
HAL Id: cea-04169941
https://cea.hal.science/cea-04169941

Submitted on 24 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Interoperability of Digital Twins:
Ontology-based Capability Checking in AAS Modeling

Framework
Yining Huang, Saadia Dhouib, Luis Palacios Medinacelli, Jacques Malenfant

To cite this version:
Yining Huang, Saadia Dhouib, Luis Palacios Medinacelli, Jacques Malenfant. Semantic Interoperabil-
ity of Digital Twins: Ontology-based Capability Checking in AAS Modeling Framework. 2023 IEEE
6th International Conference on Industrial Cyber-Physical Systems (ICPS), May 2023, Wuhan, China.
pp.1-8, �10.1109/ICPS58381.2023.10128003�. �cea-04169941�

https://cea.hal.science/cea-04169941
https://hal.archives-ouvertes.fr

Semantic Interoperability of Digital Twins:
Ontology-based Capability Checking in AAS

Modeling Framework
Yining Huang

Université Paris-Saclay
CEA, List

F-91120, Palaiseau, France
yining.huang@cea.fr

Saadia Dhouib
Université Paris-Saclay

CEA, List
F-91120, Palaiseau, France

saadia.dhouib@cea.fr

Luis Palacios Medinacelli
Université Paris-Saclay

CEA, List
F-91120, Palaiseau, France

luis.palacios@cea.fr

Jacques Malenfant
Laboratoire d’Informatique

de Paris 6 (LIP6)
CNRS, Sorbonne Université

Paris, France
jacques.malenfant@lip6.fr

Abstract—Industry 4.0 currently prepares a major shift to-
wards extreme flexibility into production lines management.
Digital Twins are one of the key enabling technologies for
Industry 4.0. However, the interoperability gap among digital
representation of Industry 4.0 assets is still one of the obstacles
to the development and adoption of digital twins. If the Asset
Administration Shell (AAS), the standard proposed to represent
the I4.0 components, caters for syntactic interoperability, a more
semantic kind of interoperability is deeply needed to develop flexi-
ble and adaptable production lines. In our work, we overcome the
limitation of current syntactic-only resource matching algorithms
by implementing semantic interoperability based on ontologies
i.e., by transforming AAS-based plant models into MaRCO
(Manufacturing Resource Capability Ontology) instances and
then query the expanded ontology to find the needed resources.
This article presents this ontology-based approach as the first
step towards the design and implementation of an automated
I4.0 flexible plant supervision and control system based on model-
driven engineering (MDE) within the “Papyrus for Manufactur-
ing” toolset. We show how an MDE approach can aggregate
around digital twin modeling tools from the Papyrus platform
both I4.0 technologies and AI (Knowledge Representation and
Reasoning) tools. Our platform aligns modeling and ontological
elements to get the best of both worlds. This method has two
main advantages: (1) to provide semantic descriptions for digital
twin models, (2) to complement model-driven engineering tools
with automated reasoning. This paper showcases this approach
through a robotic cell use case.

Index Terms—Digital Twins, Industry 4.0, Asset Adminis-
tration Shell, Semantic Interoperability, Ontology, Model-Based
Engineering

I. INTRODUCTION

The future industry will be dominated by highly au-
tonomous and adaptive intelligent manufacturing systems, with
great flexibility to deal with the reconfiguration of production
lines and fully automated processes. Safe and reliable pro-
duction line management in the vision of Industry 4.0 will
primarily rely on digital twin [1] technology. The automated
process of digital twin production line requires:

1) To model produces, their production plans and the plant
resources in their finest-grain details to generate timely
targeted executable production plans on-the-fly.

2) For each order in turn, to select currently available plant
resources (tools, conveyors, robots, etc.) able to fulfill
the requirements of the corresponding production plan.

3) To reconfigure the plant to efficiently and timely execute
each production plan with the selected resources.

4) To monitor the execution of plans through a closed-loop
supervisory control to adapt it upon production failures
or incidents.

Besides well-known challenges in the supervisory control
of complex cyber-physical systems, providing a comprehen-
sive representation of produces, production plans and plant
resources in an interoperable way among heterogeneous equip-
ment represents major challenges. To address these challenges,
this vision of future flexible plants is currently supported by
technical solutions such as (1) the digital twin technology to
design structural and behavioral models used at runtime, (2)
interoperability standards, such as the Asset Administration
Shell (AAS) [2] promoted by I4.0 as a standard interface to
digitally represent all of I4.0 elements as well as (3) capability-
based engineering (CBE) [3] which aims at representing and
reasoning about production activities.

Although the AAS standard provides syntactic interoperabil-
ity for cross-vendor assets, it leaves the major issue of seman-
tic interoperability unresolved. Many researchers have realized
this semantic gap as a major shortcoming of AAS and studied
on to better describe assets, to propose a solution rather by
referring to ontologies [4] or to conduct model transformations
[5]. However, no solution towards enabling comprehensive
semantic interoperability of asset administration shells has
been shown yet. An ontology can define a semantic model
of domain knowledge, and consist of inference rules [6].
This article follows up our previous work [7], where we
mainly introduced how to annotate semantic meaning to AAS
models, including a specific mapping between the MaRCO [8]
ontology concepts and AAS meta-models. The focus of this
article is to demonstrate our ontology-based implementation
of the automatic AAS capability checking process in “Papyrus
for Manufacturing” toolset [3]. The resulting process enables

https://orcid.org/0000-0003-0106-8771
https://orcid.org/0000-0003-3896-7295
https://orcid.org/0000-0002-9413-4119
https://orcid.org/0000-0002-2986-8132

the semantic interoperability of AAS models, hence a concrete
realization of capability-based engineering. Our approach uses
model transformations to align model-based and ontology-
based industrial asset representations. By using this tool, we
can obtain candidate resource combinations for production line
reconfiguration from a well-defined AAS product model. A
robotic cell use case will demonstrate the resulting methods
and tools.

This article is organized as follows, Section II presents
the backgrounds and related works. Section III introduces
our capability checking design. Section IV focuses on the
implementation of the capability matchmaking process using
AAS models. Section V showcases our approach on a match-
making example for a robotic cell use case. Finally, Section
VI concludes with future works.

II. BACKGROUND & RELATED WORKS

A. Digital Twins in Industry 4.0 & CBE

The current convergence of IT technologies, from the web
of totally interconnected business information systems among
purchasers and providers operating 24/24 to the Internet of
things and sensor networks feeding in plant floor information
in real time, enables a full automation of flexible production
process management from order to delivery. More specifically,
laying down the technical foundation for Industry 4.0, the
current effort to organize this new wave of industry automa-
tion, the Digital twin technology brings new potential for
managing and controlling increasingly complex systems. In
parallel, the Model-Driven Engineering (MDE) paradigm [9]
is now imposing itself as an essential direction in the field of
digital twins. The unique characteristics of connectivity and
extensibility between models bring dawn to the design and
maintenance of digital twin systems.

However, when a unified description is lacking, digital
twin models cannot achieve interoperability and scalability
when designed and implemented independently. This problem
becomes more prominent as the system scales. In this context,
some widely accepted standards in the manufacturing domain
were born, such as the Reference Architecture Model for
Industry 4.0 (RAMI4.0) [10] and the Asset Administration
Shell (AAS) [2]. RAMI4.0 is a reference model that can help
manufacturing companies get through vertical integration, that
is, the connection from Level 0 to Level 4 of the ISA-95 [11]
manufacturing pyramid. It permits tracking data flow from
production equipment, production execution, and production
planning to enterprise business operation management. AAS
provides a unified architectural framework and standardized
interface (I4.0) system for Industry 4.0 [12] presented a
method to map the AAS meta-model to RDF, but it does
not provide domain specific semantics for the system being
modeled.

The concept of a capability-based approach to flexible
production line engineering was first published by Plattform
Industrie 4.0, which describes the concept and its operational
implementation guidelines. The term “capability” is defined
in the article [13] as an abstract description of the capabilities

of a productive resource. In contrast, the ability to achieve a
particular effect depends on the “skill” of the asset. Capability-
based engineering aims to deploy resources dynamically rather
than directly specifying the actual production participants. By
defining the capabilities required for the product’s production
process and letting the automated production line management
system find the resources and implement the process to achieve
the reliability of the digital twin production system. We have
further refined the three critical steps of continuous capability-
based engineering capability checking, feasibility checking &
skill execution in [14].

B. Semantic Interoperability in Manufacturing

In the previous subsection, we introduced the significance
of interoperability in digital twin production systems and some
standards that provide syntactic interoperability for production
systems. Semantic interoperability has long been recognized as
a significant issue in manufacturing systems. This subsection
introduces the problem and then elicits several related works
that will be reused in our approach.

A white paper published by the Digital Twin Alliance
on the system interoperability framework for digital twins
[15] introduces seven interoperability concepts that form the
design considerations needed to make systems interoperable
at scale. deMeer [16] presents the definition of semantic
interoperability in the context of Industry 4.0 and Smart
Manufacturing. Meierhofer et al. [17] articulate new concepts
of value creation through the use of digital twin decision
support services in industrial service ecosystems, and discusses
the implementation of hybrid semantic modeling and model-
based systems engineering. In [18], Weser et al. present
a manufacturing resources abilities ontology (C4I) formally
describing capabilities using Semantic Web technologies.

Based on the above work and many other unmentioned
articles, using ontologies to address semantic interoperability
emerges as a common solution in the field. Our idea is to
combine ontology-based knowledge representation with AAS
digital twins to achieve semantic interoperability between dig-
ital twins, enabling capability-based engineering. To achieve
this, we rely on two former works, MaRCO [19] providing
capability-related ontologies for manufacturing systems and
OML Adapter [20] providing the basis for transformations
from OWL ontologies to OML and UML models. The OWL-
based Manufacturing Resource Capability Ontology (MaRCO)
describes the capabilities of manufacturing resources. MaRCO
supports the representation of different resources and the
capabilities in manufacturing, hence a good candidate for
capability-based engineering. In addition, MaRCO is also pro-
vided as a complete capability matchmaking web service [21].
The OML (Ontological Modelling Language) is an ontology
description language inspired by OWL and SWRL (Semantic
Web Rule Language). It has a Java API and integration
with useful tools such as OML Adapter provided by the
openCAESAR project. In this context, Medinacelli et al. [22]
focus on using and integrating ontologies and standardized
vocabularies. Meanwhile, in our previous work [7], we have

shown how to assign semantics meanings to AAS models
with MaRCO ontology concepts and define the mapping rules
to realize the round way transformation. The remainder of
this paper will focus on how an AAS model with ontology
semantics can automate the capability checking process.

III. ONTOLOGY-BASED CAPABILITY CHECKING

Figure 1 shows the whole process of the capability-based
engineering approach that we propose. In a model-based
Digital Twin production system, each resource (or asset) has
its own representative AAS provided by different stakeholders
(product and process designers, equipment supplier, integrator,
etc.). The AAS contains the technical descriptions (nameplate),
the simulation models, the operational data or other business
information. The resource pool of a plant contains all the
resources as well as the system layout design. During the
design phase, the system architect specifies the products and
their manufacturing processes. The rounded rectangles in the
figure represent different levels in the automation pyramid
from ISA95 [11]. From top to bottom, they are representing
the manufacturing operation management (level3), the moni-
toring and automated control (level2), and the manipulation of
production processes (level1). In the latter level, the “AASs”
(or digital twins) are continuously updated to represent the
assets real time status.

Capability checking takes the PPR capability models as
input and computes the possible resource combinations that
may currently achieve the production. During the feasibility
checking step, these combinations and environmental contexts
will be simulated to validate the selected resources combi-
nation against their current constraints. Then the next step
automatically supervises the skill execution of the selected
models. The supervisor deploys the selected resource pool
models according to the reconfiguration plan obtained through
the capability-based reconfiguration phase. During the whole
process execution, the supervisor monitors the status of all
asset models and will re-plan the production process in a
timely manner when abnormalities are detected.

A concrete example to describe this capability checking pro-
cess shows how to select a device that can provide transporting
capability from the alternative resources when an object needs
to be moved in the production process. In the scope of this
paper, we consider only design time models. Since runtime
models will contain similar meta data to the ones of the design
time models, the capability checking feature will have a similar
behavior when interacting with the two types of models.

As shown in Figure 2, the capability checking module
interacts with AAS models to set/get their semantics and then
to trigger the capability matchmaking reasoner in order to
compute the best resources matching the requirements of each
production process. The four stages depicted in Figure 2 are:

1) The designer annotate the AAS models with semantic
definitions (semanticIds) from the ontology.

2) The designer triggers the automatically transformation
of the AAS models (Product, Process, Resources) into
ontology compliant individuals.

 Administration
Shell

Device1

Administration
Shell

Product

Administration
Shell

Process

Capability
Checking

Feasibility
Checking

Skill
Execution

End of
Production

Production Goal Design Phase

 Administration
Shell

Selected
Device1

Administration
Shell

Selected
Device2

Administration
Shell

Process

Production Phase

Monitoring Automate
Control

Replanning

System Reconfiguration Plan

Lot order processing

 Administration
Shell

Device2 Administration
Shell

Device3

Resource Pool

Legend

models@designtime

models@runtime

Model streams

Data exchanges

Configure

Fig. 1. Capability-based reconfiguration approach

Fig. 2. Capability checking architecture

3) With the input individuals, the automated reasoning
engine matches the capabilities required by the process
with the capabilities provided by the resources.

4) Finally the capability checking module returns the
matchmaking result to the designer.

Since there was a comprehensive expert investment in its
design, the ontology will not frequently change over time but
to add new resources and drop decommissioned ones. Conse-
quently, the first stage (ontology to UML profile conversion

part) only needs to be performed once, as long as the ontology
concepts do not change. The second, third and fourth stages
will be repeated, whenever a PPR model update occurs. All
the actions represented by the arrows shown in Figure 2 are
automated, system architects only need to define and select
the required production models.

IV. IMPLEMENTATION

When we implement the capability checking architecture
mentioned in Section III, the numbers used in Figure 3 repre-
sent the implementation process of their tagged stage in Figure
2. This entire capability checking feature is developed as an
Eclipse plug-in bundled with Papyrus4Manufacturing [23].

Our capability checking implementation involves three dif-
ferent modules: (A) the model transformation module for the
ontology concept conversions between different file natures,
(B) the capability matchmaker module for inferences, and
(C) user interface module for launching capability check-
ing requests and displaying the reasoning results in Pa-
pyrus4Manufacturing. To implement the above functions, we
have selected two well-established jobs. One is OML Adapter,
which is used to convert OWL to UML profile. The other is
MaRCO ontology, on the one hand, because the description
of capabilities in manufacturing perfectly suits our needs. On
the other hand, it also provides complete inference rules for
capability matchmaking.

Fig. 3. Capability checking implementation workflow

A. Model Transformation Module

The model transformation module provides a round-way
transformation between OWL ontologies and UML models.
The three dotted steps in Figure 3 correspond to the first stage
introduced in Section III, which enriches AAS models with
semantic annotations in the manufacturing capability domain.
As mentioned earlier, once generated from the ontology, this
UML profile can be reused for all forthcoming actions.

The OML adapter takes care of the transformation from
OML vocabularies to UML profiles. However, the MaRCO
ontology was initially described in OWL format. To better use
the existing works, we need to first define OML vocabularies
referencing the original OWL ontology.

After confirming the definition of OML vocabularies and
the corresponding relationship between these concepts and
UML meta-model, we can obtain the MaRCO UML Profile
through OML adapter. Here we will briefly introduce some
concepts from the MaRCO ontology involved in this capability
matchmaking process. The MaRCO ontology is composed of
several distributed ontologies [19]. By using the OML Adapter,
a subset of MaRCO vocabularies is transformed into a UML
profile that can be applied to AAS models as stereotypes,
including different sub-classes of the concepts. The capabil-
ities are separated into simple capabilities like Moving and
combined capabilities like PickAndPlace, and these capabil-
ities have parameters to describe their characteristics. The
combined capabilities are compositions of simple or other
combined capabilities, these information are defined in the
Capability Model ontology. The resource model stereotypes
define different resource types, including atomic resources
(DeviceBlueprint and IndividualDevice) as well as different
resource combination types including DeviceCombination, and
the combination at the FactoryUnit level. The concepts of
Product, Process and a selection of ProcessTaxonomyDescrip-
tion have been included in the UML profile as well.

The MaRCO concepts in the generated UML profile are
applied as stereotypes to the AAS models. The concrete
mapping rules are described in [7]. The designer improves the
AAS model based on the device properties and capabilities
provided in the configuration file. The system designer should
refine the stereotyped AAS models based on the properties of
the equipments and capabilities. There is a semanticID concept
for the submodel and submodel element of an AAS model.
It is used to refer to the semantic meaning of this element.
So when we assign a MaRCO concept to an AAS element,
the semanticID should refer to the IRI of this concept in the
ontology.

The second step refers to the second stage in the ca-
pability checking architecture (Figure 2), that generates the
MaRCO concept instances from the AAS system model
for further inferences. Based on the APIs provided by the
org.eclipse.uml2.uml and org.semanticweb.owlapi packages,
we developed a convertor from stereotyped UML models to
Owl individuals. All AAS models and the information stored
in the stereotypes that come from the MaRCO profile will be
converted as OWL individuals that conform to the MaRCO
ontology.

B. Capability Matchmaker Module

The capability matchmaker is responsible for resource com-
bination and combined capability computation, as well as
the matchmaking reasoner which aligns the corresponding
capabilities between production processes and resources. The
implementation of this module reuses as much as possible
other existing open-source projects. First of all, the MaRCO
ontology and the associated SPARQL queries and SPIN rules
come from the open-source MaRCO ontology [8]. The func-
tionalities of ontology read and write are provided by Jena
semantic web framework and the SPARQL queries can be

executed by Openllet reasoner. As for the reasoning process of
SPIN rules, it is realized by SpinAPI (provided by TopBraid),
which aims at encouraging the adoption of SPIN in the
domain.

The pre-defined SPARQL queries update the capabilities
for the individual devices and compute combined capabilities
for the device combinations. The SPIN rules integrated in the
Parameter Rule ontology are executed in order to infer these
novel capabilities’ parameters. The matchmaking reasoner
deals with the matching between capabilities required by
the process and capabilities provided by the newly updated
resource system. During this process, not only are the capa-
bilities matched at the name level has capability match, but
also the adaptations of the parameters can be implemented
with are computed. These reasoned relationships and inferred
elements are saved in a separate file.

C. User Interface Module

This user interface ties the above two modules together
and establishes a relationship with the model in the modeling
environment. The usage scenario we envisage is shown in
Figure 4. First, the user defines the production process in
Papyrus4Manufacturing, and triggers the capability checking
function through a right-click menu “Capability Checking”,
from which he/she can select the product for which the capa-
bility checking must be performed. This command sequentially
invokes the OML Adapter, the capability matchmaker and the
results retrieving module. After a series of processing, the
results are returned to Papyrus4Manufacturing by a popup
window, providing the user with a list of devices to choose
from. Finally, the user selects a set of equipment combinations
and then performs the feasibility checking (which is out of the
scope of this paper, as said earlier).

Fig. 4. User interaction scenario

The result retrieval aims to integrate and extract the results
of ontology inferences, return them to the user, and save
them for later use. We defined a SPARQL query (Figure
5) to automatically extract information from newly reasoned
relationships. We want to select the equipment (either an indi-
vidual or a combined device) that can provide the capabilities
required for the production process through the query (Line 1).

Via Lines 2-4, it is possible to select all processes participating
in the capability checking. Lines 6 and 7 select the capabilities
required for the aforementioned production processes. The
eighth line finds the devices capable of implementing the
required capabilities. The capability matchmaking results show
the DeviceBlueprints or DeviceCombinations the that can real-
ize the capability. However, in our application, the production
process is realized by the device instances (IndividualDevices).
So when the result is a DeviceBlueprint, we will find all
available IndividualDevices belonging to it (Line 9-11). The
results are sorted out via a popup window for the users to
choose. And the inferenced information is again connected to
the AAS digital twin models. The selected information can
then be included as input for a feasibility checking or device
deployment step coming next.

Fig. 5. SPARQL query for result extraction

V. ROBOTIC CELL USE CASE

A robotic cell (LocalSEA) use case is now presented to
demonstrate the entire process of capability checking. The
AAS modeling of this example has already been described
in [3]. In this scenario, a new product has been designed
and the system architect wants to configure the production
line with the help of Papyrus4Manufacturing toolset. The
production resources consist of two Niryo Neds, one conveyor
belt, one TurtleBot3, two human workers, two storage units,
and an assembly workstation. Niryo Ned is a robotic arm that
includes a six-axis arm to realize PickAndPlace, a camera to
realize LocatingVisual. The conveyor belt owns the capability
Transporting. The TurtleBot3 Waffle is a mobile robot that
can achieve Transporting capability as well. Ideally, a human
could replace any type of device, with abilities including
PickAndPlaceFlexible, Transporting, and Hammering.

Next, The AAS model of the product and its production
process is defined, including the information on the product
and the manufacturing capabilities required by the process.
The product defined in this example is the assembly of
two objects of different colors and shapes. Therefore, the
corresponding production process (Figure 6) is as follows:

Pick up a red
square from the

storage

Place the
objects to

transporting
device

Transport the
objects to
assembly

station

Hammer the
two type of

objects
together

Pick up a blue
circle from the

storage

Place the
objects to

transporting
device

Fig. 6. LocalSEA BPMN production process

• Detect and grasp the two types of required pieces from
two different storage unit in parallel and place them on
the transporting device.

• Transport the required parts to the assembly area
• Complete the screw action

It is represented as a BPMN [24] process diagram. The capa-
bilities required by this manufacturing process are: PickAnd-
PlaceFlexibles, Transporting and Hammering.

Fig. 7. Different types of LocalSEA Resources

During the design phase, the MaRCO Ontology profile
is applied to the LocalSEA models. Also, the AASs have
applied stereotypes corresponding to the different types of
Resources existing in MaRCO. Figure 7 is an example of
different types of devices existing in LocalSEA and their

attributes. The stereotype DeviceBlueprint is applied to “AAS-
TurtleBot3 type” contains the information about a Turtlebot3
robot in LocalSEA. The capabilitiy Transporting mentioned
above are attached to AAS capabilities owned by the “AAS-
TurtleBot3 type” as stereotypes. “LittleTurtle”, an instance of
Turtlebot3, is defined as an IndividualDevice, so the attribute
hasDeviceBlueprint is set to “AASTurtleBot3 type”. And the
last model shown in Figure 7 “AASNiryoNed1” is a Device-
Combination, which is a composite resource of a camera and
a robot arm.

Fig. 8. Capability checking result window

Once the user selects the product to produce, the rest of
capability checking process is fully automated and triggered
by a right-click command. Firstly, the OML Adapter is called
to transform the AAS models into MaRCO instances. The
resulting AASs.owl file contains all the AAS model capability-
related information. Then the capability matchmaker takes
the resources and product descriptions as input to infer the
matchmaking results. These inference results are generated in
the same folder as AASs.owl under the name of matches.ttl.
Figure 9 shows the changing status of the required capability
Transporting in the LocalSEA production process at different
stages of capability checking. In the modeling environment,
the corresponding stereotypes are applied to “AASProcess1”
model. As shown at the upper part of the figure, the attribute of
matchmakingRequired is set to true to trigger the matchmaking
inference. All the information defined in the process model is
written to AASs.owl, as shown in the middle screenshot. The
lower part of the figure shows the inferred information stored
in matches.ttl after inference by the capability matchmaker.
The figure shows the transporting process has capability match
with the human operator typed devices, ConveyorBelt typed
devices or a human operator. But it can only be implemented
with TurtleBot3 or a human operator, because the parameters
of the conveyor belt in this case doesn’t fit the requirement.

The capability checking results of the “AASProduct1” are
grouped in a pop-up window shown in Figure 8. According

to these results, PickAndPlaceFlexible can be implemented
by NiryoNeds, Transporting can be done by TurtleBot or
conveyor belt, and human operators can realize all the capabil-
ities required in this process, which just matches our previous
definition of LocalSEA devices. Through this result list, the
user can select the production line combination to be further
checked in the feasibility checking module.

VI. CONCLUSION

Our work takes part in a larger project aiming at designing
and implementing an automated Industry 4.0 flexible plant
digital twin within the “Papyrus4Manufacturing” toolset. A
matchmaking process between requirements of the plan and
the plant resources automatically performs these latters selec-
tion for production. The main contribution of the paper is a
new matchmaking functionality that extends current syntactic-
only matching with semantic matching based on information
represented in the MaRCO manufacturing ontology.

This new feature has been fully implemented within the
recently released “Papyrus4Manufacturing” platform, using a
large set of tools from I4.0 standards (RAMI 4.0, AAS, etc.)
to ontologies (MaRCO) and their query languages (SPARQL
and SPIN), orchestrated through a set of models, UML profiles
and model transformations (OML adapter) that we have either
developed or integrated in our platform. We have demonstrated
the effectiveness of this capability checking functionality in
Papyrus4Manufacturing on a robotic cell use case (LocalSEA).

The future work, that we have already undertaken for our
flexible plant management system, concerns (1) the feasibility
checking phase and then (2) the plant reconfiguration prior to
(3) the supervision and control of the production plan execu-
tion. The feasibility checking extends the capability checking
by taking into account the current contextual constraints and
the actual time-dependent aspects of plan execution to generate
feasible plans for production. From the feasible plan and its
selected resources, the system will then have to reconfigure the
plant to prepare for the production per se, which will also need
to be supervised firstly to react to failures or abnormal events
but also to perform online machine learning and dynamic
process optimization. When such events happen or optimized
steps must be put in place, the system may have to stop
the production, revise the plan, adjust the plant configuration
and resume the production. To implement this supervisory
control phase as well as the simulation part of feasibility
checking. Our short-term goal concerns about generating data
streams and dynamic model reasoning to enable runtime
supervision. The system will require a comprehensive usage of
models@runtime and digital twins representation of the plant
and real-time data collection for effective plan execution.

ACKNOWLEDGMENT

This work has been partially funded by the European
Union’s Horizon 2020 program via Project GA Nr. 952003
AI REGIO.

REFERENCES

[1] B. R. Barricelli, E. Casiraghi, and D. Fogli, “A survey on digital twin:
Definitions, characteristics, applications, and design implications,” IEEE
Access, vol. 7, pp. 167 653–167 671, 2019.

[2] P. I4.0, “Details of the asset administration shell - part 1,” https:
//www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/
Details of the Asset Administration Shell Part1 V3.html.

[3] Y. Huang, S. Dhouib, and J. Malenfant, “An AAS Modeling Tool for
Capability-Based Engineering of Flexible Production Lines,” in IECON
2021 - 47th Annual Conference of the IEEE Industrial Electronics
Society. Toronto, Canada: IEEE, Oct. 2021, pp. 1–6. [Online].
Available: https://hal.sorbonne-universite.fr/hal-03476685

[4] B. Vogel-Heuser, F. Ocker, I. Weiß, R. Mieth, and F. Mann,
“Potential for combining semantics and data analysis in the
context of digital twins,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol.
379, no. 2207, p. 20200368, 2021. [Online]. Available: https:
//royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0368

[5] M. Platenius-Mohr, S. Malakuti, S. Grüner, and T. Goldschmidt,
“Interoperable digital twins in iiot systems by transformation
of information models: A case study with asset administration
shell,” in Proceedings of the 9th International Conference on
the Internet of Things, ser. IoT 2019. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3365871.3365873

[6] K. Munir and M. Sheraz Anjum, “The use of ontologies for effective
knowledge modelling and information retrieval,” Applied Computing
and Informatics, vol. 14, no. 2, pp. 116–126, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210832717300649

[7] Y. Huang, L. Palacios, S. Dhouib, and J. Malenfant, “Enabling semantic
interoperability of asset administration shells through an ontology-
based modeling method,” in 2022 25th IEEE International Conference
on Model Driven Engineering Languages and Systems (MODELS ’22
Companion), vol. 1, 2022.

[8] E. Järvenpää, O. Hylli, N. Siltala, and M. Lanz, “Utilizing
spin rules to infer the parameters for combined capabilities of
aggregated manufacturing resources,” IFAC-PapersOnLine, vol. 51,
no. 11, pp. 84–89, 2018, 16th IFAC Symposium on Information
Control Problems in Manufacturing INCOM 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896318313636

[9] J. Bézivin, “Model driven engineering: An emerging technical space,”
vol. 4143, 01 2005, pp. 36–64.

[10] R. Heidel, M. Hoffmeister, M. Hankel, and U. Döbrich, The Reference
Architecture Model RAMI 4.0 and the Industrie 4.0 component.

[11] “Isa95, enterprise-control system integration part
1: Models and terminology,” 2010. [Online]. Avail-
able: https://www.isa.org/standards-and-publications/isa-standards/
isa-standards-committees/isa95

[12] S. R. Bader and M. Maleshkova, “The semantic asset administration
shell,” in Semantic Systems. The Power of AI and Knowledge Graphs,
M. Acosta, P. Cudré-Mauroux, M. Maleshkova, T. Pellegrini, H. Sack,
and Y. Sure-Vetter, Eds. Cham: Springer International Publishing, 2019,
pp. 159–174.

[13] P. I4.0, “Describing capabilities of industrie 4.0 components.”
[Online]. Available: https://www.plattform-i40.de/PI40/Redaktion/EN/
Downloads/Publikation/Capabilities Industrie40 Components.html

[14] Y. Huang, S. Dhouib, and J. Malenfant, “Aas capability-based operation
and engineering of flexible production lines,” in 2021 26th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), 2021, pp. 01–04.

[15] D. M. C. Anto Budiardjo (Padi), “Digital twin system
interoperability framework,” Digital twin consortium whitepaper,
2021. [Online]. Available: https://www.digitaltwinconsortium.org/pdf/
Digital-Twin-System-Interoperability-Framework-12072021.pdf

[16] J. deMeer, “Semantics for i4.0 smart manufacturing,” in INFORMATIK
2020, R. H. Reussner, A. Koziolek, and R. Heinrich, Eds. Gesellschaft
für Informatik, Bonn, 2021, pp. 289–298.

[17] J. Meierhofer, L. Schweiger, J. Lu, S. Züst, S. West, O. Stoll, and
D. Kiritsis, “Digital twin-enabled decision support services in industrial
ecosystems,” Applied Sciences, vol. 11, no. 23, 2021. [Online].
Available: https://www.mdpi.com/2076-3417/11/23/11418

https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://hal.sorbonne-universite.fr/hal-03476685
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0368
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0368
https://doi.org/10.1145/3365871.3365873
https://www.sciencedirect.com/science/article/pii/S2210832717300649
https://www.sciencedirect.com/science/article/pii/S2405896318313636
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html
https://www.digitaltwinconsortium.org/pdf/Digital-Twin-System-Interoperability-Framework-12072021.pdf
https://www.digitaltwinconsortium.org/pdf/Digital-Twin-System-Interoperability-Framework-12072021.pdf
https://www.mdpi.com/2076-3417/11/23/11418

Fig. 9. An AAS2MaRCO generation of a required capability

[18] M. Weser, J. Bock, S. Schmitt, A. Perzylo, and K. Evers, “An ontology-
based metamodel for capability descriptions,” in 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), vol. 1, 2020, pp. 1679–1686.

[19] E. Järvenpää, N. Siltala, O. Hylli, and M. Lanz, “Capability
matchmaking software for rapid production system design and
reconfiguration planning,” Procedia CIRP, vol. 97, pp. 435–440,
2021, 8th CIRP Conference of Assembly Technology and Systems.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2212827120314864

[20] M. Elaasar, “Definition of modeling vs. programming languages,” in
Leveraging Applications of Formal Methods, Verification and Validation.
Modeling, T. Margaria and B. Steffen, Eds. Cham: Springer Interna-
tional Publishing, 2018, pp. 35–51.

[21] A. Mital, N. Siltala, E. Järvenpää, and M. Lanz, “Web-based
solution to automate capability matchmaking for rapid system
design and reconfiguration,” Procedia CIRP, vol. 81, pp. 288–
293, 2019, 52nd CIRP Conference on Manufacturing Systems

(CMS), Ljubljana, Slovenia, June 12-14, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212827119303555

[22] L. P. Medinacelli, C. Mraidha, and F. Noyrit, “Augmenting model-
based systems engineering with knowledge,” ser. 4th Workshop on
Artificial Intelligence and Model-driven Engineering (MDEIntelligence),
co-located with MODELS 2022.

[23] C. List. (2022) Papyrus for manufacturing model driven
workbench. [Online]. Available: https://www.eclipse.org/papyrus/
components/manufacturing/

[24] OMG, “Business process model and notation v2.0,” 2010. [Online].
Available: https://www.omg.org/spec/BPMN/2.0/

https://www.sciencedirect.com/science/article/pii/S2212827120314864
https://www.sciencedirect.com/science/article/pii/S2212827120314864
https://www.sciencedirect.com/science/article/pii/S2212827119303555
https://www.eclipse.org/papyrus/components/manufacturing/
https://www.eclipse.org/papyrus/components/manufacturing/
https://www.omg.org/spec/BPMN/2.0/

	Introduction
	Background & Related Works
	Digital Twins in Industry 4.0 & CBE
	Semantic Interoperability in Manufacturing

	Ontology-Based Capability Checking
	Implementation
	Model Transformation Module
	Capability Matchmaker Module
	User Interface Module

	Robotic Cell Use Case
	Conclusion
	References

