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Introduction

Runtime Assertion Checking (RAC) is a lightweigth formal method that consists in checking at runtime formal properties written as code annotations [START_REF] Clarke | A Historical Perspective on Runtime Assertion Checking in Software Development[END_REF]. For this purpose, a RAC tool usually takes a source code (or bytecode) program p as input and generates as output an inline monitor that observes each p's execution. An inline monitor means that the (source, byte or binary) code of the monitor is part of the observed program: the generated chunks of code interleave with pieces of code of the original program [START_REF] Falcone | A tutorial on runtime verication[END_REF]. This paper focuses on E-ACSL [20], the RAC tool of Frama-C [START_REF] Baudin | The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis Platform[END_REF], an analysis framework for code written in C. The formal properties are written in a variant of the ACSL specication language [START_REF] Baudin | ACSL: ANSI/ISO C Specication Language[END_REF], also named E-ACSL and dedicated to runtime checking [START_REF] Delahaye | Common Specication Language for Static and Dynamic Analysis of C Programs[END_REF]. The E-ACSL tool takes as input a C program annotated with E-ACSL specications and generates a new C program in which the formal annotations have been converted to C code.

E-ACSL aims at satisfying four key properties, that are quite usual for RAC tools: expressivity, transparency, soundness, and eciency. Expressivity means that the more properties a RAC tool can check the better. Transparency means that the inline monitor must not modify the functional behavior of the original program: when the checked properties are all satised, the monitored program must produce the same output as the unmonitored program. Transparency is out-of-scope in this paper. Soundness means that the inline monitor must emit correct verdicts when checking properties. Eciency means that the inline monitor must run as eciently as possible: the time and memory overheads of the monitored program with respect to the unmonitored program must remain as low as possible. It also means that generating the code of the monitor must be ecient enough. In our context, being ecient enough for generating the code means being as ecient as standard optimizing compilers.

Regarding expressivity, we focus here on integer properties only. E-ACSL is based on integer arithmetics in Z, the set of mathematical integers, which allows users to specify arithmetic properties without implementation details in mind: assuming x is a C variable of type int and n is an integer constant, x + n can never overow in a formal property, although it might in C code. The formal properties can also call user-dened possibly-recursive logic functions and predicates. Such denitions allow users to specify once complex parameterized computations and properties and use them several times. Such an expressivity leads to an issue regarding eciency and soundness. Indeed, using mathematical integers requires to rely on a dedicated exact arithmetic library, such as GMP 1 in C, for generating correct code, while using machine bounded integers would be much better for eciency. For taking the best of both worlds and being both correct and ecient, E-ACSL relies on a dedicated static analysis that allows it to use ecient machine bounded integers when it is safe to do so and inecient-yet-correct exact arithmetics otherwise. The static analysis is itself ecient and thus allows E-ACSL to generate the ecient code eciently: even if based on abstract interpretation [START_REF] Cousot | Principles of Abstract Interpretation[END_REF], it only uses the simple interval domain and a fast widening operator that scale extremely well, yet is precise enough for our need. Therefore, it reaches the goal of being as ecient as standard optimizing compilers, contrary to most existing abstract interpreters that target proving properties such as absence of bugs. This paper presents this static analysis in the presence of recursive logic denitions, proves its correctness and shows experimentally how it helps E-ACSL to generate ecient C code. Although focusing on E-ACSL, our contributions can be Ly et al formalized another subset of E-ACSL, targeting memory properties [START_REF] Ly | Soundness of a dataow analysis for memory monitoring[END_REF][START_REF] Ly | Veried Runtime Assertion Checking for Memory Properties[END_REF]. Their works are complementary to ours. Beyond E-ACSL, Cheon [START_REF] Cheon | A runtime assertion checker for the Java Modeling Language[END_REF] was the rst to formally study RAC, in the context of JML [START_REF] Leavens | JML: A Notation for Detailed Design[END_REF], a formal specication language for Java. He did not focus his work on integer arithmetic since, at that time, the JML's arithmetic was exactly the machine arithmetic. Later, Lehner [START_REF] Lehner | A Formal Denition of JML in Coq and its Application to Runtime Assertion Checking[END_REF] formalized in Coq a large subset of the JML's semantics. He also formalized a RAC algorithm for the JML's assignable clause, which is independent from, but compatible with, our integer properties. More recently, Filliâtre and Pascutto [START_REF] Filliâtre | Ortac: Runtime Assertion Checking for OCaml (tool paper)[END_REF] proposed Ortac, a RAC tool for OCaml. It relies on a similar mechanism to ours for generating ecient arithmetic code, but without details nor formalization for that part. They also do not deal with logic denitions. Recently, they formally studied how to optimize referring to the pre-state from the post-state of a function [START_REF] Filliâtre | Optimizing Prestate Copies in Runtime Verication of Function Postconditions[END_REF]. This work is complementary to ours. Section 2 presents an overview of our work on a concrete example. Section 3 introduces the programming and specication languages supporting our formalization. Section 4 details our static analysis without considering logic denitions.

Section 5 extends it to the whole considered languages and presents our formal results. Section 6 presents our experimental evaluation. we assume that the program is executed on an 8-bit architecture, where the type int ranges from -128 to 127, and that there is no machine integer type greater than this. In this example, three assertions are translated. For the rst one, the translation is straightforward, as it suces to replace the assertion with the exact same assertion in C. The second one is more complex: since the addition it involves overows in the machine integers, we rely on the GMP library, which provides exact integer arithmetic. The last assertion is the most complex since it calls a user-dened recursive function. Its translation generates a C function that specializes this ACSL function, while keeping track of the size of the numbers involved to use either machine integers or GMP. This article presents a static analysis based on abstract interpretation whose purpose is to provide the information required to decide whether a particular term can soundly be translated using machine integer or must rely on inecient GMP integers.

Illustrated Overview

Language Denition

The formal presentation of the paper focuses on a core arithmetic subset of the C language, called mini-C. mini-C programs may contain formal annotations written in a subset of the ACSL specication language [START_REF] Baudin | ACSL: ANSI/ISO C Specication Language[END_REF], called mini-ACSL. Its main feature is the support of user-dened logic functions and predicates, including mutually recursive ones.

Formal Syntax

Figure 2 presents the syntax of the languages mini-C and mini-ACSL together, as they mutually depend on each other. An annotated mini-C program is a sequence /* @ logic integer f ( integer x) = x <= 0 ? 0 : f (x -1) + 1; */ void main () { // @ assert 10 + 20 == 30; // @ assert 120 + 30 == 150; // @ assert f (50) == 50; } of program variables declarations, followed by a sequence of function denitions, which may be either a mini-C function, or a user-dened logic function or predicate epxressed in the mini-ACSL language. For simplicity, we assume that the only type of mini-C is int, i.e. bounded machine integers: our results can easily be extended to a language with more bounded integer types. The program functions are made of statements that include standard control ow structures, such as loops and conditionals, as well as arithmetic operations. The statements also include logical assertions, expressed in the mini-ACSL specication language.

Assertions are propositional predicates over mathematical (unbounded) integer terms. Terms and predicates may include calls to user-dened logic functions and predicates, which can be (mutually) recursive. Syntactically, no restriction is put on the recursion scheme of functions and predicates.

Program Structure

We assume that all the programs given as inputs are syntactically well-formed and properly typed, even if the type system is omitted here. We denote V the set of program variables and S the set of statements, as well as L the set of logic binders (i.e., the logic variables introduced as parameters of user-dened logic functions and predicates), Z the set of logical terms and B the set of predicates of the program. For the sake of simplicity, we consider any program function identier as being a particular program variable, and any logic function and predicate identier as being a particular logic binder. The partial function of variables corresponding to its parameters together with the statement dening its body. Similarly, we assume two partial functions F : L L * × Z and P : L L * × B modeling respectively the set of user-dened logic functions and the set of user-dened predicates. In practice, the assumptions made are guaranteed by Frama-C [START_REF] Baudin | The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis Platform[END_REF], which also computes the functions F, F and P. For any partial function f , f {x\v} is dened as f {x\v}(x) = v and f {x\v}(y) = f (y) for any y = x. It is also worth noting the following key remark about mini-ACSL.

F : V V * ×S,
Remark 1 (Accessibility of logic bindings). The only logic variables in L bounded in a function or predicate body are its formal parameters, although global program variables in V may also be bounded. This details could be omited here, but we keep them to be consistent with the semantics of [START_REF] Benjamin | Formalizing an Ecient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates[END_REF] since we prove here assumptions of this paper. We denote by B = {T, F} the set of truth values and by Z be the set of mathematical integers.

Concrete Semantics

The semantics of our languages is evaluated in a concrete environment Ω, which is a pair of two partial functions Ω V : V → Int and Ω L : L → Z. For the sake of simplicity, we sometimes treat Ω as a single partial function, as determining which of the component is referred to is usually non ambiguous from the context. The semantics of a mini-C statement s is expressed by the judgment Ω s ⇒ Ω , stating that evaluating s in the environment Ω yields the environment Ω . Similarly, the semantics of a mini-C expression e is expressed by the judgment Ω e ⇒ v, with v ∈ V, the semantics of a mini-ACSL predicate p is expressed by the judgment Ω p ⇒ b with b ∈ B and the semantics of a mini-ACSL term is expressed by the judgment Ω t ⇒ z with z ∈ Z. Fig. 3 presents the derivation rules for the semantics of mini-C. The result of a call to function f is transmitted from the callee to the caller through a distinguished variable res f .The rest of this semantics is fairly standard and straightforward. Fig. 4 presents the semantics of the mini-ACSL specication language. Again this semantics is quite standard, except that terms evaluate in the set of mathematical integers Z and not in the set of machine integers. The semantics presented here is blocking, that is only correct programs with correct annotations can be ascribed a semantics using these rules. In particular, terms and predicates calling logic denitions with ill-formed recursion schemes have no semantics, since as soon as a call is non-terminating, there is no nite derivation tree to ascribe a semantics to it. Constructs that would lead to runtime errors, which are restricted to division by zero in our arithmetic context, have also no semantics. In practice, E-ACSL embeds a mechanism that checks at runtime potential runtime errors such as divisions by zero in terms and predicates before executing them [START_REF] Delahaye | Common Specication Language for Static and Dynamic Analysis of C Programs[END_REF]. It allows E-ACSL to not add executable undened behaviors in the generated code. This mechanism is not presented here.

Semantics of declarations

x / ∈ dom (Ω V ) u ∈ U Ω V , Ω L int x ⇒ Ω V {x\u}, Ω L Semantics of statements Ω skip; ⇒ Ω Ω V (x) ∈ V Ω V , Ω L e ⇒ z Ω V , Ω L x = e ⇒ Ω V {x\z}, Ω L Ω s ⇒ Ω Ω s ⇒ Ω Ω s s ⇒ Ω Ω e ⇒ z z = 0 int Ω s ⇒ Ω Ω if(e) then s else s ⇒ Ω Ω e ⇒ 0 int Ω s ⇒ Ω Ω if(e) then s else s ⇒ Ω Ω if(e) then s; while(e) s else skip ⇒ Ω Ω while(e) s ⇒ Ω Ω e ⇒ z z = 0 Ω assert(e) ⇒ Ω Ω p ⇒ T Ω /*@ assert p */ ⇒ Ω Ω V , Ω L e ⇒ z Ω V , Ω L return(e) ⇒ Ω V {res f \z}, Ω L F (f ) = (x1, . . . , xn; b) Ω e1 ⇒ z1; . . . ; Ω en ⇒ zn {x1\z1, . . . , xn\zn}, Ω L b ⇒ Ω V , Ω L Ω V (res f ) = z Ω V,Ω L c = f (e1, . . . , en) ⇒ Ω V {c\z}, Ω L

Semantics of expressions

Ω zm ⇒ zm Ω V (x) = z Ω x ⇒ z Ω e ⇒ z Ω e ⇒ z ż ż Ω e C e ⇒ 1 int Ω e ⇒ z Ω e ⇒ z ż ż Ω e C e ⇒ 0 int

Collecting Semantics

Our static analysis is based on abstract interpretation. Proving its correctness in Section 5 requires to show that its result includes the results from all concrete executions. A common way to proceed is to rst dene the collecting semantics that computes all these results at once. Since our analysis focuses on terms, we only dene it for such constructs, not for the others. Let us denote Ξ ∈ P(L Z)

a collecting environment, i.e. a set of partial functions from binders to integers Rules for terms

Ω z ⇒ z Ω L (x) = z Ω x ⇒ z x ∈ Int Ω V (v) = x Ω v ⇒ ẋ Ω t ⇒ z Ω t ⇒ z not ( = / and z = 0) Ω t t ⇒ z z Ω p ⇒ T Ω t ⇒ z Ω p ? t : t ⇒ z Ω p ⇒ F Ω t ⇒ z Ω p ? t : t ⇒ z F(f ) = (x1, . . . , xn; b) Ω V , Ω L t1 ⇒ z1; . . . ; Ω V , Ω L tn ⇒ zn Ω V , {x1\z1, . . . , xn\zn} b ⇒ z Ω V , Ω L f (t1, . . . , tn) ⇒ z
Rules for predicates (otherwise said, a set of logic environments). The collecting semantics C(Ξ, t) of a term t in an environment Ξ is then dened as follows:

Ω \true ⇒ T Ω \false ⇒ F Ω p ⇒ F Ω ! p ⇒ T Ω p ⇒ T Ω ! p ⇒ F Ω t ⇒ z Ω t ⇒ z z z Ω t t ⇒ T Ω t ⇒ z Ω t ⇒ z z z Ω t t ⇒ F Ω p ⇒ T Ω p || p ⇒ T Ω p ⇒ F Ω p ⇒ z Ω p || p ⇒ z P(p) = (x1, . . . , xn; b) Ω V , Ω L t1 ⇒ z1; . . . ; Ω V , Ω L tn ⇒ zn Ω V , {x1\z1, . . . , xn\zn} b ⇒ z Ω V , Ω L p(t1, . . . , tn) ⇒ z
C(Ξ, t) ≡ {z | ∃Ω L ∈ Ξ, ∃Ω V : V [m int , M int ], Ω V , Ω L t ⇒ z}.

Abstract Interpretation without Logic Functions

This section presents our static analysis based on abstract interpretation, assuming there is no logic denition: they will be added in Section 5. We only analyze mini-ACSL annotations: no static analysis is performed on the mini-C code. Our aim is to provide an interval associated to each term, so that a monitor generator can decide whether the term can be safely monitored with machine integers. If the interval contains integers that do not t into machine integers, the monitor will perform the computation in arbitrary precision arithmetic for soundness.

The monitor generator that uses the interval computed here is presented in [START_REF] Benjamin | Formalizing an Ecient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates[END_REF].

Lattice of Intervals

Our analysis is only based on the integer interval domain, presented here. Indeed, while more evolved domains might provide more precise answers, it would be less ecient and could prevent E-ACSL to be as fast as optimizing compilers. The precision of the interval domain is enough in practice. Would a more precise domain be necessary in the future, our analysis could easily be adapted.

I denotes the set of (possibly empty) integer intervals with possibly innite bounds. We denote by ⊥ the empty interval and the interval with innite lower and upper bounds, which is Z itself. I and the set inclusion ⊆ as partial order is a lattice. The join operator ∨ (resp. meet operator ∧) is the set union ∪ (resp. set intersection ∩). We introduce the pair of maps P(Z) I.

α γ with the map α being dened by α(X) = [min X, max X], assuming that max X = +∞ (resp. min X = -∞) if X has no upper (resp. lower) bound. For the empty set, we dene α(∅) = ⊥. α is named the abstraction map. γ, dened by γ(I) = I, is named the concretization map. This pair of maps is a Galois connection, i.e.

for each X ∈ P(Z) and I ∈ I, X ⊆ γ(I) if and only if α(X) ⊆ I. It allows us to convert data from the concrete world to the abstract world through α and conversely through γ, possibly by introducing approximations. Given an operator on P(Z), we denote the corresponding operator on intervals, dened by 

I I = α(γ(I) γ(I )).
X set Y = {x y | x ∈ X, y ∈ Y }.
We will also use abstract environments

Γ : L I that abstract concrete environments by mapping logic variables to intervals. In order to ensure that the static analysis always terminates quickly, even in the presence of non-terminating functions, we will use a widening operator ∇, introduced in Section 6. For the time being, it is enough to know that it satises the two following properties, quite usual in abstract interpretation [START_REF] Cousot | Principles of Abstract Interpretation[END_REF]:

(W1) For every pair of intervals I and I , we have I ⊆ I∇I and I ⊆ I∇I (W2) For every increasing sequence (J i ), the sequence dened by I 0 = J 0 and I n+1 = I n ∇J n+1 stabilizes.

Inference Rules

When these properties can be encoded in the interval domain (e.g., when comparing a variable to a constant), it is possible to rene this rule to improve the precision of the analysis. Such an optimization is implemented in practice, even if the details are omitted here. For instance, when the condition is x >= 0, the rule can be rened to the following one:

Γ {x\Γ (x) ∧ [0, +∞]}|∆ t : I Γ {x\Γ (x) ∧ [-∞, -1]}|∆ t : I Γ |∆ x >= 0 ? t : t : I ∪ I .

Abstract Interpretation with Logic Functions

We now extend our static analysis to handle recursive functions. We do not formalize the support for recursive predicates: it is very similar to recursive functions and even simpler since their body are Boolean values, which leads to a trivial nite lattice. Yet, they are handled in our evaluation, in Section 6. Throughout this section, we consider a function f such that F(f ) = (x 1 , . . . , x n ; b), meaning that its parameters are x 1 , . . . x n and its body is b.

Inference Rules

When encountering a function call, we need to extend the abstract environment in order to associate the interval of each argument to the corresponding function's parameter. We also need to update the abstract environment when encountering recursive calls up to reaching a xpoint. Given an environment for logic functions ∆ and a function f , we denote by ∆ args (f ) and ∆ res (f ) respectively the rst and second component of ∆(f ) in such a way that ∆(f ) = (∆ args (f ), ∆ res (f )). Given a list of intervals I 1 , . . . , I n , we dene ∆ f ∇I 1 , . . . , I n as follows:

∆ f ∇I 1 , . . . , I n ≡ ∆{f \(Γ {x 1 \Γ (x 1 )∇I 1 , . . . , x n \Γ (x n )∇I n }, ∆(f ) res )}
where Γ = ∆ args (f ).

This denition directly uses ∆ args (f ) in place of the abstract environment Γ , without taking care of any potential existing binding. Said otherwise, this denition does not depend on any abstract environment Γ . This is possible since the only bounded logic variables in a function body are its formal parameters according to Remark 1, while the interval of any program variable is constant (directly derived from their types, which is necessarily int, as made explicit in Fig. 5), so we do not need to store them in the abstract environment. Fig. 6 presents the inference rules for the interval inference for logic functions.

It depends on a second judgment, denoted ∆ f f : I, which means that the result of the function f ts into the interval I in ∆. By convention, we consider that f not being in the domain of ∆, is equivalent to having ∆(f ) = (Γ, ⊥) with Γ the constant function equal to ⊥. As such, this rule system is not deterministic since the premises of the rules (Fun) and (Init) overlap, and so do those of the rules (Base) and (Ind). For determining the inference algorithm, we always apply (Fun) over (Init) and (Base) over (Ind). The rules (Base) and (Ind) only depend on an environment of logic functions ∆ and does not depend on any abstract environment Γ for the above-mentioned reason. Altogether, these rules compute two xpoints: one over the inputs and one over the result of a function call. The rule (Fun) states that, when the xpoint for the inputs is reached, the result of a function call is the interval computed for its body and stored in the environment ∆. The rule (Init) initiates a xpoint computation for the output of the function call, assuming widened intervals associated to each formal parameter before computing the function body. Such a computation also relies on a xpoint: the rule (Base) returns the interval computed for the body when the xpoint is reached, while the rule (Ind) is the recursive case that widens the previously computed interval for the body before computing it again.

Γ |∆ t1 : I1 . . . Γ |∆ tn : In ∀i, Ii ⊆ ∆args(f )(xi) Γ |∆ f (t1, . . . , tn) : ∆res(f ) (Fun) Γ |∆ t1 : I1 . . . Γ |∆ tn : In ∆ f ∇I1, . . . , In f f : I Γ |∆ f (t1, . . . , tn) : I (Init) ∆args(f )|∆ b : I I ⊆ ∆res(f ) ∆ f f : ∆res(f ) (Base) ∆args(f )|∆ b : I ∆{f \(∆args(f ), ∆res(f )∇I )} f f : J ∆ f f : J (Ind)
Fig. 6: Interval inference for recursive functions in mini-ACSL.

Example of Derivation

We illustrate our analysis by computing the derivation tree explicitly on a particular program. Fig. 7 shows the derivation tree for the term f(50) at line These assumptions are not realistic for an actual choice of widening operator, but are taylor made for the example to converge quickly, so that we can construct a reasonably sized derivation tree. The derivation uses the following abstract environments and environments for logic functions:

Γ 1 = {x : [50, 50]} ∆ 1 = {f : (Γ 1 , ⊥)} ∆ 2 = {f : (Γ 1 , [0, +∞])} Γ 2 = {x : [0, 50]} ∆ 3 = {f : (Γ 2 , ⊥)} ∆ 4 = {f : (Γ 2 , [0, +∞])} Γ 3 = {x : [1, 50]}.
For the sake of simplicity, c denotes the condition x <= 0, r denotes the recursive term f(x -1) and b denotes the body of the function, in such a way that b = c ? 0 : r + 1. We also omit the environments in the abstract judgments for constants, and sometimes we also omit the whole judgment for constants, typically for most increment and decrement operations.

In this example, we can look at the environments ∆ i that appear in the derivation tree to understand how the xpoints are computed both for the (unique) argument and the result of the function. The xpoint for the argument is reached at the interval [0, 50], while the xpoint for the result is [0, +∞]. This allows us to have an argument of type int in the generated code, but is not precise enough to store the result in an int: a GMP integer is required. This observation generalizes: In practice, for recursive functions, it is much more common that our analysis gives useful information on the arguments of a function than on its output, and most of the time saved comes from performing internal computations with the arguments using machine integers. Indeed, in the presence of recursive functions, useful bounds for the results can unlikely be inferred.

50 : [50, 50] . . . Γ 1 |∆ 1 b : [0, +∞] 1 Γ 1 |∆ 2 x : [50, 50] Γ 1 |∆ 2 x-1 : [49, 49] . . . ∆ 4 f f : [0, +∞] 2 Γ 1 |∆ 2 r : [0, +∞] Γ 1 |∆ 2 r+1 : [1, +∞] Γ 1 |∆ 2 b : [0, +∞] ∆ 2 f f : [0, ∞] ∆ 1 f f : [0, +∞] {}|⊥ f(50) : [0, +∞] 1 Γ 1 |∆ 1 x-1 : [49, 49] 0 : [0, 0] Γ 3 |∆ 3 x : [1, 50] Γ 3 |∆ 3 x-1 : [0, 49] Γ 3 |∆ 3 r : ⊥ Γ 3 |∆ 3 r+1 : ⊥ Γ 2 |∆ 3 b : [0, 0] . . . ∆ 4 f f : [0, +∞] 2 ∆ 3 f f : [0, +∞] Γ 1 |∆ 1 r : [0, +∞] Γ 1 |∆ 1 r+1 : [1, +∞] Γ 1 |∆ 1 b : [0, +∞] 2 0 : [0, 0] Γ 3 |∆ 4 x : [1, 50] Γ 3 |∆ 4 x-1 : [0, 49] [0, 49] ⊆ [0, 50] Γ 3 |∆ 4 r : [0, +∞] 1 : [1, 1] Γ 3 |∆ 4 r+1 : [1, +∞] Γ 2 |∆ 4 b : [0, +∞] [0, +∞] ⊆ ∆ 4 res (f ) ∆ 4 f f : [0, +∞]

Termination of the Static Analysis

With the strategy of always chosing the rule (Fun) over (Init) and (Base) over (Ind), our rule system is deterministic and denes an inference algorithm. This inference algorithm always terminates, as stated by the theorem below.

Theorem 1. The rule system for intervals on mini-ACSL terms yields a terminating algorithm of interval inference.

Proof (sketch). The proof is done by dening a well-founded order on the judgements, and showing that the judgements decrease for this order along any derivation tree. This order is dened as follows: rst, we say that an environment ∆ widens another one ∆ when, for every f ∈ dom (∆) and x in dom (∆ args (f )), there is an interval I f,x such that ∆ args (f )(x) = ∆ args (f )(x)∇I f,x and there exists an interval I f such that ∆ res (f ) = ∆ res (f )∇I f . The chosen order relation on judgments is the lexicographic order induced by this relation and the relation of being a structural subterm:

Γ |∆ t : _ ≺ Γ |∆ u : _ ⇔ ∆ = ∆ and ∆ widens ∆ ∆ = ∆ and t is a structural subterm of u. .
We also establish by convention that

Γ |∆ t : _ ≺ ∆ f f : _ ⇔ ∆ widens ∆ ∆ f f : _ ≺ Γ |∆ t : _ ⇔ t is the body of f or a structural subterm of it.
This partial order ≺ is well-founded 2 .

Interval Inference

Our rule system denes a deterministic inference algorithm that always terminates as stated in Theorem 1. Given an abstract environment Γ , we denote I(Γ, t) the result of this inference on the term t in environment Γ |⊥. However, we need to handle specically the function's arguments that are widened. For such an argument t of a function f appearing in a term u representing a function call, we infer the result of the function call by building the derivation of Γ |⊥ f (t) : J. In the corresponding derivation tree, consider the top-most application of the rule (Fun) for term u. It has necessarily an hypothesis of the form Γ |∆ t : I , where the interval I is widened to the interval I associated to t in the environment ∆ args . We dene I(Γ, t) to be this interval I for such function arguments. For instance, considering the term f(50) at line 6 of Fig. 1, for which the derivation tree is shown in Fig. 7, we have I({}|⊥, 50) = [0, 50].

Indeed, even though we rst derive the interval [50, 50] for its argument, it is later widened to [0, 50] in the derivation tree, as witnessed in ∆ 4 .

As explained in the introduction, this paper extends the type system of [START_REF] Kosmatov | Ecient Runtime Assertion Checking for Properties over Mathematical Numbers[END_REF] (and changes its theoretical framework for relying on abstract interpretation) in order to formalize the assumed static analysis of [START_REF] Benjamin | Formalizing an Ecient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates[END_REF] and prove its assumptions, namely type soundness and convergence. The above-mentioned operator I matches the one of this latter paper. Theorem 1 ensures convergence, while soundness is proved in the next section.

Soundness of the Static Analysis

We now prove that the static analysis is sound. Since both the inference and the semantics require an environment, we rst dene a relation between such environments. We say that an interval environment Γ abstracts an environment for binders Ω, which is denoted Ω Γ , if for every binder x ∈ dom (Ω), we have x ∈ dom (Γ ) and Ω L (x) ∈ Γ (x). For a semantic environment Ω = (Ω V , Ω L ), we dene Ω Γ if and only if Ω L Γ . For a collecting environment Ξ, we say that Γ abstracts Ξ and we write Ξ Γ when Ω Γ for every Ω ∈ Ξ. Theorem 2. For every mini-ACSL term t, every collecting environment Ξ, and every abstract environment Γ such that Ξ Γ , we have C(Ξ, t) ⊆ I(Γ, t).

Proof (Sketch). The proof is done by induction. It is trivial without recursive denitions. With them, the main diculty consists in nding the right invariants.

For this, we provides a rule system, denoted Ξ ∆ t ∈ X and dening the set X of possible values for a term t in a collecting environment Ξ and an environment of logic functions ∆. When ∆ = ⊥, it over-approximates the collecting semantics dened in Section 3.4 (i. e. if the judgment Ξ ∆ t ∈ X is derivable, then X contains the collecting semantics) and allows us to perform a per-case reasoning.

The following Lemma gives the right invariants, proved by mutual induction. 2 The proof details are in Appendix 7.

Lemma 1. The judgments for the interval inference and xpoint algorithm satisfy respectively each of the following property:

1. If the judgment Γ |∆ t : I is derivable in the abstract semantics, then for every collecting environment Ξ such that Ξ Γ and every derivation of the judgment Ξ ∆ t ∈ X, we have X ⊆ I. 2. If the judgment ∆ f f : I is derivable in the abstract semantics, then denoting by b the body of the function, for every collecting environment Ξ such that Ξ ∆ args and every derivation of the judgment Ξ ∆res{f \I} b ∈ X in the collecting semantics augmented by ∆ res {f \I}, we have X ⊆ I.

This theorem implies the soundness corollary below.

Corollary 1 (Interval Soundness). For every mini-ACSL term t in an environment Ω such that there is a derivation of the semantics Ω t ⇒ z, and for every abstract environment Γ such that Ω Γ , we have z ∈ I(Γ, t).

Experimental Evaluation

This section deals with the practical aspects of implementing our static analysis to analyse user-dened logic denitions and generate ecient monitors.

Practical Widening Operators

Our formal presentation is agnostic to the chosen widening operator, as long as it satises the properties mentioned in Section 4.1. However, in practice, the choice of this operator matters since it results in generating monitors with dierent eciency. The choice is always a trade-o between eciency and precision:

depending on the widening operator, the xpoint algorithm will converge in a small or large number of steps to a precise or unprecise interval. Our experimentation compares three dierent widening operators, presented below. The rst two operators are extreme cases, which are only introduced for being compared against the third one, which is better and used by default in E-ACSL.

The naive widening, dened by the following formula

I 1 ∇ naive I 2 = I 2 if I 1 = ⊥ otherwise
This widening strategy makes the xpoint reached in at most two itera-

tions. Yet, it is extremely imprecise. In fact, it often returns for recursive functions: only non-recursive functions are handled precisely.

The precise widening, dened by the following formula

I 1 ∇ precise I 2 = I 1 ∨ I 2 if I 1 ∨ I 2 ⊆ [m int , M int ]
otherwise This widening strategy is quite opposite to the naive one: it converges extremely slowly, but is very precise. In practice, the convergence is too slow for any practical application, and the monitor generation even takes too much time on minimal examples.

The smart widening, dened by

I 1 ∇ smart I 2 = [a, b] where a =      min I1 if min I2 ≥ min I1 mint if mint ≤ min I2 ≤ min I1 -∞ otherwise; b =      max I1 if max I2 ≤ max I1 Mint if Mint ≥ max I2 ≥ max I1 +∞ otherwise
When the function is not decreasing, this operator leaves the lower bound unchanged. Otherwise, it directly approximates it to m int if the lower bounds of both operands are bigger and goes to -∞ otherwise. The behavior is similar for the upper bound and an increasing function. In practice, E-ACSL generalises it to a family of C types, and not only one by jumping from the boundary of one type to the other (e.g., from int to long).

Evaluation and Comparison of Widening Choices

The static analysis formalized in this paper is implemented within E-ACSL [20], the runtime assertion checker of Frama-C [START_REF] Baudin | The Dogged Pursuit of Bug-Free C Programs: The Frama-C Software Analysis Platform[END_REF]. It supports the three widening operators of Section 6.1. It is used to optimize the code of the generated monitor, as formalized on the same mini-C and mini-ACSL languages in [START_REF] Benjamin | Formalizing an Ecient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates[END_REF]. It is worth noting that the language supported by E-ACSL is much larger than mini-C and mini-ACSL [START_REF] Signoles | E-ACSL Version 1.18. Implementation in Frama-C Plug-in E-ACSL 26[END_REF], and so is the implementation of our static analysis.

We have run a few dierent examples to evaluate our static analysis and the widening strategy. The precise strategy is quite unusable even in simple tests since the monitor generation is dramatically slow in that case. Hence we only present the results of the experimental evaluation of the smart widening against the naive one. We ran the test on 4 dierent annotated C les 3 : linear.c contains denitions of typical recursive logic functions, where f (n) is an ane function of f (n -1), fibonacci.c contains the denition and various calls to the Fibonacci function, mergesort.c contains a C implementation of merge sort as well as a few recursive predicates that assert that the resulting array contains the same elements as the original one and is sorted, and nally complex.c contains arbitrary recursive functions with complex recursion schemes. We ran the benchmark on a laptop equipped with a 16-core AMD Ryzen 7 processor and 32GB of RAM. For each le, we measured the time for generating the monitor and for running it, with both the naive and the smart widening strategies. Each measure was performed with the hyperne 4 software and repeated 10 times. The results are displayed in Fig. 8, where the mean of the 10 runs is written along with the standard deviation (all the durations are given in seconds). They are also compared to runs (named GMP) for which the static analysis was not used, so that only GMP operations are used at runtime. For each test case, the column gen is the time for generating the code, while the column exe is the time for executing the generated monitor. The last two lines show the gain of the smart widening operator with respect to using GMP only, or using the naive strategy.

Fig. 9 graphically presents these results. 3 Overall, running the xpoint algorithm with the smart widening as opposed to the naive one comes with no noticeable cost for the monitor generation. As already mentioned, the cost of generating the monitor using the precise widening is prohibitive on all these examples, and therefore not displayed here. In terms of eciency when running the generated monitor, the smart widening performs signicantly better on every case than with no analysis at all. In particular, on the le complex.c, without analysis, the generated program sometimes fails to execute properly because it is too resource intensive and exceeds the memory limit. The widening strategy is also signicant: on the les linear.c and fibonacci.c, the smart widening performs respectively 38% and 53% better than the naive widening, which does not perform better than the systematic use of GMP. On the contrary, for the mergesort and complex examples, the smart widening and the naive widening leads to similar eciency, which is better than the systematic use of GMP. Indeed, the le complex.c contains complicated recursion schemes, on which the heuristics implemented in the smart widening fail, and the le mergesort.c contains mostly calls to functions whose arguments are C variables, whose intervals are already xpoints of the function.

Further Improvements to Widening

As illustrated by our evaluation, the widening strategy is important in practice.

It is also impactful for the eciency of monitor generator. The current smart strategy is based on the intuition that, in practice, the boundary of C types are likely to be values of importance, where the function may change behavior, and thus are good candidates for looking for xpoints. Few other heuristics might also be used, even if not yet experimented with nor implemented. First, one could also widen to the boundary of C types plus (or minus for the lower bound) a small oset, in order to take into account typical o-by-one.This case might be frequent enough that adding those values to the candidates might give good results. Another possible improvement for the widening strategy could be to run a small syntactic analysis to look for important constants, and add those to our widening steps. For this idea to be viable, the analysis has to be very lightweight in order to ensure that it does not induce a signicant overhead on the monitor generation. In all of these suggestions, we are adding more widening steps, which makes the convergence slower. It is likely that the most satisfying solution is to keep our smart widening strategy as a default, and run other more precise ones only on a case by case basis for the particular functions where the default is not good enough. It is possible in practice since E-ACSL allows choosing dierent widening strategies for dierent logic denitions. Last, we could also benet from existing analysis on the C code, such as EVA [START_REF] Blazy | Structuring Abstract Interpreters through State and Value Abstractions[END_REF], to gain precision of the C program variables used in the logic denitions.

Conclusion and Further Work

This article has presented a static analysis based on abstract interpretation for infering intervals in logic denitions used in formal code annotations. We have proved its termination and soundness properties and evaluated its practical efciency, which depends on a widening strategy that have been discussed. It extends the work of [START_REF] Kosmatov | Ecient Runtime Assertion Checking for Properties over Mathematical Numbers[END_REF] to logic denitions. This static analysis is used for generating ecient monitor for runtime assertion checking of arithmetic properties by allowing the code generator to soundly and eciently choose between machine bounded integers and exact mathematical integers. How the monitors are generated based on our analysis is formalized in [START_REF] Benjamin | Formalizing an Ecient Runtime Assertion Checker for an Arithmetic Language with Functions and Predicates[END_REF].

Three dierent widening strategies have been explored in this paper: investigating others strategies is left to future work, as well evaluating other abstract domains. Extending our formalization to rational numbers [START_REF] Kosmatov | Ecient Runtime Assertion Checking for Properties over Mathematical Numbers[END_REF], memory properties [START_REF] Ly | Veried Runtime Assertion Checking for Memory Properties[END_REF], multi-state properties [START_REF] Signoles | The E-ACSL Perspective on Runtime Assertion Checking[END_REF][START_REF] Filliâtre | Optimizing Prestate Copies in Runtime Verication of Function Postconditions[END_REF] or how to deal with undened terms such as division by zero [START_REF] Delahaye | Common Specication Language for Static and Dynamic Analysis of C Programs[END_REF] is also left to future work. Our formalization eort would also greatly benet from using a proof assistant, such as Coq [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF]. Last, our static analysis might be complemented by a mechanism that would decide at runtime to use machine or mathematical integers. Such mechanisms already exist on top of exact arithmetic libraries, e.g., ZArith 5 for OCaml. 

Explicit Description of the Collecting Semantics

We recall the denition of the collecting semantics

C(Ξ, t) ≡ {z | ∃Ω L ∈ Ξ, ∃Ω V : V → [m int , M int ], Ω V , Ω L t ⇒ z}.
Fig. 10 gives an explicit set of rules that computes the collecting semantics.

We denote Ξ t ∈ X the judgment for this rule system, and we show it to be equivalent to the collecting semantics. These rules are the ones we use in practice, when we work with the collecting semantics. To introduce these rules, we use some notations: Given an arithmetic operator , we introduce the corresponding operator set on P(Z), dened by the following formula:

X set Y = {x y | x ∈ X and y ∈ Y }
We also dene, given a collecting environment Ξ, a new collecting environment {x 1 \t 1 , . . . , x n \t n } Ξ , dened by

{x 1 \t 1 , . . . , x n \t n } Ξ = {{x 1 \z 1 , . . . , x n \z n } | z 1 ∈ C(Ξ, t 1 ), . . . , z n ∈ C(Ξ, t n )} Ξ z ∈ {z} Ξ x ∈ {Ω L (x) | Ω L ∈ Ξ} Ξ v ∈ [mint, Mint] Ξ t ∈ X Ξ t ∈ X Ξ t t ∈ X X Ξ t ∈ X Ξ t ∈ X Ξ p ? t : t ∈ X ∪ X F(f ) = (x1, . . . , xn; b) {xi\ti} Ξ b ∈ X Ξ f (t1, . . . , tn) ∈ X
Where the collecting environment {xi\ti} Ξ is dened as Proof. We proceed by structural induction on the term.

If the term is a constant z, its concrete semantics is given by the rule

Ω z ⇒ z

Hence C(Ξ, z) = {z}, which is given exactly by the explicit rule for constants.

If the term is a binder x, then its semantics is obtained by application of the following rule

Ω L (x) = z Ω x ⇒ z
Hence the we have the collecting semantics C(Ξ,

x) = {Ω L (x) | Ω L ∈ Ξ},
which corresponds exactly to the explicit rule for binders.

If the term is a mini-C variable v, then its semantics is obtained by application of the following rule

x ∈ Int Ω V (v) = x Ω v ⇒ ẋ
Since we are free to chose an environment Ω where Ω V (v) takes any arbitrary value in [m int , M int ], the collecting semantics is given by C(Ξ, v) = [m int , M int ], which corresponds exaclty to the rule given for mini-C variables.

If the term is the application of an arithmetic operator of the form t t , then its semantics is necessarily obtained by application of the following rule Ω t ⇒ z Ω t ⇒ z not( = / and z = 0) Ω t t ⇒ z z Thus, we have the equality

C(Ξ, t t ) = {z z | z ∈ C(Ξ, t), z ∈ C(Ξ, t )} = C(Ξ, t) set C(Ξ, t )
This is exactly given by the explicit rule for operators.

If the term is a conditional of the form p ? t : t , then the semantics is obtained by either of the following rules

Ω p ⇒ 1 Ω t ⇒ z Ω p ? t : t ⇒ z Ω p ⇒ 0 Ω t ⇒ z Ω p ? t : t ⇒ z
Thus the collecting semantics is obtained satises the equation

C(Ξ, p ? t : t ) = A ∪ B where A = {z | ∃Ω L ∈ Ξ, ∃Ω V , Ω V , Ω L p ⇒ T and Ω V , Ω L t ⇒ z} B = {z | ∃Ω L ∈ Ξ, ∃Ω V , Ω V , Ω L p ⇒ F and Ω V , Ω L t ⇒ z}
By denition of the collecting semantics, we have A ⊆ C(Ξ, t) and B ⊆ C(Ξ, t ), thus C(Ξ, p ? t : t ) ⊆ C(Ξ, t)∪C(Ξ, t ). Suppose that Ξ p ? t : t ∈ X ∪ X is derivable from derivations of Ξ t ∈ X and Ξ t ∈ X , then we have by induction C(Ξ, t) ⊆ X and C(Ξ, t ) ⊆ X . This gives the following inclusion C(Ξ, p ? t : t ) ⊆ C(Ξ, t ) ∪ C(Ξ, t ) ⊆ X ∪ X = C(Ξ, p ? t : t )

If the term is a function call of the form f (t 1 , . . . , t n ), with F(f ) = (x 1 , . . . , x n ; b), then the semantics is obtained by application of the following rule We thus have proved that the explicit rules dene satisfy the exact same inductive relation as the collecting semantics, except for the conditional terms, where they over-approximate the relation. Hence these rules over-approximate the collecting semantics.

Ω V , Ω L t1 ⇒ z1 . . . Ω V , Ω L tn ⇒ zn Ω V , {x1\z1, . . . , xn\zn} b ⇒ z Ω V , Ω L f (t1, . . . ,
For the rest of the proofs, when we mention the collecting semantics, we refer to this explicit set of rules, which is slightly less precise but sucient for our purpose.

Properties of the Abstract Semantics Theorem 1. The rule system for intervals on mini-ACSL terms yields a terminating algorithm of interval inference.

Proof. We dene an order relation on the interval judgments that does not allow for innite decreasing chains, and show that throughout the construction of a derivation tree by the inference algorithm, the judgments are always decreasing for this order. This shows that the inference algorithm only tries to construct nite derivation trees, and thus it terminates. Indeed, either it manages to construct the valid tree, or it fails to do so, which can be observed in nite time since the tree is nite. First, we say that an environment ∆ widens another one ∆ when for every f ∈ dom (∆), for every x in dom (∆ args (f )), there exists an interval I f,x such that ∆ args (f )(x) = ∆ args (f )(x)∇I f,x and there exists an interval I f such that ∆ res (f ) = ∆ res (f )∇I f . The order relation that we consider on judgments is the lexicographic order induced by this relation and the relation of being a structural subterm:

Γ |∆ t : _ ≺ Γ |∆ u : _ ⇔ ∆ = ∆ and ∆ widens ∆ ∆ = ∆ and t is a structural subterm of u .
We also establish by convention that

Γ |∆ t : _ ≺ ∆ f f : _ ⇔ ∆ widens ∆ ∆ f f : _ ≺ Γ |∆ t : _ ⇔ t is the body of f or a structural subterm of it
We rst show that this order relation does not allow for innite decreasing sequences, since it is constructed as the lexicographic product of two orders that do not allow for innite decreasing sequences. First it is clear that the relation of being a structural subterm does not allow for such sequences: by construction a term is constructed from a nite amount of data. So it suces to check that the relation of widening on environments does not allow for innitely decreasing sequences. This is a direct consequence of the property (W2) about the widening operator. Hence this relation on judgments prevents the existence of innite decreasing sequences.

We now check that during the run of the interval inference algorithm, the derivation tree that is being constructed is such that all the judgments are decreasing as we go from the conclusion to the premices. There is nothing to prove for the three rules without premices, and the result is immediate for the inference rules for arithmetic operation and conditionals since the premices are all in the same environment and in a structural subterm of the conclusion. So we just have to check that this holds for every application of the rules for functions (Fun), (Init), (Base) and (Ind). In the rules (Fun) and (Base), all the judgments that appear in the premices are smaller than the conclusion, because they concern structural subterms of it. There is one judgment which does not concern a structural subterm in both the rule (Init) and (Ind). They are respectively the judgments ∆ f ∇I 1 , . . . , I n f f : I and ∆ args {f \I∇I } f f : J. We show that in both of these judgment, the environment widens ∆. This is a consequence of our strategy of always trying the rules (Fun) and (Base) over (Init) and (Ind). Indeed, in every application of either of these rules, the rules (Fun) and (Base) cannot apply, thus the inclusion of the intervals is not satised, and hence the environment constructed for these judgments is dierent from the one in the conclusion, by (W1). By construction, this environment thus widens the one from the conclusion, and the judgment is thus smaller.

Lemma 2. Consider a binary operation on P(Z) preserving the inclusion relation, along with two subsets X, X of Z and two intervals I, I such that X ⊆ I and X ⊆ I , then we have X X ⊆ I I .

Proof. For the sake of this proof, we write the concretization map γ explicitly.

Our assumption is thus X ⊆ γ(I) and X ⊆ γ(I ). Since the operation preserves the inclusion realtion, we have X X ⊆ γ(I) (I ). Since α is a morphism of lattice, it preserves the inclusion, thus α(X X ) ⊆ α(γ(I) γ(I )) = I I . Since (α, γ) is a Galois connection, this is equivalent to X X ⊆ γ(I I ). Given an environment for functions ∆, we dene the collecting semantics augmented by ∆ to be the semantics expressed with the judgment Ξ t ∈ X given with the explicit rules, to which we add, for every function f , with arguments x 1 , . . . , x n , the following rule

I ⊆ ∆ res (f ) ∆ f f : ∆ res (f ) we have ∆ res (f ) ⊆ ∆ res (f ).
Ξ ∆ t 1 ∈ ∆ args (f )(x 1 ) . . . Ξ ∆ t n ∈ ∆ args (f )(x n ) Ξ ∆ f (t 1 , . . . , t n ) ∈ ∆ res (f )
The addition of these rules may result in an undeterministic rule system, since these newly added rules may overlap with the rule for functions that is already present. We use the convention that the rules coming from ∆ always take precedence over the rule for functions. Lemma 4. The judgments for the interval inference and xpoint algorithm satisfy respectively each of the following property:

1. If the judgment Γ |∆ t : I is derivable in the abstract semantics, then for every collecting environment Ξ such that Ξ Γ and every derivation of the judgment Ξ ∆ t ∈ X, we have X ⊆ I. 2. If the judgment ∆ f f : I is derivable in the abstract semantics, then denoting by b the body of the function, for every collecting environment Ξ such that Ξ ∆ args and every derivation of the judgment Ξ ∆res{f \I} b ∈ X in the collecting semantics augmented by ∆ res {f \I}, we have X ⊆ I.

Proof. We prove those two propoerties together by mutual induction on the derivation, following the induction scheme given by the ordering in the judgments that we gave in the proof of Theorem 1.

1. Consider a derivation of the judgment Γ |∆ t : I, together with a collecting environment Ξ such that Ξ Γ and a derivation of Ξ t ⇒ X in the concrete semantics augmented by ∆. We show that X ⊆ I by induction on the derivation of the interval judgment.

If the abstract semantics is obtained by application of the rule (Fun) of the following form Γ |∆ t 1 : I 1 . . . Γ |∆ t n : I n ∀i, I i ⊆ ∆ args (x i ) Γ |∆ f (t 1 , . . . , t n ) : ∆ res (f )

From the rules of the collecting semantics augmented by ∆, such a derivation always comes from premises of the form Ω t 1 ⇒ Y 1 , . . . , Ω t n ⇒ Y n . By induction hypothesis, we necessarily have Y 1 ⊆ I 1 , . . . , Y n ⊆ I n . By using the last premise of our application of the rule (Fun), this implies that we have Y 1 ⊆ ∆ args (x 1 ), . . . , Y n ⊆ ∆ args (x n ). The precedence of the rules from ∆ in the augmented collecting semantics implies that the derivation of Ω ∆ f (t 1 , . . . , t n ) ∈ X necessarily comes from a rule given by ∆, which implies that X = ∆ res (f ). ∆ f ∇I 1 , . . . , I n . Note that the inlcusion of the intervals given by the widening relation ∆ args (f )(x i ) ⊆ ∆ args (f )(x i )∇I i and Lemma 3 imply that any rule in the collecting semantics augmented by ∆ is also valid in the collecting semantics augmented by ∆ f ∇I 1 , . . . , I n {f \I}. This implies in particular that we have a derivation of {x 1 \z 1 , . . . , x n \z n } ∆ b ∈ X in the collecting semantics augmented by ∆ f ∇I 1 , . . . , I n {f \I} and thus by the mutual induction hypothesis, X ⊆ I. 2. Consider a function f with body b, such that we have a derivation of the judgment ∆ f f : I, together with a collecting environment Ξ such that Ξ ∆ args (f ), and a derivation of Ξ ∆args{f \I} b ∈ X in the collecting semantics augmented by ∆ args {f \I}. We show by induction on the derivation tree of the xpoint judgment that X ⊆ I. We have by induction hypothesis on the last premice that X ⊆ J.

Theorem 2. For every mini-ACSL term t, every collecting environment Ξ, and every abstract environment Γ such that Ξ Γ , we have C(Ξ, t) ⊆ I(Γ, t).

Proof. Since the oracle I always return a superset of or the interval derivation, it suces to show that this property holds for the interval derivation. This is a special case of Lemma 4, taking ∆ to be the empty environment ⊥, in which case the collecting semantics augmented by ∆ is simply the collecting semantics.

Corollary 1 (Interval Soundness). For every mini-ACSL term t in an environment Ω such that there is a derivation of the semantics Ω t ⇒ z, and for every abstract environment Γ such that Ω Γ , we have z ∈ I(Γ, t).

Proof. Consider the collecting interval interval {Ω L }, which satises both Ω {Ω L } and {Ω L } Γ . By application of Theorem 2, we thus have z ∈ C({Ω L }, t) ⊆ I(Γ, t).

Fig 1

 1 Fig 1 shows an example of an annotated program together with a simplied version of the instrumented code generated by E-ACSL. For the sake of simplicity,
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 1 Fig. 1: Example of an Annotated Program and its Instrumented Version.
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 6 in the example of Fig. 1, starting from an empty environment, and assuming that our widening operator satises the following equations ⊥∇[50, 50] = [50, 50] [50, 50]∇[49, 49] = [0, 50] ⊥∇[0, 0] = .
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 9 Fig. 9: Evaluation of Monitor Eciency.
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 3 For every derivation of a judgment of the form ∆ f f : I, we have ∆ res (f ) ⊆ I Proof. We prove this result by induction of the derivation For a derivation obtained by application of the rule (Base) of the following form ∆ args (f )|∆ b : I

For a derivation

  obtained by application of the rule (Ind) of the following form∆ args (f )|∆ b : I ∆ res (f ) = I ∆ args {f \I∇I } f f : J ∆ f f : Jwe have by induction hypothesis that I∇I ⊆ J. By the property (W1) of the widening I ⊆ I∇I , and thus I ⊆ J.

  If the abstract semantics is obtained by application of the rule (Init) of the following formΓ |∆ t 1 : I 1 . . . Γ |∆ t n : I n ∆ f ∇I 1 , . . . , I n f f : I Γ |∆ f (t 1 , . . . , t n ) : IThen the judgment in the collecting semantics augmented by ∆ is obtained either by application of a rule of the collecting semantics, or of a rule coming from ∆. If the applied rule comes from ∆, then this implies that X = ∆ res (f ) and thus by Lemma 3, we have X ⊆ I. If the derivation is obtained by application of the function rule of the collecting semantics, then we have a derivation for all the following premices in the collecting semantics augmented by ∆: Ξ ∆ t 1 ∈ Y 1 , . . . , Ξ ∆ t n ∈ Y n and {x i \z i } Ξ ∆ b ∈ X. By induction hypothesis, we have Y 1 ⊆ I 1 , . . . , Y n ⊆ I n . This implies in particular that {x i \I i } Ξ

For a derivation obtained

  by application of the rule (Base) of the fol-lowing form ∆ args (f )|∆ b : I I ⊆ ∆ res (f ) ∆ f f : ∆ res (f )By mutual induction hypothesis, we have X ⊆ I. Since I ⊆ ∆ res (f ), this implies X ⊆ ∆ res (f ).

For a derivation

  obtained by application of the rule (Ind) of the following form ∆ args (f )|∆ b : I ∆ res (f ) = I ∆ args {f \I∇I } f f : J ∆ f f : J

  m int , M int ] : _ int . The use of the set U and the explicit bijection between Int and [m int , M int ] are not necessary for the purpose of our analysis.

	This section denes the concrete semantics of mini-C and mini-ACSL. Let m int
	and M int be respectively the smallest and biggest integer representable in the
	type int and V = Int ∪ U be the set of values that a mini-C expression may
	evaluate to, where Int is the set of possible values of a variable of type int and
	U is an innite set of arbitrary undened values representing the unitialized
	values. We have the following bijection for the representation of int values:
	_ : Int

[

  This abstract operator allows us to lift operators on concrete values to operators = set in the abstract world, where set is dened by

  tn) ⇒ z This gives exactly the following inductive relation satised by the collecting semanticsC(Ξ, f (t 1 , . . . , t n )) = C({x i \t i } Ξ , f (t 1 , . . . , t n )).The explicit rule for function gives exactly this relation.

This section presents the inference rules for the derivation of interval judgments.We introduce an environment of logic functions ∆ : F → (L I) × I. For each function f already encountered, it keeps track of the intervals inferred for each of f 's parameters and the interval of the f 's return value. This environment is useless right now in the absence of logic denitions: it will only be used in Section 5, but introducing it right now allows for rules of this section to remain unchanged.In the absence of logic denition, our static analysis is a simple interval inference introduced by the judgment Γ |∆ t : I dened in Fig.5. It means that the values of the mini-ACSL term t belong to the interval I. Γ |∆ z : [z, z] Γ |∆ x : Γ (x) Γ |∆ v : [mint, Mint] Γ |∆ t : I Γ |∆ t : I Γ |∆ t t : I

The rules are quite straightforward. The rst rule associates to a constant the corresponding singleton interval. The second rule associates to a logic binder

x, its interval stored in the environment Γ . The third rule associates to a C variable v the interval of integers representable in the type int. The fourth rule associates to an operation the result of its corresponding abstract operation.

The last rule joins the results of both branches of a conditional. These rules are similar to the ones of [START_REF] Kosmatov | Ecient Runtime Assertion Checking for Properties over Mathematical Numbers[END_REF], even if expressed here in another formalism.

Improving Precision for Conditionals

The rule for conditionals can be improved by taking into account that the condition is necessarily true in the positive branch and false in the negative one.

If the abstract semantics is obtained by application of the rule for constant, then the term t is the constant z. We have an application of the two following rules for the collecting and the bastract semantics

If the abstract semantics is obtained by application of the rule for binders, then the term is a binder x, then its collecting semantics and its abstract semantics are respectively obtained by the following rules

By hypothesis, we have Ξ Γ , thus for every Ψ ∈ Ξ, we have Ψ (x) ∈ Ξ(x). This proves that {Ψ (x) | Ψ ∈ Ξ} ⊆ Ξ(x).

If the abstract semantics is obtained by application of the rule for mini-C variables, then the term t is a mini-C variable v, and its collecting semantics and its abstract semantics are respectively obtained by application of the following rules

If the abstract semantics is obtained by application of the rule for operations, then the term is the application of an arithmetic operator of the form u u , then its collecting semantics and its abstract semantics are respectively obtained by application of the following rules