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Introduction

Self-Supervised learning (SSL) is an unsupervised learning procedure in which the data provides its own supervi-sion to learn a practical representation of the data. It has been successfully applied to various applications such as classification and object detection. A pretext task is designed on the data to pretrain the model. The pretrained model is then fine-tuned on downstream tasks and several works have shown that a self-supervised pretrained network can outperform its supervised counterpart [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF][START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF].

Contrastive learning is a state-of-the-art self-supervised paradigm based on Noise Contrastive Estimation (NCE) [START_REF] Gutmann | Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[END_REF] whose most successful applications rely on instance discrimination [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF]. Pairs of views from same images are generated by carefully designed data augmentations [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] Tian | What makes for good views for contrastive learning? In Advances in Neural Information Processing Systems[END_REF]. Elements from the same pairs are called positives and their representations are pulled together to learn view invariant features. Other images called negatives are considered as noise and their representations are pushed away from positives. Frameworks based on contrastive learning paradigm require a procedure to sample positives and negatives to learn a good data representation. A large number of negatives is essential [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF] and various strategies have been proposed to enhance the number of negatives [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Kalantidis | Hard negative mixing for contrastive learning[END_REF]. Sampling hard negatives [START_REF] Kalantidis | Hard negative mixing for contrastive learning[END_REF][START_REF] David Robinson | Contrastive learning with hard negative samples[END_REF][START_REF] Wu | Conditional negative sampling for contrastive learning of visual representations[END_REF][START_REF] Hu | Adco: Adversarial contrast for efficient learning of unsupervised representations from self-trained negative adversaries[END_REF][START_REF] Dwibedi | With a little help from my friends: Nearest-neighbor contrastive learning of visual representations[END_REF] improve the representations but can be harmful if they are semantically false negatives which is known as the "class collision problem" [START_REF] Cai | Are all negatives created equal in contrastive instance discrimination?[END_REF][START_REF] Wei | CO2: consistent contrast for unsupervised visual representation learning[END_REF][START_REF] Chuang | Debiased contrastive learning[END_REF].

Other approaches that learn from positive views without negatives have been proposed by predicting pseudo-classes of different views [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF], minimizing the feature distance of positives [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF][START_REF] Chen | Exploring simple siamese representation learning[END_REF] or matching the similarity distribution between views and other instances [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF]. These methods free the mentioned problem of sampling hard negatives.

Based on the weakness of contrastive learning using negatives, we introduce a self-supervised soft contrastive learning approach called Similarity Contrastive Estimation (SCE), that contrasts positive pairs with other instances and leverages the push of negatives using the inter-instance similarities. Our method computes relations defined as a sharp-ened similarity distribution between augmented views of a batch. Each view from the batch is paired with a differently augmented query. Our objective function will maintain for each query the relations and contrast its positive with other images. A memory buffer is maintained to produce a meaningful distribution. Experiments on several datasets show that our approach outperforms our contrastive and relational baselines MoCov2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] and ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF].

Our contributions can be summarized as follows: • We propose a self-supervised soft contrastive learning approach called Similarity Contrastive Estimation (SCE) that contrasts pairs of augmented images with other instances and maintains relations among instances. • We demonstrate that our framework SCE outperforms on several benchmarks its baselines MoCov2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] and ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF] for a shared architecture and can further be improved using more recent architectures with a larger batch size and a predictor. • We show that our proposed SCE is competitive with the state of the art on the ImageNet linear evaluation protocol and generalizes to several downstream tasks.

Related Work

Self-Supervised Learning. In early works, different pretext tasks to perform Self-Supervised Learning have been proposed to learn a good data representation such as: instance discrimination [START_REF] Dosovitskiy | Discriminative unsupervised feature learning with exemplar convolutional neural networks[END_REF], patch localization [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF], colorization [START_REF] Zhang | Colorful image colorization[END_REF], jigsaw puzzle [START_REF] Noroozi | Unsupervised learning of visual representations by solving jigsaw puzzles[END_REF], counting [START_REF] Noroozi | Representation learning by learning to count[END_REF], angle rotation prediction [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF].

Contrastive Learning. Contrastive learning is a learning paradigm [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF][START_REF] Hjelm | Learning deep representations by mutual information estimation and maximization[END_REF][START_REF] Tian | Contrastive multiview coding[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] Misra | Self-supervised learning of pretext-invariant representations[END_REF][START_REF] Tian | What makes for good views for contrastive learning? In Advances in Neural Information Processing Systems[END_REF][START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF] that outperformed previously mentioned pretext tasks. Most successful methods rely on instance discrimination with a positive pair of views from the same image contrasted with all other instances called negatives. Retrieving lots of negatives is necessary for contrastive learning [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF] and various strategies have been proposed. MoCo (v2) [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] uses a small batch size and keeps a high number of negatives by maintaining a memory buffer of representations via a momentum encoder. Alternatively, SimCLR [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] Chen | Big self-supervised models are strong semi-supervised learners[END_REF] and Mo-Cov3 [START_REF] Chen | An empirical study of training self-supervised vision transformers[END_REF] use a large batch size without a memory buffer, and without a momentum encoder for SimCLR.

Sampler for Contrastive Learning. All negatives are not equal [START_REF] Cai | Are all negatives created equal in contrastive instance discrimination?[END_REF] and hard negatives, negatives difficult to distinguish with positives, are the most important to sample to improve contrastive learning. However, they are potentially harmful to the training because of the "class collision" problem [START_REF] Cai | Are all negatives created equal in contrastive instance discrimination?[END_REF][START_REF] Wei | CO2: consistent contrast for unsupervised visual representation learning[END_REF][START_REF] Chuang | Debiased contrastive learning[END_REF]. Several samplers have been proposed to alleviate this problem such as using the nearest neighbor as positive for NNCLR [START_REF] Dwibedi | With a little help from my friends: Nearest-neighbor contrastive learning of visual representations[END_REF]. Truncated-triplet [START_REF] Wang | Solving inefficiency of self-supervised representation learning[END_REF] optimizes a triplet loss using the k-th similar element as negative that showed significant improvement. It is also possible to generate views by adversarial learning as AdCo [START_REF] Hu | Adco: Adversarial contrast for efficient learning of unsupervised representations from self-trained negative adversaries[END_REF] showed.

Contrastive Learning without negatives. Various siamese frameworks perform contrastive learning without the use of negatives to avoid the class collision problem. BYOL [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF] trains an online encoder to predict the output of a momentum updated target encoder. SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] enforces consistency between online cluster assignments from learned prototypes. DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] proposes a self-distillation paradigm to match distribution on pseudo class from an online encoder to a momentum target encoder. Barlow-Twins [START_REF] Zbontar | Barlow twins: Self-supervised learning via redundancy reduction[END_REF] aligns the cross-correlation matrix between two paired outputs to the identity matrix that VICReg [START_REF] Bardes | VI-CReg: Variance-invariance-covariance regularization for self-supervised learning[END_REF] stabilizes by adding an intra-batch decorrelation loss function.

Regularized Contrastive Learning. Several works regularize contrastive learning by optimizing a contrastive objective along with an objective that considers the similarities among instances. CO2 [START_REF] Wei | CO2: consistent contrast for unsupervised visual representation learning[END_REF] adds a consistency regularization term that matches the distribution of similarity for a query and its positive. PCL [START_REF] Li | Prototypical contrastive learning of unsupervised representations[END_REF] and WCL [START_REF] Zheng | Weakly supervised contrastive learning[END_REF] combines unsupervised clustering with contrastive learning to tighten representations of similar instances.

Relational Learning. Contrastive learning implicitly learns relations among instances by optimizing alignment and matching a prior distribution [START_REF] Wang | Understanding contrastive representation learning through alignment and uniformity on the hypersphere[END_REF][START_REF] Chen | Intriguing properties of contrastive losses[END_REF]. ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF] introduces an explicit relational learning objective by maintaining consistency of pairwise similarities between strong and weak augmented views. The pairs of views are not directly aligned which harms the discriminative performance.

In our work, we optimize a contrastive learning objective using negatives that alleviate class collision by pulling related instances. We do not use a regularization term but directly optimize a soft contrastive learning objective that leverages the contrastive and relational aspects.

Methodology

In this section, we will introduce our baselines: MoCov2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] for the contrastive aspect and ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF] for the relational aspect. We will then present our self-supervised soft contrastive learning approach called Similarity Contrastive Estimation (SCE). All these methods share the same architecture illustrated in Fig. 1a. We provide the pseudo-code of our algorithm in supplementary material.

Contrastive and Relational Learning

Consider x = {x k } k∈{1,...,N } a batch of N images. Siamese momentum methods based on Contrastive and Relational learning, such as MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] and ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF] respectively, produce two views of x, x 1 = t 1 (x) and x 2 = t 2 (x), from two data augmentation distributions T 1 and T 2 with t 1 ∼ T 1 and t 2 ∼ T 2 . For ReSSL, T 2 is a weak data augmentation distribution compared to T 1 to maintain relations. x 1 passes through an online network f s followed by a projector g s to compute z 1 = g s (f s (x 1 )). A parallel target branch containing a projector g t and an encoder f t updated 1a. A batch x of images is augmented with two different data augmentation distributions T 1 and T 2 to form x 1 = t 1 (x) and x 2 = t 2 (x) with t 1 ∼ T 1 and t 2 ∼ T 2 . The representation z 1 is computed through an online encoder f s and projector g s such as z 1 = g s (f s (x 1 )). A parallel target branch updated by an exponential moving average of the online branch, or ema, computes z 2 = g t (f t (x 2 )) with f t and g t the target encoder and projector. In the objective function of SCE illustrated in Fig. 1b, z 2 is used to compute the inter-instance target distribution by applying a sharp softmax to the cosine similarities between z 2 and a memory buffer of representations from the momentum branch. This distribution is mixed via a 1 -λ factor with a one-hot label factor λ to form the target distribution. Similarities between z 1 and the memory buffer plus its positive in z 2 are also computed. The online distribution is computed via softmax applied to the online similarities. The objective function is the cross entropy between the target and the online distributions. by exponential moving average of the online branch computes z 2 = g t (f t (x 2 )). z 1 and z 2 are both l 2 -normalized.

MoCo uses the InfoNCE loss, a similarity based function scaled by the temperature τ that maximizes agreement between the positive pair and push negatives away:

L Inf oN CE = - 1 N N i=1 log exp(z 1 i • z 2 i /τ ) N j=1 exp(z 1 i • z 2 j /τ )
.

(1) ReSSL computes a target similarity distribution s 2 , that represents the relations between weak augmented instances, and the distribution of similarity s 1 between the strongly augmented instances with the weak augmented ones. Temperature parameters are applied to each distribution: τ for s 1 and τ m for s 2 with τ > τ m to eliminate noisy relations. The loss function is the cross-entropy between s 2 and s 1 :

s 1 ik = 1 i̸ =k • exp(z 1 i • z 2 k /τ ) N j=1 1 i̸ =j • exp(z 1 i • z 2 j /τ ) , (2) 
s 2 ik = 1 i̸ =k • exp(z 2 i • z 2 k /τ m ) N j=1 1 i̸ =j • exp(z 2 i • z 2 j /τ m ) , (3) 
L ReSSL = - 1 N N i=1 N k=1 k̸ =i s 2 ik log s 1 ik . (4) 
A memory buffer of size M >> N filled by z 2 is maintained for both methods.

Similarity Contrastive Estimation

Contrastive Learning methods damage relations among instances which Relational Learning correctly build. However Relational Learning lacks the discriminating features that contrastive methods can learn. If we take the example of a dataset composed of cats and dogs, we want our model to be able to understand that two different cats share the same appearance but we also want our model to learn to distinguish details specific to each cat. Based on these requirements, we propose our approach called Similarity Contrastive Estimation (SCE).

We argue that there exists a true distribution of similarity w * i between a query q i and the instances in a batch of N images x = {x k } k∈{1,...,N } , with x i a positive view of q i . If we had access to w * i , our training framework would estimate the similarity distribution p i between q i and all instances in x, and minimize the cross-entropy between w * i and p i which is a soft contrastive learning objective:

L SCE * = - 1 N N i=1 N k=1 w * ik log (p ik ) . (5) 
L SCE * is a soft contrastive approach that generalizes InfoNCE and ReSSL objectives. InfoNCE is a hard con-trastive loss that estimates w * i with a one-hot label and ReSSL estimates w * i without the contrastive component. We propose an estimation of w * i based on contrastive and relational learning. We consider x 1 = t 1 (x) and x 2 = t 2 (x) generated from x using two data augmentations t 1 ∼ T 1 and t 2 ∼ T 2 . Both augmentation distributions should be different to estimate different relations for each view. We compute z 1 = g s (f s (x 1 )) from f s and g s (and optionally a predictor [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF][START_REF] Chen | An empirical study of training self-supervised vision transformers[END_REF]) and z 2 = g t (f t (x 2 )). z 1 and z 2 are both l 2 -normalized. The similarity distribution s 2 that defines relations among instances is computed via the Eq. ( 3). The temperature τ m sharpens the distribution to only keep relevant relations. A weighted positive one-hot label is added to s 2 i to build the target similarity distribution w 2 i :

w 2 ik = λ • 1 i=k + (1 -λ) • s 2 ik . (6) 
The online similarity distribution p 1 i between z 1 i and z 2 , including z 2 i in opposition with ReSSL, is computed and scaled by the temperature τ with τ > τ m to build a sharper target distribution:

p 1 ik = exp(z 1 i • z 2 k /τ ) N j=1 exp(z 1 i • z 2 j /τ ) . (7) 
The objective function illustrated in Fig. 1b is the crossentropy between each w 2 and p 1 :

L SCE = - 1 N N i=1 N k=1 w 2 ik log p 1 ik . (8) 
The loss can be symmetrized by passing x 1 through the momentum encoder, x 2 through the online encoder and averaging the two losses computed.

A memory buffer of size M >> N filled by z 2 is maintained to better approximate the similarity distributions.

The following proposition explicitly shows that SCE optimizes a contrastive learning objective while maintaining inter-instance relations: Proposition 1. L SCE defined in Eq. (8) can be written as:

L SCE = λ • L Inf oN CE + µ • L ReSSL + η • L Ceil , ( 9 
)
with µ = η = 1 -λ and L Ceil = -1 N N i=1 log N j=1 1 i̸ =j •exp(z 1 i •z 2 j /τ ) N j=1 exp(z 1 i •z 2 j /τ )
.

The proof separates the positive term and negatives. It can be found in the supplementary material. L Ceil leverages how similar the positives should be with hard negatives. Because our approach is a soft contrastive learning objective, we optimize the formulation in Eq. ( 8) and have the constraint µ = η = 1 -λ. It frees our implementation from having three losses to optimize with two hyperparameters µ and η to tune. Still, we performed a small study of the objective defined in Eq. ( 9) without this constraint to check if L Ceil improves results in Sec. 4.1.

Empirical study

In this section, we first make an ablative study of our approach Similarity Contrastive Estimation (SCE) to find the best hyperparameters. Secondly, we compare SCE with its baselines MoCov2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] and ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF]. Finally, we evaluate SCE on the ImageNet Linear evaluation protocol and assess its generalization capacity on various tasks.

Ablation study

To make the ablation studies, we conducted experiments on ImageNet100 that has a close distribution to ImageNet, studied in Sec. 4.3, with the advantage to require less resources to train. We keep implementation details close to ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF] and MoCov2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] to ensure fair comparison.

Dataset. ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] is a large dataset with 1k classes, almost 1.3M images in the training set and 50K images in the validation set. ImageNet100 is a selection of 100 classes from ImageNet whose classes have been selected randomly. We took the selected classes from [START_REF] Tian | Contrastive multiview coding[END_REF] referenced in the supplementary material.

Implementation details for pretraining. We use the ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] encoder and pretrain for 200 epochs. As for ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF], we apply by default strong and weak data augmentations defined in Tab. 2. We use 8 GPUs with a batch size of 512. The memory buffer size is 65,536. The projector is a 2 fully connected layer network with a hidden dimension of 4096 and an output dimension of 256. The SGD optimizer [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF] is used with a momentum of 0.9 and a weight decay of 10 -4 . A linear warmup is applied during 5 epochs to reach the initial learning rate of 0.3. The learning rate is scaled using the linear scaling rule and follows the cosine decay scheduler without restart [START_REF] Loshchilov | SGDR: Stochastic gradient descent with warm restarts[END_REF]. The momentum value to update the momentum network follows a cosine strategy from 0.996 to 1. We do not symmetrize the loss by default.

Evaluation protocol. To evaluate our pretrained encoders, we train a linear classifier for 100 epochs on top of the frozen pretrained encoder using an SGD optimizer with an initial learning rate of 30 without weight decay and a momentum of 0.9. The learning rate is decayed by a factor of 0.1 at 60 and 80 epochs. Data augmentations follow standard protocol [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF][START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF], available in supplementary material.

Leveraging contrastive and relational learning. SCE defined in Eq. ( 6) leverages contrastive and relational learning via the λ coefficient. We studied the effect of varying λ on ImageNet100. Temperature parameters are set to τ = 0.1 and τ m = 0.05. We report the results in Tab. 1. Performance increases with λ from 0 to 0.5 after which it starts decreasing. The best λ is 0.5 confirming that balancing the contrastive and relational aspects provides better representation. In next experiments, we keep λ = 0.5.

We performed a small study of the optimization of Eq. ( 9) by removing L ceil (η = 0) to validate the relevance of our approach for τ = 0. Asymmetric data augmentations to build the similarity distributions. Contrastive learning approaches use strong data augmentations [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF] to learn view invariant features and prevent the model to collapse. However, these strong data augmentations shift the distribution of similarities among instances that SCE uses to approximate w * i in Eq. [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]. We need to carefully tune the data augmentations to estimate a relevant target similarity distribution. We listed different distributions of data augmentations in Tab. 2. The weak and strong augmentations are the same as described by ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF]. strong-α and strong-β have been proposed by BYOL [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF]. strong-γ combines strong-α and strong-β.

We performed a study in Tab. 4 on which data augmentations are needed to build a proper target distribution for the non-symmetric and symmetric settings. We report the Top-1 accuracy on Imagenet100 when varying the data augmentations applied on the online and target branches of our pipeline. For the non-symmetric setting, SCE requires the target distribution to be built from a weak augmentation distribution that maintains consistency across instances.

Once the loss is symmetrized, asymmetry with strong data augmentations has better performance. Indeed, using strong-α and strong-β augmentations is better than using weak and strong augmentations, and same strong augmentations has lower performance. We argue symmetrized SCE Method ImageNet ImageNet100 Cifar10 Cifar100 STL10 Tiny-ImageNet MoCov2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] 67. 6: Effect of varying the temperature parameters τ m and τ on the Top-1 accuracy on ImageNet100. τ m is lower than τ to produce a sharper target distribution without noisy relations. Our approach does not collapse when τ m → τ . requires asymmetric data augmentations to produce different relations for each view to make the model learn more information. The effect of using stronger augmentations is balanced by averaging the results on both views. Symmetrizing the loss boosts the performance as for [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF][START_REF] Chen | Exploring simple siamese representation learning[END_REF].

Sharpening the similarity distributions. The temperature parameters sharpen the distributions of similarity exponentially. SCE uses the temperatures τ m and τ for the target and online similarity distributions with τ m < τ to guide the online encoder with a sharper distribution. We made a temperature search on ImageNet100 by varying τ in {0.1, 0.2} and τ m in {0.03, ..., 0.10}. The results are in Tab. 6. We found the best values τ m = 0.07 and τ = 0.1 proving SCE needs a sharper target distribution. In supplementary material, this parameter search is done for other datasets used in comparison with our baselines. Unlike ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF], SCE does not collapse when τ m → τ thanks to the contrastive aspect. Hence, it is less sensitive to the temperature choice.

Comparison with our baselines

We compared on 6 datasets how SCE performs against its baselines. We keep similar implementation details to ReSSL [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF] and MoCov2 [START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] for fair comparison.

Small datasets. Cifar10 and Cifar100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] have 50K training images, 10K test images, 32×32 resolution and 10-100 classes respectively. Medium datasets. STL10 [START_REF] Coates | An analysis of single-layer networks in unsupervised feature learning[END_REF] has a 96×96 resolution, 10 classes, 100K unlabeled data, 5k labeled training images and 8K test images. Tiny-Imagenet [START_REF] Abai | Densenet models for tiny imagenet classification[END_REF] is a subset of ImageNet with 64 × 64 resolution, 200 classes, 100k training images and 10K validation images.

Implementation details. Implementation details for small and medium datasets are in the supplementary material. For ImageNet, we follow the ones in ablation study with some modifications. The initial learning rate is set to 0.5, the projector is a 3 fully connected layer network with a hidden dimension of 2048, a batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] at each layer and an output dimension of 256. For MoCov2, the temperature used is τ = 0.2 and for ReSSL we use the best temperatures reported [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF]. For SCE, we use the best temperature parameters from ablation study for ImageNet and ImageNet100, and for other datasets, the best ones from supplementary material. We use the same architecture for all methods except that we use the same projector as on Im-ageNet100 on ImageNet for MoCov2 to improve the result.

Evaluation protocol. The evaluation protocol is the same as defined in the ablation study for all datasets.

Results are reported in Tab. 5. Our baselines reproduction is validated as results are better than those reported by the authors. SCE outperforms its baselines on all datasets proving that our method is more efficient to learn discriminating features on the pretrained dataset. We observe that our approach outperforms more significantly ReSSL on smaller datasets than ImageNet, suggesting that it is more important to learn to discriminate among instances for these datasets. SCE has promising applications to domains with few data such as in medical applications.

ImageNet Linear Evaluation Protocol

We compare SCE on the widely used ImageNet linear evaluation protocol with the state of the art. We scaled our method to a larger batch size and a deeper architecture using a predictor to match the state of the art results [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF][START_REF] Chen | An empirical study of training self-supervised vision transformers[END_REF].

Implementation details. We use the ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] encoder and apply strong-α and strong-β augmentations defined in Tab. 2 with a batch size of 4096 and a memory buffer of size 65,536. We follow the same training hyperparameters as [START_REF] Chen | An empirical study of training self-supervised vision transformers[END_REF] for the architecture. Specifically, we use the same projector and predictor, the LARS optimizer [START_REF] You | Large batch training of convolutional networks[END_REF] with a weight decay of 1.5•10 -6 for 1000 epochs of training Method 100 200 300 800-1000 SimCLR [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF] 66.5 68.3 -70.4 MoCov2 [START_REF] Chen | Exploring simple siamese representation learning[END_REF] 67.4 69.9 -72.2 SwaV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] 66.5 69.1 -71.8 BYOL [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF] 66. Evaluation protocol. We train a linear classifier for 90 epochs on top of the frozen encoder with a batch size of 1024 and a SGD optimizer with a momentum of 0.9. The initial learning rate is 0.1 linearly scaled and follows a cosine annealed scheduler.

We evaluated SCE at epochs 100, 200, 300 and 1000 on the Top-1 accuracy on ImageNet to study the efficiency of our approach and compare it with the state of the art in Tab. 7. At 100 epochs, SCE reaches 72.1% up to 74.1% at 1000 epochs. Hence, SCE has a fast convergence and few epochs of training already provides a good representation. SCE is the Top-1 method at 100 epochs and is second best for 200 and 300 epochs proving the good quality of its representation for few epochs of pretraining.

At 1000 epochs, SCE is below several state-of-the art results. We argue that SCE suffers from maintaining a λ coefficient to 0.5 and that relational or contrastive aspects

Method

Epochs Top-1 UniGrad [START_REF] Tao | Exploring the equivalence of siamese self-supervised learning via A unified gradient framework[END_REF] 100 71.7 UniGrad (+ Cut-Mix) [START_REF] Tao | Exploring the equivalence of siamese self-supervised learning via A unified gradient framework[END_REF] 100 72. do not have the same impact at the beginning and at the end of pretraining. A potential improvement would be using a scheduler on λ that varies over time.

We added multi-crop to SCE for 200 epochs of pretraining. It enhances the results but it is costly in terms of time and memory. It improves the results from 72.7% to our best result 75.4% (+2.7 p.p.). Therefore, SCE learns from having local views and they should maintain relations to learn better representations. We compared SCE with state-ofthe-art methods using multi-crop in Tab. 8. SCE is competitive with top state-of-the-art methods that trained for 800+ epochs by having slightly lower accuracy than the best method using multi-crop (-0.3 p.p) and without multi-crop (-0.5 p.p). SCE is more efficient than other methods, as it reaches state-of-the-art results for fewer pretraining epochs.

Transfer Learning

We study the generalization of our proposed SCE on several tasks using our best checkpoint obtained on ImageNet, the multi-crop setting for 200 pretrained epochs.

Low-shot evaluation. Low-shot transferability of our backbone is evaluated on Pascal VOC2007. We followed the protocol proposed by [START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF]. We select 16, 32, 64 or all images per class to train the classifier. Our results are compared with other state-of-the-art methods pretrained for 200 epochs in Tab. 10. SCE is Top-1 for 32, 64 and all images per class and is second for 16 images per class, proving the generalization of our approach to few-shot learning.

Linear classifier for many-shot recognition datasets. We follow the same protocol as [START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF][START_REF] Ericsson | How well do self-supervised models transfer?[END_REF] to study many-shot recognition in transfer learning on the datasets FGVC Air- craft [START_REF] Maji | Fine-grained visual classification of aircraft[END_REF], Caltech-101 [START_REF] Fei-Fei | Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[END_REF], Standford Cars [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF], CIFAR-10 [34], CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], DTD [START_REF] Cimpoi | Describing textures in the wild[END_REF], Oxford 102 Flowers [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF], Food-101 [START_REF] Bossard | Food-101 -mining discriminative components with random forests[END_REF], Oxford-IIIT Pets [START_REF] Omkar | Cats and dogs[END_REF], SUN397 [START_REF] Xiao | SUN database: Large-scale scene recognition from abbey to zoo[END_REF] and Pascal VOC2007 [START_REF] Everingham | The pascal visual object classes (VOC) challenge[END_REF]. These datasets cover a large variety of number of training images (2k-75k) and number of classes . For all datasets we study the Top-1 classification accuracy except for Aircraft, Caltech-101, Pets and Flowers for which we report the mean per-class accuracy and the 11-point MAP for VOC2007. We report the performance of SCE in comparison with state-of-the-art methods in Tab. 9. SCE outperforms on 7 datasets all approaches. In average, SCE is above all stateof-the-art methods as well as the supervised baseline, meaning SCE is able to generalize to a wide range of datasets.

Object detection and instance segmentation. We performed object detection and instance segmentation on the COCO dataset [START_REF] Lin | Microsoft COCO: common objects in context[END_REF]. We used the pretrained network to initialize a Mask R-CNN [START_REF] He | Mask r-cnn[END_REF] until the C4 layer. We follow the protocol proposed by [START_REF] Wang | Solving inefficiency of self-supervised representation learning[END_REF] and report the Average Precision for detection AP Box and instance segmentation AP M ask .

We report our result in Tab. 11 and observe that SCE is the second best method after Truncated-Triplet [START_REF] Wang | Solving inefficiency of self-supervised representation learning[END_REF] on both metrics, by being slightly below their reported results and above the supervised setting. Therefore our proposed SCE is able to generalize to object detection and instance segmentation task beyond what the supervised pretraining can (+1.6 p.p. of AP Box and +1.3 p.p. of AP M ask ).

Conclusion

In this paper we introduced a self-supervised soft contrastive learning approach called Similarity Contrastive Estimation (SCE). It contrasts pairs of asymmetrical augmented views with other instances while maintaining relations among instances. The similarity distribution that defines relations is computed on one view and sharpened to remove noisy relations. SCE leverages contrastive learning and relational learning and improves the performance over optimizing only one aspect. We showed that it is competitive with the state of the art on the linear evaluation protocol on ImageNet, for fewer pretraining epochs, and to generalize to several downstream tasks. We proposed a simple but effective initial estimation of the true distribution of similarity among instances. An interesting perspective would be to propose a finer estimation of this distribution.

Societal impact

SCE as a self-supervised method for computer vision trains deep neural networks architectures that often have an economical and environmental negative impacts. But, SCE can be trained with small batches and few epochs to limit these impacts. We released our code and pretrained weights to limit duplicate pretraining and support the community.

Figure 1 :

 1 Figure1: SCE follows a siamese pipeline illustrated in Fig.1a. A batch x of images is augmented with two different data augmentation distributions T 1 and T 2 to form x 1 = t 1 (x) and x 2 = t 2 (x) with t 1 ∼ T 1 and t 2 ∼ T 2 . The representation z 1 is computed through an online encoder f s and projector g s such as z 1 = g s (f s (x 1 )). A parallel target branch updated by an exponential moving average of the online branch, or ema, computes z 2 = g t (f t (x 2 )) with f t and g t the target encoder and projector. In the objective function of SCE illustrated in Fig.1b, z 2 is used to compute the inter-instance target distribution by applying a sharp softmax to the cosine similarities between z 2 and a memory buffer of representations from the momentum branch. This distribution is mixed via a 1 -λ factor with a one-hot label factor λ to form the target distribution. Similarities between z 1 and the memory buffer plus its positive in z 2 are also computed. The online distribution is computed via softmax applied to the online similarities. The objective function is the cross entropy between the target and the online distributions.

Table 1 :

 1 1 and τ m ∈ {0.05, 0.07}. The Top-1 81.53 81.77 82.54 82.81 82.91 82.94 82.17 81.58 81.75 81.79 81.11 Effect of varying λ on the Top-1 accuracy on ImageNet100. λ = 0.5 is optimal confirming that learning to discriminate and maintaining relations is best.

	λ	0.	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
		Parameter				weak strong strong-α strong-β strong-γ	
		Random crop probability		1	1	1		1	1	
		Flip probability			0.5	0.5	0.5		0.5	0.5	
		Color jittering probability		0.	0.8	0.8		0.8	0.8	
		Brightness adjustment max intensity	-	0.4	0.4		0.4	0.4	
		Contrast adjustment max intensity	-	0.4	0.4		0.4	0.4	
		Saturation adjustment max intensity	-	0.4	0.2		0.2	0.2	
		Hue adjustment max intensity		-	0.1	0.1		0.1	0.1	
		Color dropping probability		0.	0.2	0.2		0.2	0.2	
		Gaussian blurring probability		0.	0.5	1.		0.1	0.5	
		Solarization probability		0.	0.	0.		0.2	0.2	

Table 2 :

 2 Different distributions of data augmentations applied to SCE. The weak distribution is the same as ReSSL[START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF], strong is the standard contrastive data augmentation[START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF]. The strong-α and strong-β are two distributions introduced by BYOL[START_REF] Grill | Bootstrap your own latent -A new approach to self-supervised learning[END_REF]. Finally, strong-γ is a mix between strong-α and strong-β.

	Loss coefficients	Top-1	
	λ	µ	η	τ m = 0.05 τ m = 0.07
	1.	0.	0.	81.11	81.11
	0.5 0.5	0.	82.80	82.49
	0.5 0.5 0.5	82.94	83.37
	0.	1.	0.	80.79	78.35
	0.	1.	1.	81.53	79.64

Table 3 :

 3 Effect of loss coefficients in Eq. (9) on the Top-1 accuracy on ImageNet100. L Ceil consistently improves performance that varies given the temperature parameters.

	Online aug Teacher aug Sym top-1
	strong	weak	no	82.94
	strong-γ	weak	no	83.00
	weak	strong	no	73.43
	strong	strong	no	80.54
	strong-α	strong-β	no	80.74
	strong	weak	yes 83.66
	strong	strong	yes 83.00
	strong-α	strong-β	yes 84.17
	Table 4: Effect of using different distributions of data aug-
	mentations for the two views and of the loss symmetriza-
	tion on the Top-1 accuracy on ImageNet100. Using a weak
	view for the teacher without symmetry is necessary to ob-
	tain good relations. With loss symmetry, asymmetric data
	augmentations improve the results, with the best obtained
	using strong-α and strong-β augmentations.	

results are reported in Tab. 3. Adding the term L ceil consistently improves performance, empirically proving that our approach is better than simply adding L Inf oN CE and L ReSSL . This performance boost varies with temperature parameters and our best setting improves by +0.9 percentage points (p.p.) in comparison with adding the two losses.

Table 5 :

 5 Comparison of SCE with its baselines MoCov2[START_REF] Chen | Improved baselines with momentum contrastive learning[END_REF] and ReSSL[START_REF] Zheng | Ressl: Relational self-supervised learning with weak augmentation[END_REF] on the Top-1 Accuracy on various datasets. SCE outperforms on all benchmarks its baselines. [*] denotes our reproduction.

				5	-	-	-	-	-
	MoCov2 [*]	68.8	80.46	87.56	61.00	86.53	45.93
	ReSSL [60]	69.9	-	90.20	63.79	88.25	46.60
	ReSSL [*]	70.2	81.58	90.20	64.01	89.05	49.47
	SCE (Ours)	70.5	83.37	90.34	65.45	89.94	51.90
	τ = 0.1	τ = 0.2			
	τ m	Top-1 τ m	Top-1			
	0.03 82.33 0.03 81.28			
	0.04 82.52 0.04 81.15			
	0.05 82.94 0.05 81.19			
	0.06 82.54 0.06 81.19			
	0.07 83.37 0.07 81.13			
	0.08 82.71 0.08 80.91			
	0.09 82.53 0.09 81.18			
	0.10 82.07 0.10 81.20			
	Table						

Table 7 :

 7 State-of-the-art results on the Top-1 Accuracy on ImageNet under the linear evaluation protocol at different pretraining epochs: 100, 200, 300, 800+. SCE is Top-1 at 100 epochs and Top-2 for 200 and 300 epochs. For 800+ epochs, SCE has lower performance than several state-of the-art methods. Results style: best, second best. and 10 -6 for fewer epochs. Bias and batch normalization parameters are excluded. The initial learning rate is 0.5 for 100 epochs and 0.3 for more epochs. It is linearly scaled for 10 epochs and it follows the cosine annealed scheduler.

		5 70.6 72.5	74.3
	Barlow-Twins[57]	-	-	71.4	73.2
	AdCo [30]	-	68.6	-	72.8
	ReSSL [60]	-	71.4	-	-
	WCL [59]	68.1 70.3	-	72.2
	VICReg [2]	-	-	-	73.2
	UniGrad [46]	70.3	-	-	-
	MoCov3 [12]	68.9	-	72.8	74.6
	NNCLR [19]	69.4 70.7	-	75.4
	Truncated-Triplet [50]	-	73.8	-	75.9
	SCE (Ours)	72.1 72.7 73.3	74.1
					The
	momentum value follows a cosine scheduler from 0.996 for
	1000 epochs, 0.99 for fewer epochs, to 1. The loss is sym-
	metrized. For SCE specific hyperparameters, we keep the
	best from ablation study: λ = 0.5, τ = 0.1 and τ m = 0.07.
	Multi-crop setting. We follow [30] setting and sam-
	ple 6 different views. The first two views are global views
	as without multi-crop. The 4 local crops have a resolution
	of 192 × 192, 160 × 160, 128 × 128, 96 × 96 and scales
	(0.172, 0.86), (0.143, 0.715), (0.114, 0.571), (0.086, 0.429)
	on which we apply the strong-γ data augmentation.

Table 8 :

 8 State-of-the-art results on the Top-1 Accuracy on ImageNet under the linear evaluation protocol with multicrop. SCE is competitive with the best state-of-the-art methods by pretraining for only 200 epochs instead of 800+.

	3

Table 9 :

 9 Linear classifier trained on popular many-shot recognition datasets. SCE is Top-1 on 7 datasets and in average.

	Method	K = 16 K = 32 K = 64	full
	MoCov2 [10]	76.14	79.16	81.52	84.60
	PCLv2 [35]	78.34	80.72	82.67	85.43
	ReSSL [60]	79.17	81.96	83.81	86.31
	SwAV [5]	78.38	81.86	84.40	87.47
	WCL [59]	80.24	82.97	85.01	87.75
	SCE (Ours)	79.47	83.05	85.47	88.24

Table 10 :

 10 Transfer learning on low-shot image classification on Pascal VOC2007[START_REF] Everingham | The pascal visual object classes (VOC) challenge[END_REF]. All methods have been pretrained for 200 epochs. SCE is Top-1 when using 32-64 or all images per class and is second for 16 images per class.

	Method	AP Box AP Mask
	Random	35.6	31.4
	Relative-Loc [17]	40.0	35.0
	Rotation-Pred [23]	40.0	34.9
	NPID [54]	39.4	34.5
	MoCo [26]	40.9	35.5
	MoCov2 [10]	40.9	35.5
	SimCLR [7]	39.6	34.6
	BYOL [24]	40.3	35.1
	SCE (Ours)	41.6	36.0
	Truncated-Triplet [50]	41.7	36.2
	Supervised	40.0	34.7

Table 11 :

 11 Object detection and Instance Segmentation on COCO[START_REF] Lin | Microsoft COCO: common objects in context[END_REF] training a Mask R-CNN[START_REF] He | Mask r-cnn[END_REF]. SCE is Top-2 on both tasks, slightly below Truncated-Triplet[START_REF] Wang | Solving inefficiency of self-supervised representation learning[END_REF] and better than supervised training. Results style: best, second best.
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