DAPC model further implies that, in the Pocillopora coral, the
host genotype acts to establish a phenotypic baseline around which
expression profiles vary in response to the local abiotic environment.
Although they represented only a small fraction of the top variant
genes, Pocillopora genes with expression dependent on the symbiont
lineage were involved in several important biological processes
including those potentially related to regulation of calcification, sym-
biont photosynthesis, and to the scavenging of reactive oxygen
species. Among them, ATPase-coupled transmembrane transporters
are known to play a role in host calcification”’*° and as carbon-
concentrating mechanisms in marine photosymbioses thereby reg-
ulating Symbiodiniaceae photosynthesis*’~°*. These responses likely
serve to maintain symbiosome homeostasis and regulate photo-
symbiont productivity across environments.

Photosymbiont transcriptomic profiles are primarily driven by
algal genotype
In contrast to the host, gene expression profiles within Cladocopium
were most strongly correlated to their respective genetic lineages and
comparatively weakly influenced by the environment. We suggest two,
potentially complementary, explanations for the difference in envir-
onmental sensitivity between the host and the symbiont: (i) it reflects a
primarily host-driven homeostatic regulation of the photosymbiont
micro-environment such that environmental influences on symbiont
expression are minimized, and/or (ii) that symbiont transcriptomic
profiles reflect inherent differences in physiological regulation
between microalgal species which outweighed environmental influ-
ences over the range of thermal habitats we investigated in this study.
Previous research has suggested that Symbiodiniaceae them-
selves often exhibit relatively invariant expression profiles in response
to environmental change®*. For example, following a simulated
heatwave event, Acropora aspera hosts exhibited a significantly more
robust transcriptional response than their associated photosymbionts
with strong upregulation of several host genes including heat shock
proteins*. In addition, bleaching susceptibility of corals following an
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acute heatwave was found to be tied to a reduced capacity of the host
to maintain intracellular acid-base homeostasis®. Finally, in photo-
symbiotic Aiptasia, disruption of host homeostasis occurred prior
to symbiont photoinhibition and bleaching suggesting that it is the
cnidarian host that first responds to environmental perturbation®’.
Further research is necessary to determine whether the relatively
stable gene expression profiles we observed within Cladocopium
lineages across environments are a result of strong regulatory control
by the Pocillopora hosts and the degree to which these profiles may
exhibit plasticity under acute thermal stress.

Convergent host plasticity and its limitations under ele-

vated SST

Despite our finding that genotypic effects may, in general, outweigh
plastic responses among Pocillopora corals, we did observe a significant
response to the environment among host lineages. Constrained corre-
spondence analysis of expression variation between islands indicated
that the strongest environmental factor contributing to colony gene
expression was historical SST, specifically degree heating week expo-
sure. This is coherent with the primacy of temperature as an abiotic
driver in ectothermic organisms generally*® and given its specific, dis-
ruptive, effects on regulatory homeostasis within scleractinian corals™"”.
Colonies from different genetic lineages and from geographically dis-
tant locations nevertheless displayed similar expression profiles linked
to thermal stress anomaly (Fig. 4b, DF2). This suggests a convergent
transcriptomic response to thermal challenge across Pocillopora linea-
ges. Interestingly, these same colonies also displayed high fidelity for
three specific photosymbiont lineages—C. latusorum L3 and C. pacificum
L5 as well as Durusdinium glynnii - which may provide further evidence
for thermal specialization and/or coevolution in these species.

In terms of coral host transcriptomic plasticity, among genes
whose variation in expression was principally correlated with the local
environment, we observed an upregulation of genes traditionally
associated with the environmental stress response (ESR) in colonies
present on historically warm reefs. Host lineages from warm islands
showed elevated expression of Heat Shock Protein Family A (HSP70)
Member 12A-like. This class of chaperones is known to be involved in
response to thermal stress in scleractinian corals®. On these islands,
SSTs were not abnormally elevated at the time of sampling and colo-
nies had not experienced an extreme heating event in the previous
12 weeks before sampling, suggesting that this elevated expression of
ESR genes among these colonies are indicative of gene frontloading, a
potential signal of local thermal adaptation. In addition, we observed
enrichment among environmentally responsive genes in xenobiotic
transporters including both glutathione and lipid peroxidase activities.
These functions may represent upregulation of membrane-bound
GSTs (MAPEG), an evolutionarily distinct class of enzymes that
detoxify xenobiotic compounds and ameliorate oxidative stress®.

Differences in symbiotic association under elevated sea surface
temperatures

The coral holobiont is composed of a diverse community of organisms
which potentially display differing sensitivities to warming. Shifts in
the composition of the holobiont can therefore be as important as
shifts in gene expression for permitting acclimatization to thermal
challenges®"*. Such shifts can occur over long time periods as a result
of competitive exclusion between photosymbiont lineages within a
colony*, or over relatively short time scales in response to acute
stress***>, However these short-term changes are usually reversibly
plastic, typically reverting when the stressful conditions cease*****,
Both mechanisms can facilitate acclimatization to the local thermal
environment, as has recently been shown in photosymbiotic giant
clams®. Although the Pocillopora lineages we sampled typically
exhibited high symbiotic fidelity with specific Cladocopium lineages,
this was not always the case.

In total, we observed 23 instances in which Pocillopora lineages
hosted different symbiont communities under different environmental
contexts. In these instances, host colonies either exhibited a difference
in association between specific Cladocopium photosymbionts in differ-
ent environments or were dominated by Durusdinium glynnii photo-
symbionts. Interestingly, in all these cases, when a given coral host
lineage was present on multiple islands that spanned a thermal gradient,
we saw a preferential association with one of three photosymbionts
(Cladocopium pacificum L3 and C. latusorum LS, or Durusdinium glynnii)
on the warmer island(s). In fact, with the exception of a single P. cf. effusa
(SVD1) colony on Moorea which hosted C. pacificum L2 symbionts, we
always observed a preferential association with C. pacificum L3 and
C. latusorum LS5 in Pocillopora colonies inhabiting islands with mean
historical SSTs >26.8 °C. This observation suggests that whereas pocil-
loporid corals typically exhibit symbiotic fidelity, they are capable of a
limited form of symbiotic flexibility involving preferential association
with specific lineages of Cladocopium (and Durusdinium) depending on
the local environment®*’. This difference in association may serve to
maximize holobiont fitness under elevated SST and suggests a potential
strategy for community-driven thermal acclimatization.

Finally, we also observed 14 Pocillopora colonies which were
either simultaneously hosting two photosymbiont genera or which
contained Durusdinium glynnii symbionts as the dominant community
member (Fig. 1b). These colonies were largely collected from islands in
the Eastern Tropical Pacific (Las Perlas, Coiba, and Malpelo islands)
which have historically experienced prolonged (mean sea surface
temperatures >26.8 °C) and/or severe warming (highest thermal stress
anomalies, TSAs, among the sampled islands). A similar pattern has
been reported on extensively, both in the Eastern Tropical Pacific***!
and more broadly on warm reefs globally*>**7°. For example, in Mon-
tipora capitata corals within the Hawaiian archipelago which displayed
higher proportions of Durusdinium symbionts on reefs with higher
frequencies of thermal stress anomalies (TSAs)”. Although the
prevalence of Durusdinium in our data was not correlated with TSA
frequency, it was strongly correlated with TSA magnitude suggesting
the potential for photosymbiont shuffling/switching in these colonies
in response to a recent or historical thermal challenge™. Alternatively,
because Pocillopora meandrina symbionts are generally acquired via
vertical transmission, with oocytes being seeded with the maternal
symbiont community”, it is also possible that these Cladocopium- and
Durusdinium-containing colonies represent true, evolutionarily stable,
holobiotypes which persist across generations on reefs which experi-
ence frequent and/or severe thermal stress. However, whereas it has
been suggested that some corals can increase their heat tolerance
limits by +1.0-1.5 °C following a change in their symbiont community
composition (often resulting in domination by Durusdinium trenchii,
formerly D1a), repeated or prolonged exposure to high temperature
often still results in colony mortality'>***>7*, Thus, the degree to which
the specific association between pocilloporid corals and Durusdinium
under elevated SSTs confers an adaptive advantage under prolonged
future warming requires further investigation.

Limited transcriptomic response of the host under different
symbiotic associations

Despite the increased prevalence of Durusdinium symbionts in Pocillo-
pora colonies on warm reefs, especially in the far Eastern Tropical
Pacific, this difference in association had very little effect on the host
gene expression we measured in natura. Our data indicate that photo-
symbiont community composition (i.e., dominance of Cladocopium
latusorum LS5 or Durusdinium glynnii) had only a weak, and inconsistent,
impact on host expression and that host expression was driven more by
the environment than by photosymbiont community composition. This
stands in contrast to previous studies which have reported a significant
role of the photosymbiont in modulating coral host gene expression’.
For example, a recent study in Montastraea cavernosa reported that
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colonies containing Durusdinium glynnii symbionts displayed elevated
expression of ESR genes even under ambient conditions relative to
colonies containing Cladocopium symbionts?. These results suggest
that photosymbiont genotype significantly alters host expression even
prior to environmental perturbation.

In this study, only 4% of gene expression variation between East-
ern Tropical Pacific coral colonies was attributed to differences in the
dominant photosymbiont whereas in M. cavernosa colonies up to 14%
of expression variation between individuals could be attributed to the
switch between dominant symbiont lineages”. The environment
played a much more significant role in determining Pocillopora gene
expression in our dataset with 24% of expression variation being
explained by the sampling island. Additionally, we observed very little
to no overlap in differentially expressed genes between Cladocopium-
and Durusdinium-containing Pocillopora colonies across the three
islands (Supplementary Fig. 10). This implies that there was no com-
mon Durusdinium-dominance effect on host expression across envir-
onments. Finally, we observed high gene expression variation among
Durusdinium-containing Pocillopora colonies from within the same
reef (Supplementary Figs. 9 and 10) suggesting that, even at small
spatial scales, other factors were more important than photosymbiont
lineage in determining host gene expression.

Despite the weak influence of the dominant symbiont lineage on
overall Pocillopora host expression in the Eastern Tropical Pacific, we
did observe a small set of genes that were differentially expressed
between Cladocopium- and Durusdinium-containing hosts. These
included genes associated with chaperone-mediated protein folding,
protein ubiquitination, and regulation of apoptosis which were among
the most significantly enriched biological process terms associated
with genes downregulated in Durusdinium-containing colonies (Sup-
plementary Data 12). These results provide indirect support for
potential thermal acclimatization in that coral colonies containing
putatively thermally tolerant photosymbionts (e.g., Durusdinium)
showed reduced expression of ESR.

Thus, in our dataset, we observed three photosymbiont lineages
(C. pacificum L3, C. latusorum L5, and D. glynnii) which appear to have
been in preferential association with Pocillopora hosts inhabiting
islands with historically elevated SSTs and/or TSAs. Although non-
selective mechanisms could account for this pattern (e.g., dispersal
limitations resulting in the dominance of particular photosymbionts
on nearby reefs, particularly if those reefs are geographically isolated),
these mechanisms seem unlikely in this study. The fact that we
observed the same photosymbiont communities in colonies inhabiting
reefs ca. 14,000 km apart across the Pacific Ocean (e.g., Coiba and
Guam) and under very similar environmental conditions (i.e., mean
historical SSTs >26.8 °C) suggests that the high holobiont fidelity and
specificity we observed among multiple lineages of Pocillopora corals
is reflective of a process of cospeciation between Pocillopora hosts and
their photosymbionts. Given the similar strong patterns of cophylo-
geny between Pocillopora and Cladocopium we observed and the
limited environmental plasticity of photosymbiont expression across
the Pacific Ocean, we interpret this strategy as one relying on host-
mediated transcriptomic plasticity to buffer the holobiont from
environmental change alongside preferential association with specific,
thermotolerant, Cladocopium lineages under elevated SSTs. However,
at extreme SSTs/TSAs even these heat-tolerant Cladocopium lineages
are ultimately replaced by Durusdinium DI photosymbionts suggest-
ing there may be upper limits to the effectiveness of this strategy
under warming. Whereas high levels of gene flow between populations
across large spatial scales in both Pocillopora hosts and their
photosymbionts*~° has been suggested as an beneficial trait for per-
mitting adaptation to previous climate shifts?’, the degree to which
this strategy of high fidelity and specificity between Pocillopora hosts
and their photosymbionts may act to aid or hinder their adaptation to
predicted future warming warrants further research.

Overall, we observed high symbiotic fidelity among Pocillopora
lineages across environments with evidence of potential selection for
heat-resistance photosymbiont lineages on islands with historically
elevated sea surface temperatures. We reveal that host gene expres-
sion profiles are strongly segregated by host genetic lineage and
environment, and were significantly correlated with several historical
sea surface temperature (SST) traits. In contrast, Cladocopium
expression profiles were primarily driven by algal genotype and dis-
played low phenotypic plasticity across environmental gradients.
Overall, our data suggest the existence of a two-tiered strategy
underpinning thermal acclimatization in Pocillopora holobionts
with strong selection for specific photosymbiont lineages (i.e.,
host-photosymbiont fidelity) coupled with high host transcriptomic
plasticity acting as an environmental buffer.

We observed photosymbiont flexibility only in association with
elevated SSTs in the far Western and far Eastern Pacific. Although the
thermotolerant photosymbiont Durusdinium glynnii was largely
absent from Pocillopora colonies in the Central Pacific and rare in the
West Pacific (only two colonies) in our dataset, previous studies have
shown that D. glynnii frequently occurs in Pocillopora corals in
many locations in the Pacific, particularly those with elevated SSTs
(more than 31.5 °C) or which repeatedly experience extreme thermal
events'>*¢¢%707¢ Taken together, our results and previous studies show
that the presence of D. glynnii photosymbionts is a common strategy
for Pocillopora corals to survive heat stress.

Our study has important implications for continued coral reef
conservation and the prediction of coral responses to future ocean
warming. Our examination of the mechanisms underpinning acclima-
tization among lineages across an environmental gradient and our
identification of potential candidate loci under thermal expression
selection provide useful baseline metrics for informing future manip-
ulative experiments focused on physiological mechanisms underlying
these observations. Investigating the extent to which different thermal
acclimatization strategies, including both transcriptional and compo-
sitional changes, are employed among lineages will allow us to better
forecast the survival of coral species and reefs under future ocean
warming.

Methods

Site selection, coral colony sampling, and environmental meta-
data collection

A total of 102 Pocillopora spp. colonies from 32 reef sites across 11
islands (Islas de las Perlas, Coiba, Malpelo, Rapa Nui, Ducie, Gambier,
Moorea, Aitutaki, Niue, Upolu, and Guam) were sampled as part of the
Tara Pacific expedition®. At each island, fragments of three coral
colonies were collected from each of three reef sites yielding a total of
ca. 9 colonies sampled per island (Supplementary Data 13). To reduce
variation in host/symbiont expression associated with diurnal cycles,
all sites were sampled between ca. 8:30-11:30 in the morning (local
time). Colonies were sampled at a mean depth of 9.20 +3.80 m (SD;
Supplementary Data 13). Reef site and coral colony sampling protocols
are presented in detail in ref. 77. Fragments of sampled coral colonies
were removed from the reef and brought back on board the Tara
vessel for processing of DNA/RNA. Several environmental parameters
such as SST, chlorophyll concentration, pH, and nutrient concentra-
tions were measured in natura at the time of collection’®. Historical sea
surface temperature (SST) data were extracted from day and night
satellite measurements of SST at 1km spatial resolution from 2002 to
the day of sampling as described in ref. 77 (Supplementary Data 13).
Briefly, SST climatologies, anomalies, and several other variables
including degree heating week data, frequency, and recovery time
were calculated from daily averages of three satellites sensors (MODIS-
Aqua, MODIS-Terra, VIIRS-SNPP) over the period studied”. Each vari-
able average, standard deviation, and maximum were then calculated
to provide one value per sampling site.
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DNA/RNA isolation, library preparation, and sequencing

Coral fragments were processed to extract and isolate DNA/RNA as
described in ref. %. Briefly, coral fragments were submerged in 15 mL
of lysing agent in the presence of DNA/RNA shield and coral tissue was
removed from the skeletal fragments and homogenized using a high-
speed bead homogenizer. The homogenized tissue suspension was
split into ten aliquots of 500 pL and stored in 1.5-mL Eppendorf tubes
at —20°C until extraction of nucleic acids. DNA and RNA were
extracted simultaneously from these aliquots using Quick-DNA/RNA
Kits (Zymo Research, CA, USA). DNA and RNA were quantified on a
Qubit 2.0 fluorometer with Qubit dsDNA BR (Broad range) and HS
(High sensitivity) Assays and Qubit RNA HS Assay (ThermoFisher Sci-
entific, Waltham, MA, USA), respectively. The quality of total RNA was
checked by capillary electrophoresis on an Agilent Bioanalyzer using
the RNA 6000 Pico LabChip kit (Agilent Technologies, Santa Clara, CA)
and the RIN was calculated. Eluted DNA and RNA were stored at —20 °C
and -80 °C, respectively, prior to library construction.

Construction of DNA libraries began by shearing to a mean size of
300 bp using a Covaris E210 instrument (Covaris, Inc., USA). Size
profiles of sheared materials were visualized on an Agilent Bioanalyzer
DNA High Sensitivity chip, and sheared DNA was then end-repaired, 3"-
adenylated, and ligated to Illumina compatible adapters using the
NEBNext DNA Modules Products (New England Biolabs, MA, USA) and
NextFlex DNA barcodes (Bioo Scientific Corporation). After two con-
secutive cleanups using 1x AMPure XP bead, DNA was amplified using
Kapa Hifi HotStart NGS library Amplification kits (Kapa Biosystems,
Wilmington, MA), followed by 0.6x AMPure XP bead purification. DNA
libraries were stored at —20 °C until sequencing.

RNA libraries were prepared following the TruSeq Stranded
mRNA sample preparation protocol. Extracted RNA (1pg) was sub-
jected to poly-A+ selection using oligo(dT) beads, and the resulting
mRNA was chemically fragmented under elevated temperature before
conversion into single-stranded cDNA using random hexamer priming.
Then, the second strand was generated to create double-stranded
cDNA. Double-stranded cDNA was purified by 1.8x AMPure XP bead
cleanups, 3’-adenylated, and ligated to TruSeq RNA barcoded adapters
with 6 bases (Illumina, San Diego, CA, USA) or NEXTflex DNA barcoded
adapters with 12 bases (Bioo Scientific, Austin, TX, USA). After another
1x AMPure XP bead cleanup, the ligated product was amplified by 15
cycles of PCR and purified by a final 0.8x AMPure XP bead cleanup.
RNA libraries were stored at —80 °C until sequencing.

Size profiles of DNA and RNA libraries were generated using an
Agilent 2100 Bioanalyzer (Agilent Technologies, USA) and libraries
were quantified by qPCR with the KAPA Library Quantification Kit for
lllumina Libraries (Kapa Biosystems) on an MXPro instrument (Agilent
Technologies). DNA (i.e., metagenomic) and RNA (i.e., metatran-
scriptomic) libraries were sequenced using 151bp paired-end read
chemistry on a NovaSeq or HiSeq4000 Illumina sequencer (Illumina,
San Diego, CA, USA). Basecalling and calculation of Phred quality
scores (Q scores) were performed during sequencing by the Illumina
Real Time Analysis (RTA) software. Illumina bcl2fastq Conversion
software converted raw BCL files generated by RTA to fastq data. For
both metagenomic and metatranscriptomic reads, we removed short
(<30 bp length) and low-quality nucleotides (Q score <20), adapter/
primer sequences with an in-house script based on Fastx-Toolkit
software (https://github.com/institut-de-genomique/fastxtend), as
well as read pairs that mapped to the Enterobacteria phage PhiX174
genome (GenBank: NC_001422.1). For metatranscriptomic reads, read
pairs that mapped to ribosomal sequences were removed using Sort-
MeRNA v2.1%. After this filtering, we obtained between 39 M and 104 M
metatranscriptomic reads (Supplementary Data 14) and between 81 M
and 221 M metagenomic reads (Supplementary Data 15).

To identify Symbiodiniaceae lineages, we amplify the ITS2 region of
the nuclear ribosomal DNA locus from Coral DNA extractions using SYM-
VAR-5.852 (5-GAATTGCAGAACTCCGTGAACC-3) and SYM-VAR-REV

primers (5-CGGGTTCWCTTGTYTGACTTCATGC-3’). Complete proto-
cols for DNA amplification, library preparation and sequencing of ITS2
amplicons are available in ref. 80. ITS2 reads were processed following
the SymPortal pipeline®” and raw results are available®.

Host lineage assignation

We performed host lineage assignment as described in ref. 27. Briefly,
we identified a set of genome-wide single nucleotide polymorphisms
(SNPs) from metagenomic reads mapped to the Pocillopora meandrina
genomic reference® using the Genome Analysis Toolkit tool (GATK,
v3.7.0)¥. We followed a modified version of the best practices guide for
variant discovery with GATK which included indexing of the genomic
reference (picardtools v2.6.0, CreateSequenceDictionary), followed by
identification of realignment targets (GATK RealignerTargetCreator)
and realignment around detected indels (GATK, IndelRealigner). Var-
iants were called for each colony individually (GATK, HaplotypeCaller)
and resulting variant call files (VCFs) were merged into island-specific,
multi-sample, cohort files (GATK, CombineGVCFs) before performing
joint genotyping across all 11 islands (GATK, GenotypeGVCFs) with
polyploidy defined at 1°°. Joint analysis of multiple samples (i.e., joint
genotyping) is recommended for discovery of germline SNPs and indels
as it provides information regarding population-wide variance across a
cohort of multiple samples. This, in turn, allows for a higher degree of
sensitivity to detect low-frequency variants, a clearer distinction
between homozygous and missing sites, a greater ability to avoid false
positives, and results in more accurate sample genotyping as described
in the GATK technical documentation®. The resulting SNPs were filtered
using VCFtools (v0.1.12)* to include only biallelic sites with minor allele
frequencies >0.05, quality scores >30, coverage (minimum read depth)
>16, linkage disequilibrium (%) > 0.2, and no missing data across colo-
nies. These curated SNPs were then used to identify divergent host
lineages using a coalescent analysis performed on the individual colo-
nies as described in ref. 27 using RaxML.

Cladocopium lineage assignation

To determine which Symbiodiniaceae taxa were present in each coral
colony, we used ITS2 amplicons determined for each sample. ITS2
profiles were obtained using SymPortal®?, which uses the intragenomic
diversity of Symbiodiniaceae ITS2 to define so-called ITS2 type profiles
based on consistent co-occurrence of intragenomic ITS2 variants
across all samples.

For Pocillopora colonies hosting Cladocopium (84 colonies), we
further investigated their population structure using single nucleotide
polymorphism (SNP) distributions across their coding sequences. We
excluded from these analysis colonies containing a large proportion
(>25%) of a second ITS2 profile and potentially affecting the SNP call-
ing. SNPs from the resulting 82 colonies were identified from meta-
transcriptomic reads previously aligned on the predicted coding
sequences of the Cladocopium goreaui genome (see next paragraph)
following the same protocol as described for the host above. SNPs
were filtered using VCFtools (v0.1.12)** to include only biallelic SNPs
with a quality score >30 and a coverage >4. The frequencies of these
SNPs were then clustered using the Hclust function of the stats pack-
age (v4.2.2) in R with the completeLinkage method. The optimal
number of clusters was determined with the gap statistics method®
(fviz_nbclust function in the R package factoextra v1.0.7). We then
compared the Bray-Curtis-derived pairwise distances (based on ITS2
type profiles) of the Cladocopium-containing Pocillopora colonies to
the SNP-based clustering of Cladocopium populations. In general, we
observed a high degree of overlap between the two identification
methods across Cladocopium lineages. The ITS2 profile distances
indicate that Cladocopium lineages which were undefined in the SNP
clustering method belong to L5 (Supplementary Fig. 2b).

Finally, we extracted reads matching the non-coding region of
the psbA gene (psbA™) from metagenomes to assign Cladocopium
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lineages to Cladocopium species previously identified®*. For this
analysis, metagenomic reads of the 82 Pocillopora corals containing
Cladocopium symbionts were aligned simultaneously on three psbA™"
sequences (C. latusorum MW819767.1, C. pacificum MW861717, and C.
goreaui KF572161.1) with bwa-mem (v2.2.1)°°. Full-length reads aligned
with more than 90% of identity were kept. The reads aligned on the
psbA™ reference sequence covered by the highest number of reads
were selected to build a consensus sequence for each sample (sam-
tools mpileup). We selected two psbA™" sequences for each Cladoco-
pium clade identified in ref. 29 and aligned them with the 82 consensus
sequences with clustalW (MegaX software)’’. A Bayesian phylogeny
of this alignment was generated using MrBayes (v3.2.7a)’’> with
the GTR substitution model (nst=6), gamma-distributed rate variation
(rates=invgamma), the birth-death clock model (brlenspr=-
clock:birthdeath). The MCMC was run for 1,000,000 generations with
sampling every 1000 steps and the first 25% was removed as burnin.
The phylogeny was represented with R packages ape (v5.6.2) and
ggtree (v3.6.2)” (Supplementary Fig. 2c).

Procrustean analysis of Cophylogeny (PACo)

To test for phylogenetic congruence between Pocillopora hosts and
Cladocopium photosymbionts we used the R package paco (v0.4.2) to
conduct a Procrustean analysis of cophylogeny (PACo)°. The PACo
approach uses a distance-based global fit to quantify the topological
congruence between two phylogenetic trees and identifies the asso-
ciations contributing most strongly to the cophylogenetic structure®.
For Cladocopium, we used the SNP frequency clustering described
above. For Pocillopora, we used a subsetted phylogenetic tree gener-
ated from the SVD quartet phylogeny of Hume et al.”” generated by
selecting a single representative for each of the five host lineages. The
host and photosymbiont phylogenetic trees were aligned with the
untangle function (step2side method) of the R package dendextend
(V1.17.1)*.

Gene expression levels of Pocillopora and Cladocopium from
metatranscriptomic reads

Metatranscriptomic reads (lllumina-generated 150-bp, paired-end)
were separately aligned to predicted coding sequences (CDS) of the
Pocillopora meandrina coral host reference genome (Noel et al.®*), and
Symbiodiniaceae sequences (the CDS of the Cladocopium goreaui
genome™ and a Durusdinium transcriptome’®) using Burrows-Wheeler
Transform Aligner (BWA-mem, v0.7.15) with the default settings®.
Host- and symbiont-mapped reads were then sorted and processed
using SAMtools v1.10.2” to generate respective bam files. A read was
considered a host contig if its sequence aligned to the P. meandrina
predicted coding sequence with >95% of sequence identity and with
>50% of the sequence aligned. Reads aligned to Cladocopium goreaui
coding sequences with a cutoff of >98% of sequence identity over
>80% of the read length were retained as symbiont reads. Reads were
further filtered to remove those in which more than 75% of the read
length was low complexity or less than 30% was high complexity. Read
counts were normalized as transcript per million (TPM). Tables of raw
and normalized counts are available”,

Analysis of environment x genotype interactions on gene
expression

To evaluate the relative influence of the environment and genotype on
the coral host and Cladocopium expression profiles we used three
complementary approaches, namely (1) quantitative partitioning of
gene expression variance into the fraction attributable to each putative
driver using a linear mixed model approach (variance partitioning), (2)
discriminant analysis of principal components (DAPC) to determine
which drivers best distinguish between a priori sample groupings
(islands and lineages) based on proportions of correct reassignment,
and (3) constrained correspondence analysis informed by both

historical and in natura environmental data to identify primary abiotic
drivers of gene expression.

Quantitative partitioning of gene expression variance. In the first
approach, we used the variancePartition package in R (v 1.21.2)°*'°° to
partition the variance attributable to the environment, the host gen-
otype, and the symbiont genotype in the Pocillopora and Cladocopium
expression datasets (35,066 genes for Pocillopora and 24,160 genes for
Cladocopium). Prior to performing the variance partitioning analysis, a
correction was applied to remove a bias due to the two different library
preparation methods used for RNA sequencing following the proce-
dure described in ref. 99. Three variables were defined as random
effects: Pocillopora genetic lineage, Cladocopium genetic lineage, and
the island of sampling. In order to account for any potential biases
in our estimation of gene expression variance introduced by var-
iancePartition’s random sub-sampling of colonies we repeated the
variance partitioning analysis 100 times with a random removal of two
samples during each repetition. Genes with a median explained var-
iance >50% for one of the three selected variables across these 100
rounds, hereafter referred to as top variant genes, were then selected
for functional enrichment analysis (1821 genes for Pocillopora and 2424
genes for Cladocopium).

Discriminant analysis of principal components. We used the ade-
genet (v2.110) in R'"'* to determine which genes are best able to
discriminate between pre-defined groups of samples (i.e., based on
either their genetic lineage or on their collection environment) and to
assess how well these groups could be distinguished from one another
based on similarity among their expression profiles. The purpose of
DAPC is to find the linear combinations of genes which maximize the
differences between pre-specified groups while minimizing the within-
group variance thereby allowing for the determination of which genes
most strongly discriminate between the pre-defined groups. Coeffi-
cients of these genes are called loadings and higher loading scores
indicate a stronger discriminatory ability. The linear combinations of
these genes’ expression values are referred to as discriminant func-
tions and serve to orient the groups in multi-dimensional space.

We assessed three discriminant analysis clustering models each for
the host and algal symbiont with (1) the island of collection (i.e., the
environmental effect), (2) coral genetic lineage or photosymbiont
genetic lineage as the grouping factor for the coral and photosymbiont,
respectively, (i.e., the primary genetic effect), and (3) the genetic lineage
of the symbiont (photosymbiont for the host and vice versa; the
symbiotic partner effect) as the pre-defined grouping factor. The rela-
tive strength of environmental-, genetic-, and symbiont impacts on
Pocillopora and Cladocopium gene expression were then assessed by
comparing the proportion of colonies that were correctly re-assigned to
their pre-defined groups under each clustering model. A higher pro-
portion of colonies correctly re-assigned to their pre-defined groups
indicates a greater power to discriminate between divergent expression
profiles and, therefore, a greater influence of that grouping factor on
gene expression. The input for these analyses were the normalized
expression data (i.e., variance stabilized transformed counts obtained
from the package DESeq2, v1.28.1) for all genes with 10 or more counts in
at least 90% of colonies with lineage assignations (n =80 colonies; host
n=28,972 genes; symbiont n = 20,517 genes). We began each model run
with an ordination analysis to extract Principal Components (PCs) of
gene expression. We then computed a-scores to determine the optimal
number of PCs to retain under each clustering model for subsequent
cluster identification using discriminant analysis'®%. A-score optimization
resulted in our selecting 11 PCs to retain for the host and photosymbiont
(for all three models). Group memberships were then independently
predicted for the colonies based on DAPC scores.

The number of principal coordinates (PCs) and discriminant func-
tions (DF) retained, the proportion of colonies correctly re-assigned to
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their a priori groups, and the overall proportion of gene expression
variance explained by each factor (sampled island, host lineage, and
photosymbiont lineage) are summarized in Supplementary Data 11. We
used the proportion of colonies correctly re-assigned to their pre-
defined groups as well as loading scores and quantities of top loading
genes in order to assess the influence of that grouping factor on gene
expression. In addition, we also identified genes whose expression
profiles most strongly contributed to that model’s discriminant axes.
Genes with discriminant axis loading scores within the upper quartile of
scores (i.e., top 25%) were considered as significant contributors to that
axis, are referred to hereafter as discriminant genes, and were retained
for analysis of functional enrichments. Because there was strong
host-symbiont fidelity across all lineages, there was consequently sig-
nificant overlap between discriminant genes recovered from the pri-
mary genetic and symbiotic partner DAPC models. We therefore further
divided these discriminant genes into two subcategories: genes which
were shared between the two models (shared discriminant genes) and
genes which were unique to one of the two models (unique discriminant
genes). We use these subcategories to distinguish between analyses of
all discriminant genes and unique discriminant genes, respectively,
throughout this manuscript.

Constrained correspondence analysis of environmental data. We
also used an automatic stepwise model-building approach for con-
strained correspondence analysis (CCA) between the host/symbiont
expression data and the environmental data in order to visualize how
expression data were structured with respect to potential environ-
mental drivers. To avoid model overfitting we first identified envir-
onmental variables that were highly correlated with one another at an
r*>0.7 using the corclust function of the klaR package (v1.7.1) in R.
From this, we identified clusters of correlated variables (Supplemen-
tary Fig. 8) and selected one representative variable from each cluster
for further analysis. We then calculated multiple regressions of each
environmental variable with the CCA ordination axes of the gene
expression data for both the host and photosymbiont separately using
the envfit function of the vegan package (v2.5.6). Regression sig-
nificance was then assessed by permutation tests (10,000 permuta-
tions) and top environmental variables were selected as those with
environment/expression regression P values<0.05. These environ-
mental variables were then used as the inputs for separate constrained
correspondence analyses for the host and photosymbiont using the
function cca from the vegan package. Because variance inflation factor
analysis of the CCA results indicated the presence of redundant
environmental variables, further selection was conducted using an
automatic stepwise model selection approach with the ordiR2step
function in vegan with 1000 permutations. Environmental variables
displaying Bonferroni-adjusted environment/expression regression
P values < 0.05 were retained and the results visualized to display the
strength and forcing direction of each top environmental variable.

Differential expression and functional enrichment analyses

We assessed differential gene expression between Pocillopora hosts
containing Cladocopium and those containing Durusdinium in the far
Eastern Tropical pacific (Isla de Las Perlas, Coiba, and Malpelo). Ana-
lyses were performed separately for each of the three islands and also
for all islands together. The input for each analysis were the host
expression data for all genes with 10 or more counts in at least 90% of
colonies from that island (n=38/9/6 colonies and n=29,968/30,040/
28,936 host genes for Las Perlas/Coiba/Malpelo, respectively) or
among the three islands together (n =23 colonies and n=32,060 host
genes). For each analysis, these gene counts were normalized and
transformed using a variance stabilizing transformation in DESeq2
(v1.28.1)'. Genes significantly differentially expressed (DEGs) between
colonies containing Cladocopium and Durusdinium were then identi-
fied using DESeq2 with the following criteria: absolute log-fold change

(LFC) =2 after application of ashr log fold-change shrinkage'®* and
FDR-adjusted P value < 0.05. Because of the uneven sampling of C- and
D-containing colonies between islands, the number of DEGs identified
in each inter-island pairwise comparison was highly dependent on the
number of colonies input in the DESeq2 analysis. To correct for this
and allow for quantitative comparison of DEGs between islands we
performed multiple differential expression analyses using two, ran-
domly subsampled, colonies (the lowest sample number) for each
category (C- vs D-containing) for each island. This resulted in a range of
DEGs estimates from which the mean number of DEGs (+SD) were
calculated.

Functional annotations Pocillopora genes were obtained from
the genomic reference provided in ref. ®. These annotations were
obtained using the Interproscan tool for each coding sequence'*>'¢,
Gene Ontology (GO) annotations were attributed with the Inter-
pro2GO correspondence table (v2020/06/13)'. Functional annota-
tions of Cladocopium goreaui genes were recovered from the
published genome™.

Functional enrichment among top variant (variance partitioning)
and discriminant (DAPC) genes were analyzed in the host using the
goseq (v1.40.0)'” package in R. For top variant genes, the number of GO
annotations assigned to genes within that interest group was compared
to the number of annotations assigned to the rest of the dataset, to
evaluate whether any ontologies were more highly represented within
the module than expected by chance (i.e., Fisher’s exact test in goseq).
Cladocopium functional enrichment analyses were performed using
independent Fisher’s exact tests for each Pfam (protein family) domain
between genes present in each gene-of-interest category (top variant,
discriminant, etc.) as compared to all expressed genes of Cladocopium.
P values were corrected for multiple testing with the Benjamini &
Hochberg method implemented in the p.adjust function in R. For each
Pfam term, the number of annotations assigned to genes within an
interest group (i.e., top variant and discriminant genes) was compared
to the number of annotations assigned to the genome, to evaluate
whether any ontologies were more highly represented within the
module than expected by chance (Fisher’s exact test).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The genomic data used in this study have been deposited in the Eur-
opean Nucleotide Archive database under accession code PRJEB47249.
The ITS2 data used in this study have been deposited in the European
Nucleotide Archive database under accession code PRJEB52458. The
metatranscriptomic data generated in this study have been deposited
in the European Nucleotide Archive database under accession code
PRJEB52301. The metagenomic used generated in this study have been
deposited in the European Nucleotide Archive database under acces-
sion code PRJEB52368. The read count and Cladocopium metaT-
derived filtered SNP data generated in this study have been deposited
in a Zenodo repository accessible at: https://doi.org/10.5281/zenodo.
73987678, Several, publicly available genomic resources were used for
mapping purposes in this study including an Enterobacteria phage
PhiX174 genome (GenBank accession code NC_001422.1) and three
psbAncr sequences (C. latusorum MW819767.1, C. pacificum
MW861717, and C. goreaui KF572161.1). NOAA Ol SST V2 High-
Resolution Sea Surface Temperature (SST) data were provided by
the NOAA PSL, Boulder, Colorado, USA, from their website at https://
psl.noaa.gov. Additional source data for the figures presented in this
paper are provided alongside custom analysis scripts at the following
GitHub repository: https://github.com/institut-de-genomique/
TaraPacific_Pocillopora-transcriptomic'®, All other data are provided
as Supplementary Data. Source data are provided with this paper.
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Code availability
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