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ABSTRACT:
To build a surrogate model from experimental data – from tests or computer simulations – numerous
options may exist when choosing a mathematical form. This is true for Gaussian Processes (GP)
models, which may or may not include a regression basis – or mean trend – and be built on different
correlation structures – through the selected covariance kernel. When data is scarce and prior
information on the modeled phenomena is poor, it may be difficult to come to a conclusion on important
decisions such as model selection or model improvement. If additional experimental information can be
collected, often at significant cost, it is interesting to carry out model selection sequentially and
efficiently. In this paper, we propose to leverage the ability of GPs to provide probabilistic descriptions
and use it to look for the next “best” point in the design space using a pre-posterior analysis scheme, or
Value Of Information (VoI) evaluation. At such point, we expect to get the most relevant information,
when the aim is to reduce expected prediction error, given a previous state of knowledge on the
likelihood of various modeling options, e.g. using the idea of Bayesian Model Averaging (BMA). With
successive queried points, we update our respective beliefs in these options through an
“information-optimal” exploration of the design space – given current expectations according to priors.
Hence, we attempt to learn efficiently both model structure and parameters.

1. INTRODUCTION

In many branches of engineering, information on
a quantity of interest is generally obtained either
from testing or from simulation, for various exper-
imental conditions or settings, i.e. across a particu-
lar design space. Whether the studied system is ac-
tually tested or rather simulated, relevant data may
be costly to collect.

When Uncertainty Quantification (UQ) tech-
niques are considered, e.g. for the study of the sen-
sitivity to a particular design parameter, for robust
or “chance-constrained” design and optimization,
or for parameter identification and inverse prob-
lems, sampling on a large scale – much larger than
the size of most Designs of Experiments (DoEs) –
is generally required. In this context, the available
experimental data should be used to build a cost-
effective surrogate model of the physical system.

The latter may then be used to perform heavy sam-
pling.

So-called optimal design for computer experi-
ments or surrogate model building has been a fruit-
ful research topic, see e.g Sacks et al. (1989); Bates
et al. (1996); Picheny et al. (2010) or Liu et al.
(2018) for a review. When data points are queried
sequentially in the design space, the approach is of-
ten referred to as “active learning”, “adaptive learn-
ing” or “sequential design”, see the works of e.g
Osio and Amon (1996); Jones et al. (1998); Kleij-
nen and van Beers (2004).

Efficient collection of information during the
sequential process constitutes the main objective
of this paper. Here, it is pursued using Gaus-
sian Process (GP) surrogate models assembled to-
gether with Bayesian Model Averaging (BMA) and
sequentially enriched through the means of pre-
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posterior analysis. In section 2, a goal-oriented
overview is given about the key features of the
proposed approach, namely GPs, BMA and pre-
posterior analysis. In section 3 formulation de-
tails about the surrogate candidates are introduced.
The proposed application of pre-posterior analy-
sis for sequential design is presented in section 4.
The methodology is illustrated on a simple aca-
demic example in section 5. Specific implemen-
tation choices are also discussed in this section.

2. SEQUENTIAL DESIGN USING GPS

AND PRE-POSTERIOR ANLYSIS
GPs are an interesting choice for surrogate mod-

eling in the context of UQ as they naturally em-
bed a probabilistic description, thus facilitating the
evaluation of the quality of model predictions – or
equivalently, enabling a tailored control on model
error – as well as allowing improvement of the
model through additional training. So-called se-
quential design, often based on GP models, is in-
volved in numerous algorithmic schemes for vari-
ous UQ-related or robust optimization applications,
see e.g. Santner et al. (2003); Jones et al. (1998).
Additionally, the underlying correlation structure of
GP models offers a particularly relevant framework
for thinking in terms of extracting information from
available samples – or future samples – in the de-
sign space. The choice of a particular correlation
structure for a specific model is of major impor-
tance and a central question in this paper.

BMA consists in combining predictions from
multiple models in order to provide a global answer
that properly integrates all available knowledge on
the different models’ ability to represent the “true”
system. When multiple modeling options are con-
sidered, especially when data is scarce – at early
stages of the sequential design – BMA is an inter-
esting device to account for all these options. As
new data is collected, Bayes’ rule can be used to
update the respective beliefs – or weights – asso-
ciated to the different options that were originally
considered. The latter may then be either validated
or discredited depending on new observations.

Pre-posterior analysis or Value of Information
(VoI) evaluation is an approach that originated in
the field of optimal decision theory and is deeply

rooted into a Bayesian view on information col-
lection and exploitation. In a nutshell, its objec-
tive is to quantify the interest of collecting a given
piece of information by comparing, for optimal de-
cisions, the outcomes that may be expected with
and without this piece of information see e.g Raiffa
and Schaifler (1961); Howard (1966). The underly-
ing rationale is that a decision taken in accordance
with a more “precise” state of knowledge can gen-
erally, though not systematically, be tailored more
finely in order to obtain a desired outcome. In prac-
tice, a piece of information is worth collecting when
the gain expected from it does not exceed the cost
of collecting it. In the context of sequential design,
VoI is an interesting tool to compare various alter-
natives for the gathering of new data in the design
space.

In this paper, it is proposed to use BMA with
GP surrogate models built on different correlation
structures – different kernels and mean trends. Pre-
posterior analysis is employed to carry out sequen-
tial design and select points in the design space that
are expected to maximize error reduction, given
the current state of knowledge in the form of a
BMA description. With new data collected from the
“true” process, prior weights are updated and model
selection is progressively performed. In this con-
text, information is particularly collected in order to
help discriminating between competing model op-
tions that provide predictions with strong relative
discrepancy. Hence, the goal is to learn the surro-
gate model’s structure along with the sequential ex-
ploration of the design space, while optimizing the
information collection process – i.e. limiting simu-
lation or testing cost.

3. GAUSSIAN PROCESS MODELS AND
BAYESIAN AVERAGING

A GP is a collection of random variables, each of
them following a Gaussian distribution with mean:

µY (x∗) = g(x∗)+ k(x∗,X)TK−1(Y−g(X)) (1)

and variance:

σ
2
Y (x
∗) = k(x∗,x∗)− k(x∗,X)TK−1k(x∗,X) (2)
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for any point x∗ in the design space Rd , where µY ∈
R, σY ∈ R, k(x,x′) is a kernel function quantifying
the covariance between two observations y(x) and
y(x′) and g is a given function, hereinafter denoted
as trend – often a polynomial decomposition. X is a
set of available training points, with their associated
“observed values from the true system” stored in
Y. K is the covariance matrix computed from the
dataset X using the kernel function k.

This mathematical structure, used as a supervised
regression tool, offers a good balance between a
globally defined behavior of the model – through
the trend function g – and locally extracted informa-
tion – through the “correlation strength” attributed
by the kernel function k in the vicinity of observed
design sites. The previous interpretation is only one
among many views that may be adopted with re-
spect to GPs, arguably a highly versatile tool, see
e.g. Rasmussen and Williams (2006) for technical
details. Regardless of interpretation, the GP model
naturally provides predictions in the probabilistic
form of a Gaussian random variable:

Pr(Y (x∗)≤ y)=Φ
(
y|µY (x∗|g,k),σ2

Y (x
∗|g,k)

)
(3)

where Φ is the Gaussian CDF, non-bold capital
notations represent random variables and g and k
functions are stressed to emphasize their crucial in-
fluence on the predictions.

The choice of the trend and kernel functions, of-
ten specified through the use of hyper-parameters
such that g = g(·|β ) and k = k(·, ·|θ), the latter gen-
erally determined through maximum likelihood or
cross validation procedures, is a difficult question.
Yet, its answer will define the quality of the surro-
gate model’s predictions. From a model selection
perspective the following remark, naive but quite
illustrative, should be kept in mind. Models that fa-
vor a strong “fit” to the data rather than an ability to
“generalize” will appear more “wiggly” rather than
“smooth”.

Here, a finite number – a pool – of model alter-
natives, using particular trend functions and con-
straints on the kernel function’s hyper-parameters,
will be considered. At early stages of the sequen-
tial design, when data is scarce and it is difficult to

identify a preferred option, this pool of models will
represent possible candidates, e.g. a model with no
trend, a “wiggly” model with a trend, a “smooth”
model with a trend, etc. BMA is then used to ex-
press the prediction at any given point x∗ ∈ Rd:

Pr(Y (x∗) = y) =
q

∑
j=1

Pr(Y (x∗) = y|M j) ·Pr(M j)

(4)
for q considered models M j with prior beliefs
Pr(M j).

4. PRE-POSTERIOR ANALYSIS SCHEME
AND BAYESIAN UPDATING

At any given stage of the sequential design, one
holds a probabilistic description, through the GPs
and Y (x∗), of the “anticipated value” of the mod-
eled system. This constitutes a prior state of knowl-
edge for the pre-posterior analysis.

In general, this type of analysis consists in com-
puting the difference between two quantities: on
the one side, the expected outcome associated to
the unconditional optimal decision and on the other
side, the expected outcomes associated to the op-
timal decisions that are conditioned on specific
pieces of information. The value attached to the
act of collecting a particular piece of information z
is computed as follows:

VoI = min
a

EY [L(y,a)]−EZ

[
min

a
EY |Z[L(y,a)]

]
(5)

where L(y,a) is a cost function, whose outcome de-
pends on the selected alternative a and on a random
variable Y . EY is the expectation with respect to Y .
Z is a particular piece of information that influences
the state of possible values of Y , namely from Y to
Y |Z. If conditional optimal decisions tend to lead
to lower expected cost, it is interesting – on aver-
age, over possibly collected z values – to wait and
collect the piece of information and then decide af-
ter obtaining it, rather than deciding uncondition-
ally without it. As the purpose is to evaluate the
outcomes of decisions that might be taken with a
collected piece of information – thus conditioned
on a posterior state of knowledge – before actually
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seeing such piece, this approach is often called pre-
posterior analysis.

In this paper, pre-posterior analysis is applied for
model identification, with the objective of reaching
good overall prediction quality – other objectives
could be pursued through different definitions of L.
Hence, it is implemented in the following way. The
cost function L(y,a) is chosen as the squared error:

L(y,a) = |y−a|2 (6)

such that y represents the “true” value of the pro-
cess, which could be observed, simulated or tested,
and a is the prediction given by the surrogate. The
objective of model identification is to select a in
order to minimize the expected prediction error
(EPE):

minEPE = min
a

EY [|y−a|2] (7)

or in a more detailed form:

minEPE(x∗) = min
a

∫
|y−a|2Pr(Y (x∗) = y)dy

(8)
where the knowledge on the “true” value of the
process is given here by the BMA prediction
Pr(Y (x∗) = y), conditioned on the current priors
Pr(M j).

In the context of sequential design, information
collection consists in querying at a new site e to ob-
tain a new data point z = y(e). Through their cor-
relation structures, all the GP models taking part
in the BMA prediction will be updated when this
new point is integrated, thus yielding the condi-
tional Pr(Y (x∗) = y|y(e) = z) for any desired point
x∗. Then, VoI evaluation can be carried out using
expressions (4), (5) and (6), in order to quantify and
weight the potential for gain when querying at var-
ious alternative sites e of the design space:

VoIe(x∗) = min
a

∫
|y−a|2Pr(Y (x∗) = y)dy −∫ (

min
a

∫
|y−a|2Pr(Y (x∗) = y|y(e) = z)dy

)
dz (9)

where VoIe(x∗) represents the expected gain, in
terms of prediction error reduction, at point x∗,
when a new collection at site e is considered.

Let us note right here that for a squared error
cost function and when Y (x∗) is Gaussian, then the
minimum EPE is equivalent to the so-called mean-
square error (MSE) or variance σ2

Y (x
∗) and it is

reached by the mean of the Gaussian variable, i.e.
argminaEPE(x∗) = µY (x∗). In this situation (9) be-
comes:

VoIe(x∗) = σ
2
Y (x
∗)−

∫
σ

2
Y (x
∗|y(e) = z)dz (10)

Let us also remark that, for a single – stationary
– GP process, σ2

Y (x
∗|y(e) = z) only depends on

the distance between x∗ and e, but not actually on
z, through the covariance kernel and (2). Conse-
quently, the most interesting site from the perspec-
tive of error reduction is the one that is the “most
distant” from available points in the original DoE,
namely X. This is a well-known feature in the use
of GP for optimal and sequential designs, yet it is
derived here from the general framework of pre-
posterior analysis. The previous feature is no longer
valid for a BMA combination of GPs, and the col-
lected value z will actively come into play during
the sequential design.

Identifying the most interesting site e, for the
whole design and prediction space, with the help
of (9), involves significant computation effort and
will be discussed hereinafter. Yet, once this identi-
fication has been performed, the effective collection
of the new data point z = y(e) can be done and the
BMA priors be updated using Bayes’ rule:

Pr(M j|y(e) = z) =
Pr(Y (e) = z|M j) ·Pr(M j)

∑ j Pr(Y (e) = z|M j) ·Pr(M j)
(11)

where Pr(Y (e)= z|M j) is computed before integrat-
ing z in the training set of model M j, i.e. as if it was
predicted by model M j.

The aforementioned approach, as described by
(9), is generic and constitutes a sound theoretical
framework for “optimal” sequential design . Here,
its application for a BMA combination of GPs is, as
far as the author knows, an original proposal.
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5. ILLUSTRATION ON A SIMPLE EXAM-
PLE AND TECHNICAL DETAILS

In this paper, the following practical implemen-
tation choices are made in order to render the com-
putation of VoI affordable. At any given stage of the
sequential design, the most interesting next candi-
date point e is identified using (9) and also:

• Integrating “over dy” and optimizing “over a”
numerically – on a regular grid.

• Integrating “over dz” using samples of “rea-
sonable size”, where z is sampled from the
prior state of knowledge, namely the BMA
combination of GPs, i.e. Pr(Y (e) = z) com-
puted using (4).

• Generating a random grid of Nc candidates in
the design space. Here, this is done using Latin
Hypercube Sampling (LHS), so as to explore
evenly without making assumptions.

• Averaging the error reduction, potentially ob-
tained from the collection of the data point
z = y(el), over the sampled LHS grid, rather
than only at point x∗ or over the complete de-
sign space, for obvious reasons in terms of
computation effort, i.e.:

VoIel = (1/Nc) ∑
k∈[1,Nc]

VoIel(xk) (12)

for any l ∈ [1,Nc]. Hence, one may speak of in-
tegrated error reduction, to be compared with
IMSE in sequential design literature, see e.g.
Sacks et al. (1989).

• Picking the candidate with highest expected
value, i.e.:

enext = arg max
l∈[1,Nc]

VoIel (13)

Once enext is identified, y(enext) is collected and
BMA weights Pr(M j) are updated using (11). At
the end of this process, y(enext) is added to the
current DoE, i.e. {X,Y} ← {X,Y,enext,y(enext)}.
Then, at the following step of the sequential design,
all the GPs’ hyper-parameters will be updated using
maximum likelihood estimation and this enriched
dataset as a new DoE.

Such process can be repeated as long as it is prof-
itable to do so. Error reduction potential will gener-
ally decrease during the process, up to a point when

the cost of information collection becomes too high
in comparison with the expected return.

The method is illustrated hereinafter on a very
simple analytical function f : x → x · sin(x) + ε ,
which represents the “true” system’s behavior –
known up to “precision” ε . The notion of “preci-
sion” or “uncertainty” can be used to account for
imperfect knowledge, or lack of experimental re-
peatability, on either conditions or measurements or
both – either x or y or both.

Here, three GP models are combined through
BMA – red, green and magenta on figures. Con-
straints on hyper-parameters are imposed such that:

• M1 – red – includes a second-order polynomial
trend function g and has a rather smooth kernel

• M2 – green – uses the same form g for the
trend function but its kernel correlation length
is constrained to be shorter

• M3 – magenta – has no trend and a possibly
short correlation length

• So-called nugget or pure-noise effects are in-
cluded in the kernel definitions, thus GPs are
not necessarily interpolating

The fit of the three GP models and the initial DoE
is illustrated on Figure 1.

Figure 1: Initial DoE (6 points, step 0), fit of the three
GP models, next site to be collected (black square)
and obtained value (black diamond). Displayed MSE
value is the average over the whole design space – as
an indication of “global” precision of the surrogate.

The computation of VoI and the evolution of
MSE or variance across the design space for the
three GPs is illustrated on Figure 2. The next best
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candidate site for information collection is identi-
fied on Figure 2 and the result of the collection,
namely z = y(e), is visible on Figure 1. Additional
steps of the sequential design are displayed on fig-
ures 3 through 8. These figures demonstrates the
proper implementation of the proposed methodol-
ogy and its interest for “optimal” information col-
lection – given initial hypotheses for BMA priors.

Figure 2: Computed VoI for step 0 and MSEs.

Figure 3: Step 1 of the sequential design (7 points) and
next site and value (black square and diamond).

The result of the complete sequential design,
stopped at step 15, is illustrated on Figure 9.
One clearly sees MSE reduction along the process,
not necessarily in a monotonous way, since pre-
posterior analysis is based on “what is expected”,
but then the sequential design moves to the tune of
“what is explored and encountered”. Progressive
model selection occurs as new points are collected

Figure 4: Computed VoI for step 1 and MSEs.

Figure 5: Step 2 of the sequential design (8 points) and
next site and value (black square and diamond).

Figure 6: Computed VoI for step 2 and MSEs.

and BMA priors are updated through successive ap-
plications of Bayes’ rule, as displayed on Figure 10.

One also sees on Figure 9 that the potential for
gain decreases and becomes small after a few steps.
Hence, VoI evaluation offers a way to control ex-

6



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

Figure 7: Step 6 of sequential design (12 points).

Figure 8: Step 15 of sequential design (21 points).

perimentation costs and benefits. Also, it may be
observed on figures 1 through 6 that collected sites
do not necessarily correspond to the location with
highest variance – contrary to what often happens
when trying to reduce expected error with GPs.

Figure 9: VoI and MSE during the sequential design

Figure 10: Evolution of BMA priors: progressive model
selection

6. REMARKS
Successive application of Bayes’ rule does not

necessarily lead to an independent or absolute as-
sessment of model quality, but rather to a compara-
tive assessment, through the relative weights asso-
ciated to the different considered options. When it
comes to evaluating model quality, another criteria
that appears a little bit more objective and arguably
less framed in terms of alternative options, is the
magnitude of Leave One Out (LOO) prediction er-
rors – one of the possible choices for cross vali-
dation analyses. It is shown on Figure 11. Here,
model M1 is favored over M2 and M3, on Figure 10,
due to significant noise in the “true” process – bet-
ter described through M1. Yet, it can be argued that
prediction quality of M2 and M3, appears “accept-
able” on Figure 11.

A very simple academic example has been pro-
posed here for illustration purposes. Yet the ap-
proach can be exploited for more realistic engineer-
ing applications in higher dimension, or for other
objectives than error reduction over the whole de-
sign space. In such cases, the cost and the tech-
nical difficulties to compute VoI will obviously be
more significant. Nonetheless, if information col-
lection is expensive for the considered application,
the proposed approach may allow large savings
when both VoI computation and additional exper-
imentation costs are considered in relation to one
another. Validating this remark on a costly appli-
cation constitutes one perspective of the work pro-
posed in this paper.
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Figure 11: Model quality expressed using LOO predic-
tion error magnitude. When Q ≈ 1, LOO error magni-
tude is low and model – prediction – quality is high.

Also, specific implementation choices for the
computation of VoI using (9), as detailed in the be-
ginning of section 5, may seem quite crude in this
paper. With BMA combinations of Gaussian PDF,
more efficient analytical expressions can probably
be derived, avoiding heavy numerical integration
effort and possible boundary effects. This is an-
other direction to explore.

7. CONCLUSIONS
Leveraging the ability of GPs to provide a full

probabilistic representation, a sequential design ap-
proach based on pre-posterior analysis has been
proposed in order to model – or learn the behav-
ior of – any desired physical or engineering system
from experiments, while seeking optimal collection
of information, i.e. with controlled experimentation
cost. It has been applied to a Bayesian Model Av-
erage of GPs, used as a means to carry out a pro-
gressive model selection, gathering knowledge as
efficiently as possible – given priors.

A crucial perspective to keep in mind is that, with
the framework of pre-posterior analysis, one may
start with a relatively rough idea of where the “true”
process lies and progressively “narrow” that state
of knowledge by exploring “where one expects to
find the most relevant information”. Proceeding se-
quentially allows to integrate “what is encountered”
and adjust, sometimes with some discrepancy com-
pared to “what was originally expected”. The un-
derlying objective is to extract information from

observations progressively and refrain from mak-
ing too much assumptions or too early, especially
when they are not supported by explicit reasons or
evidence, and at the same time keep track of the
confidence in model predictions.
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