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Abstract

Electrochemical impedance spectroscopy (EIS) is extensively used to characterize the transport prop-
erties in porous electrodes of lithium-ion batteries (LIB). In the low-frequency domain (f < 1Hz), solid
di�usion and electrolyte di�usion are competing over similar timescales, which explains why both phe-
nomena are di�cult to characterize independently. In which case can the solid di�usion coe�cient be
correctly extracted from experimental EIS? To answer this question, the linearized P2D-Newman model
of a complete cell is solved using a Fourier transform to obtain a physics-based analytical impedance.
The solution allows deriving the characteristic frequencies and non-dimensional numbers of the system,
and gives the parameters range for which solid di�usion is overwhelming electrolyte transport in the
impedance signal. A simple criterion is then given to discriminate electrodes that are properly designed
for active materials electrochemical characterization.

1 Introduction

The pioneering work of Newman and Doyle in the 90's has laid the fundamentals of what is now called
the pseudo-2D (P2D) model of porous electrodes [1, 2, 3, 4]. This model has long become the reference for
modeling electrochemical power sources at the electrode scale, especially lithium-ion batteries (LIB). Based on
the volume averaging method [5], the model proposes a simpli�cation of the complex 3D porous microstructure
using an e�ective description of electrolyte transport in the electrode depth coupled to representative solid
particles for lithium storage. The success of the model lies on the fact that it includes all the leading order
transport phenomena and electrochemical reactions in the cell, and, at the same time, remains simple enough
to be numerically simulated with very few computational power. However, the model still contains about 16
physical and geometrical parameters (10 per electrode and 6 for the electrolyte) in its simplest version. Almost
all of them have to be precisely characterized for the model to correctly predict the battery performances in
various conditions, i.e. charge and discharge at small and large regimes.

Among the most di�cult parameters to determine are the solid and electrolyte di�usion coe�cients. In-
deed, these are kinetic parameters that can only be characterized out of equilibrium with relatively long
time measurements, from a few minutes to a few hours depending on the active materials and electrolyte
transport properties. The idea is thus to design dedicated electrochemical experiments in the vicinity of a
given equilibrium state, with applied cell voltage or current that is large enough to get a signi�cant signal,
but small enough to avoid non-linear phenomena and parasitic reactions that could occur in the measure-
ment meantime. The galvanostatic intermittent titration technique (GITT) consists in the application of
small amplitude pulses of constant current. The solid di�usion coe�cient can be deduced from the short
or long time overpotential variations [6, 7, 8, 9, 10]. However, the results can be di�cult to interpret when
the stoechiometry variations during the pulse lead to signi�cant changes in the OCV derivative, or when
the active material kinetic properties - such as the charge transfer resistance and the di�usion coe�cient -
strongly depends on stoechiometry. Another issue is that the double-layer capacitive timescale can become
so large at low temperature such as perturbing the di�usive part of the GITT signal. In those conditions,
GITT and electrochemical impedance spectroscopy (EIS) analyses have thus to be mixed in order to correctly
identify the characteristic respective timescales of interface kinetics and di�usion [11]. Indeed, EIS is exten-
sively used to characterize the transport properties in porous electrodes of lithium-ion batteries (LIB), as
it allows to separate high frequency phenomena related to solid-electrolyte interface kinetics and electrolyte
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conductivity, from low frequency phenomena related to di�usion [12, 13, 14]. Whereas the high frequency
part of experimental EIS (typically f > 1Hz) is now well understood thanks to the transmission line model
(TLM) �rst introduced by de Levie [15, 16], the interpretation of the low-frequency part (f < 1Hz) is still
strongly debated in the electrochemical community [17, 18] One reason is that experimental EIS data are still
mostly interpreted using analytical "Warburg" expressions [19] for semi-in�nite linear di�usion with either
transmissive or re�ective boundaries [20] in which solid and electrolyte di�usion are decoupled [21]. Whereas
this decoupling approximation is exact in the case of solid thin-�lm electrodes, it is no longer valid for porous
electrodes where both di�usion phenomena are strongly coupled.

A major progress for EIS understanding has been reached when the analytical solution of the linearized
P2D model for LIB has been derived [22, 23, 24]. This resolution gives a physics-based model of porous
electrodes that includes and extends the one proposed by de Levie, to interpret the whole frequency domain
of EIS, and not just the high-frequency part. More recently, a theoretically consistent framework has been
proposed to interpret impedance data of electrochemical devices such as capacitors, electrolyte fuel cells, and
Li-ion batteries [34, 25, 26]. Such analytical models take into account various properties of electrodes active
particles such as the presence of solid electrolyte interphase (SEI) [34], the porous structure of secondary
active particles [34], and the non-uniform size distribution of active particles [25]. As already noticed by
those authors, there is no simple equivalent electric circuit for the EIS low frequency part, because solid
di�usion and electrolyte di�usion are fully coupled over similar timescales and cannot be represented by a
few resistance-capacitor elements in series. In the particular case of secondary active particles, it has been
shown that the electrolyte di�usion inside the particle pores interfere with the solid di�usion in the low-
frequency range of EIS [34]. However, the coupling between solid di�usion and electrolyte di�usion in the
electrode porous microstructure has not been fully investigated.

The aim of the present work is to take advantage of the analytical solution of the P2D model to propose
a simple framework to interpret the low-frequency part of LIB EIS data. In particular, a criterion will be
given to discriminate in which con�guration the solid di�usion coe�cient can be measured, and in which
con�guration electrolyte di�usion is overwhelming in the EIS signal. The paper is structured as follows.

We �rst recall the framework of the linearized P2D model and the method to derive the analytical
impedance solution in section 2. The full set of equations and the computational details are postponed in
appendices. We then show in section 3 that the studied electrode impedance model is fully characterized
by only 3 non-dimensional numbers, 3 characteristic frequencies, and one resistance, given in Table 1. This
reduction of the complex 16 parameters initial model to the 7 parameters analytical expression is the crucial
step to classify the di�erent EIS phenomenologies. Sections 4 and 5 are a detailed discussion of the possible
EIS approximations by the TLM model and by Warburg elements. It is shown in particular that, whereas
the high-frequency EIS part can be accurately represented by the TLM model, the low-frequency part has
no simple equivalent electric circuit approximation, valid in the general case. In the case where electrolyte
di�usion can be neglected, the simple analytical expression [27, 25] called "distributed particle impedance
model" in the present work, is recovered, and gives an exact EIS representation. In the reverse case where
solid di�usion can be neglected, a capacitive approximation can be given. Unfortunately, none of those
approximations are enough to represent the fully coupled model. It is �nally shown in section 6 that the LIB
spectra in the low-frequency range can be classi�ed in four main classes, depending on the relative weights of
two non-dimensional numbers Ns and Nel, and two characteristic frequencies fs and fel related to di�usion
phenomena. The Fig. (6) summarizes this result. The simple criterion

Ns ≫ Nel

with Ns and Nel given in Table 1 in terms of the LIB physical parameters, allows to discriminate the cells
where the solid di�usion coe�cient can be measured using EIS.

2 System and resolution methodology

We consider a LIB cell composed of a positive porous electrode facing a negative porous electrode. The two
electrodes are separated by a porous separator. The active materials are composed of identical spheres of
radius r homogeneously distributed inside the electrodes. The system is represented in Fig. (1). Lithium
transport is described by a standard P2D-Newman model without thermal nor mechanical e�ects. Inactive
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Figure 1: Schematic description of the system. Left: the LIB cell is composed of a positive porous electrode
with its current collector, facing a negative porous electrode. The two electrodes are separated by a porous
separator. The three layers are coupled by charge and mass transport in the electrolyte. Right: the active
electrode material is represented by identical spheres of radius r, homogeneously distributed in the electrode.

materials volume fraction is neglected in the present study. Moreover, as the electronic conductivity is
usually much higher (of the order of 105 S/m for graphite, and 600 S/m for the carbon additives of the
positive [28]) than the ionic conductivity in the electrolyte, the electric conductivity is considered as in�nite
in the present model, which implies that the electric potential does not depend on space. The electrolyte
transport equations are given by the concentrated solution theory. An electric double layer is considered
at the active particle interface, and the lithium insertion in the particle is described by the Butler-Volmer
equation. An electrodeposition such as a solid electrolyte interphase (SEI) at the anode or a surface �lm at
the cathod [35] is not considered in the present study. The full equation set of the P2D-Newman model is
given in appendix A.

The experimental impedance measurements are usually performed by applying a very small oscillating
cell tension, of the order of a few mV, starting from an equilibrium state. In this weak stimulation regime,
the non-linearity of the P2D-Newman model can be neglected and the linear equations give a very accurate
description of lithium transport. Following the pioneer work of Sikha and White [24] and the more recent
developments of [25], we linearize the P2D equations around an equilibrium state and we solve them in
the frequency domain. The result is a formal expression of the LIB cell impedance in terms of the P2D
parameters. The analytical expression can then be evaluated much faster than a simulation of the P2D
model for an applied oscillating tension. As the derivation of the analytical expression is quite cumbersome,
we postpone the full development to appendix E, and we only give below the di�erent steps. The notations
used in the present paper are given in appendix A and B.

1. The solid di�usion equation in the active particles, and the double-layer charging equation are solved
independently in appendix C, to obtain the particle impedance Zpart[Ω.m

2] de�ned by the relation

(jout + jdbl)Zpart = ϕ− φl (1)

The full expression of Zpart is given by Eq. (36) in the appendix. Zpart should be interpreted as the
impedance relating the local current density jout + jdbl �owing outward the particle and the interface
overpotential ϕ− φl.

2. A time Fourier transform is applied to the linear set of transport equations in the electrolyte, and the
system is then completely written with non-dimensional variables and parameters. The result is given
by Eqs. (44-45) in appendix D.

3. The di�cult step achieved in section E is the resolution of the two coupled equations of charge and mass
transport in the electrolyte. This is done by decomposition of the solution vector (cl, il) in eignenmodes.
The concentration and current density �elds can then be expressed in terms of the boundary conditions
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(Cl, J) at the electrode/separator interface located at x = L, and the eigenvector matrix M via(
cl(x)
il(x)

)
= M(x).M−1(L).

(
Cl

J

)
The expression of M is given in Eqs. (50-52). This is done for the positive and negative porous
electrodes.

4. The unknown concentrations Cl at each interface can be found by the continuity relations for mass
transport, namely by enforcing the continuity of the �ux −Deff

l ∇cl at each interface. This is done in
Eqs. (57).

5. Finally, once the �elds cl(x) and il(x) are known, the electrode potential drop can be computed in
terms of the eigenmode matrices and the interface concentrations using the relation between il and the
potentials given in Eq. (1). The expressions are given in Eqs. (58-59). The potential drop inside the
separator is also included in the total impedance in Eqs. (60-61).

The output of the analytical computation provides the positive impedance Zpos [Ω.m
2] in Eq. (60), obtained

from the potential drop between the positive current collector and the middle of the separator, and Zneg

[Ω.m2] in Eq. (61), obtained from the potential drop between the middle of the separator and the negative
current collector (see Fig. 1). We strongly emphasize that the �nal expression is not trivial. Because of
the mass transport equation in the electrolyte, the impedance of a stack composed of a positive electrode,
a separator and a negative electrode cannot be written as the sum of the impedances of each layer. This
in particular means that the equivalent electrical circuits composed of Warburg elements often used in the
literature to model a LIB cell impedance are in general only approximations, as they cannot fully account for
mass and charge coupling in the electrolyte. One purpose of the present paper is to study in which limiting
cases or with which accuracy can a LIB cell impedance be represented by an equivalent electric circuit.

3 Characteristic frequencies and non-dimensional numbers

The P2D-Newman model described in appendix A has 10 parameters per electrode and 6 for the electrolyte,
that are summarized in the Tables 3 and 4. It is therefore an outstanding challenge to determine the respective
model sensitivity to each parameter. The great advantage of reducing the model to its non-dimensional set
of equations is to explicitly display the characteristic timescales and non-dimensional numbers associated to
the di�erent transport phenomena in the porous electrode. The P2D model detailed in appendix A takes
three transport mechanisms into account, namely lithium transfer at the interface with double-layer charging
(high frequency phenomenon), the lithium transport in the solid phase by di�usion, and the lithium ionic
transport by conduction and di�usion in the electrolyte. The solid and electrolyte di�usions are low-frequency
phenomena. In case where the Nernst-Einstein relation (Eq. (5) with αl = 1) is satis�ed, the full analytical
derivation done in appendix shows that the impedance of a porous electrode only depends on 3 characteristic
frequencies, 3 non-dimensional numbers, and one characteristic resistance Z that gives the impedance order
of magnitude. When the Nernst-Einstein relation is not satis�ed, an additional non-dimensional parameter αl

has to be introduced, that somewhat breaks the beautiful equations symmetry. However, as αl is usually close
to one in standard electrolytes, this non-dimensional number does not strongly impact the �nal impedance
value and its e�ect can be included in the non-dimensional ionic di�usion number. This means that each
transport phenomenon can be naturally associated to one characteristic frequency and one non-dimensional
number. Their explicit expression with respect to the P2D set of parameters are given in Table 1. In the
following, we discuss in more details the three mechanisms.
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Solid di�usion Electrolyte di�usion Electrochemical (fast) kinetics

Characteristic
frequencies

fs =
Ds

r2 fel = 2αl

(
1 + ∂ ln γ

∂ ln c

)
j0Sat

+(1−t+)
2πFc0ε

fcapa = Fj0
2πRTCdbl

Non-dimensional
numbers

Ns =
j0r|ϕ′

ocv|
RTDscmax

s
Nel = 1 + 1−t+

αlt+
Nσ = λ

L

Characteristic
electrode resistance

Z = λ
σeff
l

[Ω.m2]

Table 1: Characteristic frequencies, non-dimensional numbers, and order of magnitude of a porous electrode
impedance, as functions of the P2D-Newman parameters.

Electrochemical kinetics : conductivity, double-layer charging, and insertion

The characteristic frequency fcapa and the non-dimensional numberNσ are associated with the high frequency
kinetics of the cell. They are displayed in the third column of Table 1. Those numbers are derived from the
ionic conductivity, and the solid-electrolyte interfacial kinetics composed of double layer charging and lithium
insertion. The frequency fcapa can be seen as the typical frequency of a parallel RC equivalent electric circuit,
where the capacity is Cdbl and the resistance is the standard charge transfer resistance, that is RCT = RT

Fj0
.

The non-dimensional number Nσ is the ratio between the typical penetration length λ and the electrode
thickness L, where the penetration length is [16, 29, 30]

λ =

√
RTσeff

l

Fj0Sa
(2)

For f ≫ fcapa, the current density decreases exponentially from the electrode surface over a typical depth
λ, and Nσ can be interpreted as the electrode fraction where lithium exchange between the electrolyte and
the active material e�ectively takes place. fcapa and Nσ are the same as the characteristic frequency and the
non-dimensional number that appear in the famous TLM model [16]. This is not by chance, as the TLM
model is an excellent approximation of the full P2D-Newman impedance in the high frequency limit when
di�usion kinetics can be neglected. The connection between both models is described in more details in
section 4. It is worth mentioning that the additional frequency ft = fcapaN

2
σ also plays a role in the shape

of the high frequency electrode impedance. Its explicit expression is

ft =
σeff
l

2πSaCdblL2
(3)

It corresponds to the characteristic frequency at which the electrode impedance deviates from a 45◦ line in
the high frequency range (see [34]).

Solid di�usion

The resolution of the isotropic di�usion equation in a sphere of radius r (details in appendix C) shows that
the impedance of an active particle can be computed independently from the electrolyte di�usion. The solid
di�usion e�ect is fully characterized by a non-dimensional impedance Zs de�ned between the lithium �ux
�owing outside the particle and the overpotential by (see Eq. (33) and refs [31, 8])

jout (1 + Zs) =
j0F

RT
(ϕ− φl)

Zs = Ns
tanh(

√
iω/fs)√

iω/fs − tanh(
√

iω/fs)
(4)

where jout is the surface outwards current density, ϕ = Φ− ϕocv(x0) is the di�erence between the electrode
potential and the equilibrium OCV, and φl is the electrochemical potential of lithium ions. The characteristic
frequency fs and the non-dimensional number Ns associated with lithium isotropic di�usion in a spherical
particle of radius r, are displayed in the �rst column of Table 1. The frequency fs is typical of di�usive
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phenomena, and represents the inverse of the timescale needed for a concentration pro�le to relax over
a domain of size r. The expression of Ns is less intuitive, but some physical aspects can be identi�ed.
The non-dimensional number appears from the competition between lithium insertion kinetics and solid
di�usion. There is no overpotential associated with solid di�usion if the OCV is �at, because in that case the
lithium chemical potential does not change with concentration. This is re�ected by the fact that Ns = 0 if
ϕ′
ocv = 0. It can be also noticed that Ns is proportional to r/Ds, which makes sense because larger particles

with a weaker di�usion will enhance the concentration inhomogeneity across the particle and increase the
overpotential associated to solid di�usion.

Electrolyte di�usion

The characteristic frequency fel and the non-dimensional number Nel associated with ionic di�usion in the
porous electrode are displayed in the second column of Table 1. It can be seen that the frequency fel
is proportional to j0Sa

Fc0ε
, which is the inverse timescale for charge pumping in the electrolyte. When the

electrode is charged, the lithium ions are pumped from the pores reservoir, and the counter-ions are moved
by the electrochemical potential to ensure electroneutrality. It can be seen in particular that fel = 0 if the
lithium ions have no mobility (case t+ = 0 ) or if the counter-ions have no mobility (case t+ = 1). The
parameter αl represents the deviation of the ionic di�usion coe�cient from the Nernst-Einstein relation, it
is de�ned by

Dl = αl
2RTσl

F 2c0
t+(1− t+) (5)

Eq. (5) reduces to the Nernst-Einstein relation when αl = 1. It can be shown with the expression of the
penetration length Eq. (2) that the electrolyte frequency has the equivalent expression

fel = 2π
Deff

l

(
1 + ∂ ln γ

∂ ln c

)
λ2ε

(6)

This latter formulation displays the factor
Deff

l

λ2 which is the timescale to di�use over a length λ. This shows
more obviously that the porous electrode only �works� over a depth λ.

The number Nel has a physical meaning. When a constant current is applied to an electrolyte membrane
between two lithium foils, the electrolyte resistance is initially R0 and increases with time due to electrolyte
di�usion to eventually reach an asymptotic value R∞. This technique is often used to measure the electrolyte
transport number [32]. It can be shown that Nel gives the multiplicative factor of resistance increase, that is
R∞
R0

= Nel. This number only depends on the electrolyte properties, not on the electrode microstructure.

Finally, we note that the expression of the characteristic resistance Z given in Table 1 is reminiscent of
the resistance of a porous membrane, but with a width given by the penetration length λ (in Eq. (2)) instead
of the total electrode width L. This again supports the general idea that a porous electrode only works over
a depth λ.

The Table 2 gives the values of the characteristic frequencies, non-dimensional numbers and characteristic
resistance at 25◦C for a NMC positive electrode, and a graphite negative electrode. The parameters used
for the numerical application are summarized in Table 3. They correspond to typical values of a NMC vs
graphite with a positive loading of 22 mg/cm2. The values of Table 2 illustrate that a NMC electrode and a
graphite electrode have completely di�erent di�usion magnitudes. This is particularly clear because the value
of Ns is much larger for the graphite electrode than for the NMC electrode. Moreover, the frequencies fel and
fs are higher for the NMC electrode. Those two observations lead to the conclusion that di�usive transport
is much more e�cient in the NMC electrode than in the graphite electrode, given the electrode parameters
of Table 3. The conclusion is obvious from the values of the characteristic frequencies and non-dimensional
numbers of Table 2, whereas it is much more di�cult to assert just looking at the full set of P2D parameters
of Table 3.
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NMC Graphite

fcapa 100 Hz 10 Hz
fel 3,7 mHz 0,61 mHz
fs 16 mHz 0,16 mHz
Nσ 0,73 0,81
Nel 3,3 3,3
Ns 0,32 11
Z 0,44 mΩ.m2 1,5 mΩ.m2

Table 2: Order of magnitude of the characteristic frequencies and non-dimensional numbers for a NMC vs
graphite cell at 25◦C. The values are computed with the formal expressions given in Table 1.

4 TLM (high frequency) approximation

The TLM model introduced by De Levie [15, 16] has historically been the �rst physics-based impedance
model of porous electrodes, which explains its popularity to interpret the experimental impedance data.
Some authors have later shown [27, 25] that the TLM model in fact gives an exact analytical expression for
the P2D impedance in the high frequency limit, when liquid and solid di�usion phenomena can be neglected.
In the present section, we discuss more precisely the validity conditions of the TLM model.

The TLM impedance is given by [29]
ZTLM =

λ
√

j0F
RT Zint

σeff
l tanh

(
L

λ

√
j0F
RT

Zint

)
Zint = RCT

1+i ω
2πfcapa

(7)

with the speci�c double-layer charging frequency fcapa given in Table 1 and the charge transfer resistance
RCT = RT

Fj0
. Zint corresponds to the individual particle impedance when solid di�usion is neglected. The

TLM impedance given by Eq. (7), corrected by the separator resistance Ls

σeff
sep

, is displayed in Fig. (2) for the

positive NMC electrode and the negative graphite electrode, in the frequency range 10 kHz < f < 1 Hz. By
comparison, the exact analytical impedance is displayed with the blue curve. It can be seen in Fig. (2) that
the TLM approximation indeed becomes exact in the high frequency limit, and that the approximation is
very good all over the high-frequency domain f > 1 Hz.

The TLM model is based on the assumption that all di�usion transport mechanisms, in the electrolyte
and in the solid phase, are negligible. This is indeed the case if the di�usion takes place over much longer
timescales than the double-layer charging. This can be mathematically expressed as{

fel ≪ fcapa

fs ≪ fcapa
(8)

with the frequencies fel and fs given in Table 1. The exact resolution of the P2D impedance for the NMC -
graphite cell shows that the main correction to the TLM comes from the solid di�usion. As the solid di�usion
impedance is much larger for the graphite electrode than for the NMC electrode, a small deviation from the
TLM model can be seen in the blue curve of Fig. (2) right. A more complex expression to take solid di�usion
into account is proposed in section 5.

The electrolyte di�usion in the separator may also contribute to the high-frequency part of the impedance.
Indeed, a characteristic frequency for di�usion in the separator is given by

fsep =
Deff

sep

L2
s

,

which gives fsep ≈ 50 mHz for a 16 µm separator of Mcmullin number 8. In the present con�guration
fsep ≪ fcapa, which also justi�es that the di�usive phenomena inside the separator can be neglected.
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Figure 2: High-frequency impedances (10 kHz <f< 1 Hz) of the positive (left) and negative (right) electrodes
for a NMC vs graphite cell at 25◦C. The blue curve displays the impedance obtained with the P2D-Newman
model, and the red curve displays the TLM approximation corrected by the separator resistance, that is
Z = ZTLM + Ls

2σeff
sep

.

5 Contribution of di�usion phenomena

The present section is devoted to the investigation of the solid di�usion and the electrolyte di�usion respective
contributions to the low-frequency part of the cell impedance. The aim is to emphasize the phenomenology
related to one or the other di�usion phenomenon. For that purpose, we will �rst deal with the limit of
negligible electrolyte di�usion, then with the reverse limit of negligible solid di�usion, and �nally with both
fully coupled di�usion phenomena.

Negligible electrolyte di�usion

A negligible electrolyte di�usion would correspond to the asymptotic limit t+ → 1. In that case, the counter-
ions have a vanishing mobility and the lithium ions concentration pro�le cannot be distorted because it would
break electroneutrality. The limit t+ → 1 guarantees a uniformly �at concentration pro�le in the model,
without any electrolyte di�usion, while keeping a non-negligible electrolyte conductivity. In this limit, both
half-cells are decoupled such that the positive and the negative impedances can be computed separately as
shown in appendix F. The exact analytical P2D impedance of the half-cell reduces to the simple expression

Z = ZDP +
Rsep

2
(9)

with 
ZDP =

λ
√

j0F
RT Zpart

σeff
l tanh

(
L

λ

√
j0F
RT

Zpart

)
Zpart = RCT

1
1+Zs

+i ω
2πfcapa

(10)

with the solid di�usion impedance Zs given by Eq. (4), and

Rsep =
Ls

σeff
sep

(11)

The impedance ZDP , already introduced by [25], is called �distributed particle impedance�, because it takes
into account the non-uniform distribution of currents, potentials and solid concentration in the electrode
depth. Looking at Eqs. (7) and (10), one can see that the distributed particle impedance is a natural
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Figure 3: Illustration of the solid di�usion contribution to the low-frequency impedance of the negative
electrode. The frequency range is 0,1 mHz < f < 10 kHz. The exact P2D impedance in the vanishing
electrolyte di�usion limit (t+ = 1) in blue, and the distributed particle impedance model given by Eqs.
(9-10) in red, are superimposed. The impedance is typical of a blocking di�usion impedance, with a 45◦ line
for short-time di�usion, followed by a vertical line when the solid di�usion pro�le has time to stabilize. The
transition between the two regimes typically occurs around the frequency fs.

extension of the TLM impedance where the single particle impedance contains both double-layer charging
and solid di�usion. Both the P2D impedance with vanishing electrolyte di�usion and the distributed particle
impedance of Eq. (9) are displayed in Fig. (3): the two curves are indistinguishable.

The Fig. (3) shows that the high-frequency part given by the TLM impedance smoothly joins the low-
frequency part where solid di�usion takes place. The solid di�usion impedance is typical of a blocking di�usive
impedance. It is composed of a 45◦ tilted line for short timescales where di�usion has no time to reach the
center of the active particle, and it is followed by a vertical line that means that di�usion has reached a
stationary state and lithium insertion is blocked. The transition between both regimes occurs at the typical
frequency fs given in Table 1.

Negligible solid di�usion

We now turn to the other limit where solid di�usion is negligible and the low frequency part of the impedance
is dominated by electrolyte di�usion. This limit can be achieved e.g when ϕ′

ocv = 0, because in that case
the concentration gradient in the active particle does not create any overpotential. Contrary to the previous
limiting case, the electrolyte di�usion impedance is not given by a simple TLM-like expression. The exact
analytic expression can only be achieved by solving the full charge and mass transport coupling in the
electrolyte, as done in appendix E. The exact P2D impedance without solid di�usion is displayed in blue in
Fig. (4) for both electrodes. The impedance shape begins with the TLM curve at high frequency (f > 1Hz),
and is followed by the electrolyte di�usion impedance at low frequency (f < 1Hz). This latter is a passing
impedance, that means, it has a �nite resistance in the limit f → 0.

The Fig. (4) moreover shows that the electrolyte impedance very closely looks like a semi-circle, especially
for the negative impedance. It is therefore di�erent from the transmissive Warburg impedance of an electrolyte
membrane between two thin-�lm electrodes [21, 14] that displays a 45◦ straight line. The diameter Rl of this
pseudo semi-circle can be computed exactly from the vanishing frequency limit f → 0, as shown in appendix
G. This observation prompts to propose the following electric circuit approximation in the form of a RC
impedance:

Z = ZTLM +
Rsep

2
+ ZRC (12)
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with 
ZRC =

Rl+
Rsep(Nel−1)

2

1+i ω
2πfel

Rl = λ
σeff
l

( √
Nel

tanh(
√
Nel

L
λ )

− 1

tanh(L
λ )

) (13)

and the non-dimensional electrolyte number Nel given in Table 1. Note that Rl is a pure resistance and does
not depend on ω. The approximation given by Eqs. (12-13) is displayed with the red curves in Fig. (4). We
strongly emphasize that the simple expression given by Eq. (12) is an approximation, not the exact P2D
analytical impedance. The limits of this expression have thus to be discussed.

The expression of Eq. (12) is based on the implicit assumption that the TLM impedance is in serie
with the RC approximation of the electrolyte impedance. This can only be justi�ed if both phenomena are
decoupled by a clear time-scale separation, that is fel ≪ fcapa. The strength of Eq. (13) is that it gives the
correct asymptotic resistance in the limit f → 0, as can be seen in Fig. (4). In Eq. (13), fel is exactly the RC
frequency, and is thus located on the top of the RC semi-circle impedance (red curve). In the P2D impedance
(blue curve), the whole system, positive electrode, separator, and negative electrode is fully coupled by mass
transport in the electrolyte. The characteristic frequency fel is not exactly located at the point of maximal
imaginary part (top of the pseudo semi-circle). It can be located slightly on the left of the imaginary part
maximum - as for the positive - or slightly on the right of the imaginary part maximum - as for the negative.
The deviations are due to the reciprocal in�uence of both electrode impedances on each other. Besides,
expression (13) can only be used if the separator is very thin compared to the electrodes, such that its own
timescale has no impact on the whole impedance.

Figure 4: Illustration of the electrolyte di�usion contributions to the low-frequency impedance of the positive
(left) and the negative (right) electrodes. The frequency range is 0,1 mHz < f < 10 kHz. The electrolyte
di�usion part is close to a semi-circle with characteristic frequency fel (given in Table 1). The blue curve
represents the exact P2D impedance without solid di�usion (ϕ′

ocv = 0) and the red curve represents the RC
approximation given by Eqs. (12-13). The inset panels display the impedance real part in the low frequency
range f < 1 Hz.

Coupled di�usion phenomena

Finally, the Fig. (5) displays the electrolyte impedance (in blue), the distributed particle impedance (in
orange) and the exact P2D full impedance (in red) for the positive and the negative electrodes. It can be
seen that the phenomenology of the low-frequency impedance strongly di�ers for both electrodes.

For the positive electrode, the low-frequency part is mainly a vertical straight line created by the blocking
solid di�usion, that is slightly tilted by the contribution of the electrolyte impedance. For this electrode, the
tilted straight line should not be interpreted as the solid di�usion 45◦ line, because its angle is entirely set by
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the electrolyte di�usion, and not by solid di�usion. For the negative electrode on the contrary, solid di�usion
can be clearly identi�ed at the beginning of the low-frequency impedance. The impedance is very close to
a 45◦ straight line characteristic of solid di�usion. It is only slightly above the solid di�usion because the
electrolyte impedance gives a small imaginary contribution for f > fel. For f < fel, the electrolyte di�usion
equilibrates and the full impedance is slightly shifted to the right compared to the solid di�usion impedance.

The Fig. (5) (purple stars) also displays the equivalent electric circuit impedance given by

Z = ZDP + ZRC +
Rsep

2
(14)

with the distributed particle impedance given by Eq. (10) and the RC-approximated impedance for electrolyte
di�usion given by Eq. (13). It can be seen that the equivalent electric circuit impedance is a relatively
poor approximation of the exact P2D impedance. The �rst reason is that the impedance ZRC is only an
approximation of the electrolyte di�usion impedance, and the second reason is that the exact impedance is
not the sum of the solid di�usion impedance and the electrolyte di�usion impedance. Instead, both di�usive
phenomena are coupled and distributed in the depth of the porous electrode. The equivalent electric circuit
impedance Eq. (14) can only be used to obtain orders of magnitudes of di�usive phenomena in the low-
frequency range, but the proper extraction of transport parameters for impedance data should be done with
the full P2D expression.

Figure 5: Impedance spectra of the positive (left) and negative (right) electrodes of a NMC vs graphite cell
at 25◦C obtained with the P2D-Newman model. The frequency ranges are 1,6 mHz < f < 10 kHz for the
positive, and 0,16 mHz < f < 10 kHz for the negative. The blue curve displays the electrolyte contribution
(obtained with ϕ′

ocv = 0), the orange curve displays the solid di�usion contribution (obtained with t+ = 1)
and the red curve displays the full model impedance.

6 Low frequency phenomenology

It has been shown in section 3 that the impedance phenomenology of a porous electrode is entirely deter-
mined by 3 non-dimensional numbers and 3 frequencies (see Table 1). Most often, the frequency fcapa that
characterizes the double-layer charging and charge transfer is much higher than the characteristic frequencies
of di�usion phenomena. For this reason, the impedance displays two distinct frequency domains: the high
frequency part (1Hz< f) is dominated by the double layer charging, whereas the low-frequency part (f <1Hz)
is dominated by the solid and electrolyte di�usions.

The low-frequency impedance phenomenology can thus be classi�ed according to the 2 non-dimensional
numbers Ns and Nel, and the 2 frequencies fs and fel. Depending on the relative magnitudes of those four
quantities, the low-frequency impedance may displays four di�erent phenomenologies that are summarized
in Fig. (6). We describe below each of this phenomenology in more details.

Overwhelming solid di�usion, case Nel ≪ Ns and fel ≪ fs according to the LFP parameters of Table
3. The electrolyte di�usion magnitude is much lower than the solid di�usion magnitude, and happens on
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much longer time-scales. The low-frequency impedance part is thus very close to an ideal solid di�usion
impedance, with a 45◦ straight line followed by an almost vertical line when solid di�usion becomes blocking.
This behaviour can be encountered for example for LFP-type positive electrodes where the OCV is very
steep (ϕ′

ocv ≈ 10V outside the phase transition plateau) and the solid di�usion coe�cient is very low (Ds ≈
10−16m2/s). This is the ideal con�guration to measure the solid di�usion coe�cient by �tting the impedance
data.

Transient solid di�usion, case Nel ≪ Ns and fs ≪ fel according to the graphite parameters of Table
3. The electrolyte di�usion magnitude is much lower than the solid di�usion magnitude, but happens on
much shorter time-scales. The consequence is a low-freqency impedance close, but slightly above a 45◦ line
characteristic of solid di�usion. This phenomenology can be encountered in graphite electrodes where the
particles are quite large (r ≈ 8µm). The solid di�usion coe�cient can still be measured, provided the model
used to �t the impedance data correctly takes into account electrolyte di�usion.

Blocking solid di�usion, case Ns ≪ Nel and fel ≪ fs according to the NMC parameters of Table 3.
The electrolyte di�usion magnitude is much larger than the solid di�usion magnitude, and happens on much
longer time-scales. For frequencies smaller than fs, the solid di�usion is in the blocking limit and contribute
with a vertical line to the low-frequency impedance. The impedance line is tilted compared to the vertical
because of electrolyte di�usion correction. This behaviour can be observed in NMC electrodes where solid
di�usion has a negligible contribution to the total overpotential compared to the other kinetic phenomena.
The solid di�usion coe�cient cannot easily be measured with the impedance data, but information on the
electrolyte can be obtained using the deviation from the vertical line.

Overwhelming electrolyte di�usion, case Ns ≪ Nel and fs ≪ fel. To obtain this impedance, the NMC
parameters of Table 3 and the electrolyte parameters of Table 4 have been modi�ed using ∂ ln γ

∂ ln c = 3, r = 5
µm, and Ds = 5.10−14m2/s. The electrolyte di�usion magnitude is much larger than the solid di�usion
magnitude, and happens on much shorter time-scales. The low-frequency impedance is mainly described
by the passing electrolyte di�usion impedance, with a superimposed solid di�usion correction. It can be
seen in the bottom right panel of Fig. 6 that the solid di�usion contribution only becomes signi�cant below
fs where the impedance switch from the passing to the blocking behaviour. This con�guration can not be
easily encountered with porous electrodes composed of standard active materials and electrolyte. This type
of impedance could be used to measure the electrolyte transport properties rather than the solid di�usion
coe�cient.

7 Conclusion

We have presented an analytical solution of the linearized P2D-Newman model for complete cells of Li-ion
batteries in the frequency domain. We have shown the link between this exact solution and some of the
analytical approximations previously reported in the literature, in particular with the de Levie model [15]
and the distributed particle impedance model [27]. For the electrolyte contribution, we have shown that the
impedance in a porous electrode is di�erent from the transmissive Warburg impedance and we alternatively
propose an equivalent RC approximation. The resolution shows that the EIS can be written in terms of
three non-dimensional numbers, three characteristic frequencies, and one characteristic resistance. In the low
frequency domain (typically for f < 1Hz), the EIS is dominated by solid and liquid di�usion phenomena.
They are respectively associated to two non-dimensional numbers (Ns, Nel) and two characteristic frequencies
(fs, fel). The major result of the paper is then to show that the low frequency EIS phenomenology can be
classi�ed in four di�erent con�gurations, depending on the relative weights of Ns and Nel on the one hand,
and of fs and fel on the other hand (see Fig. (6)).

As a result, it is not always possible to use EIS data to measure the solid di�usion coe�cient because
solid di�usion can be overwhelmed by electrolyte di�usion at low frequencies. More precisely, the present
work proposes a framework to design porous electodes in which the solid and electrolyte di�usions can be
decoupled in the EIS signal, using the comparison of the two non-dimensional numbers Ns and Nel. The
solid di�usion coe�cient can be measured only if Ns ≫ Nel, whereas the electrolyte di�usion coe�cient can
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Figure 6: The four possible phenomenologies for the low-frequency impedance of LIB porous electrodes. The
black thick line represents a 45◦ slope. Top left : a LFP-type impedance where solid di�usion dominates,
in the range 1Hz-5mHz. Bottom left : a graphite-type impedance where solid di�usion is mixed with
electrolyte di�usion, in the range 1Hz-1mHz. Top right : a NMC-type impedance where solid di�usion is
mixed with electrolyte di�usion, in the range 1Hz-1mHz. Bottom right : a NMC-type impedance with
large electrolyte activity, where electrolyte di�usion dominates, in the range 1Hz-1mHz.
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be measured only if Nel ≫ Ns, which gives an easy criterion to interprete the EIS low-frequency part. A
major perspective is to be able to apply the present theory to real porous electrodes, and measure solid and
electrolyte di�usion kinetics with di�erent electrode designs : this experimental work will be done in a future
paper.

The present work has focused on full cells with two porous electrodes probed with an ideal reference
electrode located at the middle of the separator. In this con�guration, both electrodes are weakly coupled
by the transport in the electrolyte, which justify the independent analysis of each electrode. For half-cells
studies, porous electrode facing Li-metal foil, the non-dimensional numbers and characteristic frequencies will
remain the same for the porous electrode. However, the coupling between the two electrodes is stronger and
might lead to a di�erent phenomenology than the one reported in the present work. SEI and cathodic surface
�lms �lms are not considered in the present work but can be taken into account using a modi�cation of the
one-particle impedance de�ned by the relation Eq. (1). The SEI �lm can have a large impact on the electrode
impedance, as shown in ref. [34]. However, its e�ect is almost completely limited to the high-frequency part
and cannot interfere with the electroyte nor solid di�usion signatures.

The P2D-Newman model studied in the present paper only considers Fick's law for lithium transport in
the active materials. A point that is actively discussed in the battery community is to know whether this
simple law can also account for materials displaying phase transitions such as LFP or graphite. A natural
extension of the present work is to propose a full analytical solution for EIS model including phase transition,
that is still lacking in the literature.
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A Full set of equations of the P2D model

Electrolyte

Within the framework of concentrated solutions theory, the equations for ionic charge and mass transport in
the porous electrode are

ε∂tCl = ∇.

(
Deff

l (Cl)

(
1 +

∂ ln f(Cl)

∂ lnCl

)
∇Cl − t+(Cl)

il
F

)
+

∇.il
F

(15)

il = −σeff
l (Cl)∇φl +

2RTσeff
l (Cl)(1− t+(Cl))

F

(
1 +

∂ ln f(Cl)

∂ lnCl

)
∇Cl

Cl
(16)

where il [A/m
2] is the ionic current density, φl[V] is the electrochemical potential of Li+ ions, Deff

l = Dl
ε
τ

is the e�ective ionic di�usion coe�cient and σeff
l = σl

ε
τ is the e�ective ionic conductivity in the porous

medium of the electrode. All transport coe�cients Deff
l , σeff

l , t+ and the electrolyte activity f depends on
the electrolyte concentration Cl. The Nernst-Einstein relation between Dl and σl is no longer valid for
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concentrated solutions, so we de�ne the non-dimensional coe�cient αl as the deviation from the Nernst-
Einstein relation

Dl = αl
2RTσl

F 2c0
t+(1− t+)

The equation for charge conservation in the electrolyte is

∇.il = Sa (jout + jdbl) (17)

where jout [A/m
2] is the Li+current �owing out of the particle and jdbl [A/m

2] is the current for double layer
charging.

A schematic representation of the porous electrode is displayed in Fig. 1. The boundary conditions are
zero mass and charge �ux at the current collector position x = 0{

−Deff
l ∇Cl + t+ il

F

∣∣
x=0

= 0

il|x=0 = 0
(18)

and conservation of the full current density I [A/m2]crossing the electrode/separator interface located at
x = L

il|x=L = I (19)

Solid phase

The lithium transport in active particles is modeled by the standard di�usion equation (Fick's law)

∂tCs = ∇. (Ds(Cs)∇Cs) (20)

where Cs is the lithium concentration in the active matter, and Ds(Cs) is the solid di�usion coe�cient, that
depends on the local lithium concentration. The boundary condition at the particle surface is

−Dsnsl.∇Cs =
jout
F

(21)

where nsl is the unit vector pointing outwards.

Solid-electrolyte interface

The solid-electrolyte interface is modeled by the (non-linear) Butler-Volmer expression in parallel with a
capacity representative of the electronic double-layer. The situation is represented in Fig. (7). The Butler-
Volmer equation is

jout = j0(Cs(r))

(
Cl

c0

)α [
eα

F
RT η − e−(1−α) F

RT η
]

(22)

where Cs(r) is the lithium concentration in solid phase at the particle surface, Cl is the ionic concentration in
liquid phase at the particle surface, α is an empirical coe�cient to quantify insertion/desinsertion asymmetric
kinetics, and η is the insertion overpotential given by

η = Φ− ϕocv(Cs(r))− φl (23)

with Φ the electric potential, ϕocv(Cs(r)) is the equilibrium potential of the active material at the lithium
concentration Cs(r), and φl is the ionic electrochemical potential at the particle surface.

The equation for double-layer charging can be simply written

jdbl = Cdbl∂t (Φ− φl) (24)

B Notations and symbols

The following tables 3 and 4 gather the di�erent notations used in the manuscript. The parameters values
used in the simulations for the active materials graphite, NMC and LFP are given in table 3, and for the
electrolyte in table 4.
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Active 
particle

Electrolyte

𝑪𝒅𝒃𝒍

Τ𝑹𝑻 𝑭𝒋𝟎

𝜼

𝒋𝒐𝒖𝒕

𝒋𝒅𝒃𝒍

𝝓− 𝝋𝒍

Figure 7: Representation of the interface kinetics with double-layer charging.

Active material and electrode parameter Notation / units Graphite NMC LFP

OCV derivative vs stoechiometry ϕ′
ocv [V] -1 -1 -10

maximal concentration cmax
s [mol/m3] 30500 48000 23500

particle mean radius r [µm] 8 2,5 0,1
solid di�usion coe�cient Ds [m

2/s] 10−14 10−13 10−16

exchange current density j0 [A/m2] 1 1,5 0,05
double-layer capacity Cdbl [F/m

2] 0,62 0,093 0,093
porosity ε 0,3 0,25 0,3
tortuosity τ 7 2,5 2
thickness L [µm] 80 60 110

exchange surface density Sa [m−1] 3(1−ε)
r

3(1−ε)
r

3(1−ε)
r

Table 3: Electrode parameters used in the present work. The exchange surface density Sa corresponds to
identical spherical particles of radius r. The parameter values chosen for the electrode design, and for the
active materials NMC, graphite and LFP are orders of magnitude at 25◦C, and should not be considered as
precise experimental values. The reader is referred to the open database liiondb.com for the various parameter
values found in the literature.

Electrolyte parameter Notation / units Value

mean concentration c0 [mol/m3] 1000
conductivity σl [S/m] 1

transport number t+ 0.3
ionic di�usion coe�cient Dl [m

2/s] 1, 12.10−10

Nernst-Einstein correction factor αl 1

activity factor ∂ ln γ
∂ ln c 0

Table 4: Electrolyte parameters used in the present work. The chosen values are typical orders of magnitude
for a liquid electrolyte at 25◦C.

17



C Particle impedance

This section presents in details the computation of the impedance Zpart of an individual particle de�ned by
the relation Eq. (1), the derivation of the non-dimensional number Ns and the characteristic frequencies fs
and fcapa given in Table 1.

Lithium concentration in solid phase

The solid di�usion equation is given by Eq. (20). We decompose the concentration �eld in the vicinity of an
equilibrium state of uniform concentration c0s by Cs = c0s + cs, with the concentration �uctuation satisfying
cs ≪ c0s. The full non-linear di�usion equation can be linearized in the vicinity of c0s and gives to leading
order

∂tcs = Ds∆cs (25)

where Ds = Ds(c
0
s) is a constant.

The active material is composed of identical spherical particles of radius r.
We thus proceed with Eq.(25) by writing the di�usion equation in spherical coordinates for the lithium

concentration pro�le cs(y, t)

∂tcs = Ds
1

y

∂2

∂y2
(ycs) (26)

with the boundary condition deduced from Eq. (21){
−Ds∂ycs(r, t) =

jout

F at the particle surface

−Ds∂ycs(r, t) = 0 at the particle center
(27)

where jout [A/m
2] is the current density �owing outwards the particle.

Eq. (26) can be solved by introducing the variable z(y, t) = ycs(y, t) and taking the time Fourier transform.
We get the equation

iωz = Ds
∂2z

∂y2

Considering that the concentration is �nite at the particle center, we have z(y = 0) = 0, and the general
solution is

z(y) = A sinh

(
y

√
iω

Ds

)
. (28)

The integration constant A is found using the boundary condition Eq. (27)

−Ds

[
−z(r)

r2
+

1

r

∂z

∂y
(r)

]
=

jout
F

−ADs

− sinh
(
r
√

iω
Ds

)
r2

+

√
iω

Ds

cosh
(
r
√

iω
Ds

)
r

 =
jout
F

which gives

A =
jout
FDs

r2

sinh
(
r
√

iω
Ds

)
− r
√

iω
Ds

cosh
(
r
√

iω
Ds

) . (29)

As will be seen in the next section, the computation of Zpart requires to know the concentration at the

particle surface cs(r). Its expression is given with the combination of Eqs. (28-29), using cs(y) =
z(y)
y :

cs(r) =
joutr

FDs

tanh(kpr)

tanh(kpr)− kpr
(30)

with the inverse of the di�usion length kp =
√

iω/Ds.
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Lithium insertion at the particle surface

The solid/electrolyte interface is modeled by Eqs. (22-23-24). It can be noticed that, while the Eq. (24)
is linear, the Butler-Volmer Eq. (22) is not. The equilibrium state is reached for the electrode potential
Φ0 = ϕocv(c

0
s) + φ0

l . Without loss of generality, we choose the equilibrium potential such that φ0
l = 0. We

consider a small �uctuation ϕ = Φ − Φ0 with ϕ ≪ RT
F , φl ≪ RT

F , and cs(r) ≪ c0s in the vicinity of this
equilibrium state, and we expand the overpotential η of Eq.(23) to �rst perturbation order as

η = Φ0 + ϕ− ϕocv(c
0
s + cs(r))− φl

= ϕocv(c
0
s) + ϕ−

[
ϕocv(c

0
s) +

dϕocv

dcs
cs(r)

]
− φl

≈ ϕ− dϕocv

dc
cs(r)− φl

The assumption that η ≪ RT
F then allows to expend the exponential terms in Eq. (22) to leading order as

eα
F
RT η − e−(1−α) F

RT η ≈ F

RT

(
ϕ− dϕocv

dcs
cs(r)− φl

)
Finally, we notice that the expansions of the nonlinear prefactors j0(Cs(r)) and

(
cl
c0

)α
to �rst order would

only add second order corrections to the Butler-Volmer Eq. (22). The linear Butler-Volmer equation is thus
to leading order

jout =
j0F

RT

(
ϕ− dϕocv

dcs
cs(r)− φl

)
(31)

where j0 = j0(c
0
s) is the exchange current value at the equilibrium concentration c0s.

Particle impedance

Once the surface lithium concentration cs is known from Eq.(30), we can close the Eq.(31) to express the
lithium insertion �ux jout as

jout =
j0F

RT

(
ϕ− dϕocv

dcs

joutr

FDs

tanh(kpr)

tanh(kpr)− kpr
− φl

)
jout

(
1 +

dϕocv

dcs

j0r

RTDs

tanh(kpr)

tanh(kpr)− kpr

)
=

j0F

RT
(ϕ− φl)

jout (1 + Zs) =
j0F

RT
(ϕ− φl) (32)

where we have introduced the non-dimensional solid di�usion impedance Zs given by

Zs =
dϕocv

dcs

j0r

RTDs

tanh(kpr)

tanh(kpr)− kpr

The OCV derivative is usually given with respect to the stoechiometry xLi using cs = xLic
max
s . Furthermore,

the OCV always decreases when the lithium concentration increases such that ϕ′
ocv = − |ϕ′

ocv| < 0 for all
active materials. We thus write

dϕocv

dcs
= −|ϕ′

ocv|
cmax
s

Using then the expression of the non-dimensional number Ns and the solid frequency fs, both given in Table
1, one can �nd the solid di�usion impedance expression (see Eq. (4)) [31, 8]

Zs = Ns
tanh(

√
iω/fs)√

iω/fs − tanh(
√
iω/fs)

(33)

The charge conservation law for the electrolyte is

∇.il = Sa (jout + jdbl) (34)
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Using Eq.(32) and the time Fourier transform of Eq.(24), the charge conservation becomes

∇.il =
Saj0F

RT

(
1

1 + Zs
+

iω

2πfcapa

)
(ϕ− φl)

∇.il
Sa

RT

Fj0

(
1 + Zs

1 + iω
2πfcapa

(1 + Zs)

)
= ϕ− φl (35)

with the double-layer charging frequency given by fcapa = Fj0
2πRTCdbl

. Note that we have used the equality

∂tΦ = ∂tϕ because the equilibrium potential ϕocv(c
0
s) does not depend on time. The particle total impedance

is �nally given by (see also Eq.(10))

Zpart =
RCT

1
1+Zs

+ i ω
2πfcapa

. (36)

with the charge transfer resistance RCT = RT
Fj0

. This expression corresponds to the classical Randles circuit

impedance combining solid di�usion and charge transfer [33, 21].

D Non-dimensional set of equations

We give in this section the derivation of the non-dimensional set of equations for the transport equations in
the electrolyte, in the linear regime. The full set of equations is given in Eqs. (15-16).

The equilibrium state is reached for a constant uniform concentration C0
l = c0, no currents i0l = 0 and

constant ionic potential φ0
l = 0. We consider a small perturbation Cl = c0 + cl with cl ≪ c0, φl ≪ RT

F and
il ≪ j0 in the vicinity of this equilibrium state. The expansion of Eqs. (15-16) to �rst order gives

ε∂tcl = ∇.

(
Deff

l .

(
1 +

∂ ln f

∂ ln c

)
∇cl + t+

il
F

)
+

∇il
F

(37)

il = −σeff
l ∇φl +

2RTσeff
l (1− t+)

Fc0

(
1 +

∂ ln f

∂ ln c

)
∇cl (38)

where the transport coe�cients Deff
l , σeff

l , t+ and the activity coe�cient ∂ ln f
∂ ln c should be evaluated at the

equilibrium concentration c0 and considered as constants.

We proceed by introducing the non-dimensional set of variables
c̃l = cl

c0

ĩl = λil
Fc0Deff

l (1+ ∂ ln f
∂ ln c )

φ̃l = Fφl

RT

(39)

and the non-dimensional space variable x̃ = x
λ , where the penetration length λ is given by

λ =

√
RTσeff

l

Fj0Sa
(40)

The time Fourier transform of Eqs. (37-38) gives

λ2ε

Deff
l

(
1 + ∂ ln f

∂ ln c

) iωc̃l = c̃′′l + (1− t+)̃i′l (41)

ĩl = − φ̃′
l

2αlt+(1− t+)
(
1 + ∂ ln f

∂ ln c

) +
c̃′l

αlt+
(42)
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with the prime denoting the spatial derivative wrt x̃. It can be seen with this non-dimensional choice of
variables, that the characteristic ionic di�usion frequency fel given by Eq. (6) naturally appears in the set
of equations as the unique timescale of electrolyte transport. The electrolyte potential and current density
are related by Eq. (35). Using the non-dimensional variables given in Eq. (39), this relation becomes

Z̃part̃i
′
l =

ϕ̃− φ̃l

2αlt+(1− t+)
(
1 + ∂ ln f

∂ ln c

) (43)

The latter relation can be derived to replace the potential derivative in Eq. (42). As the electric potential
do not depend on space, we get ϕ̃′ = 0 and the �nal set of equations are

i
ω

2πfel
c̃l = c̃′′l + (1− t+)̃i′l (44)

ĩl = Z̃part̃i
′′
l +

c̃′l
αlt+

(45)

with Z̃part =
Fj0
RT Zpart. This set of equations should be solved for both electrodes positive and negative, with

the proper boundary conditions at the interfaces with the separator. This is done in the next section.

E Analytical resolution

Computation of the eigenvalues and eigenmatrix

We solve in this section the set of Eqs.(44-45) using an eigenmodes decomposition. For clarity, we omit the
tilt on the variables such that the calculations below should always be understood with the non-dimensional
�elds except otherwise stated.

The boundary condition at the interface with the current collector, located at x = 0 are zero mass and
charge �uxes. We thus look for a solution of the system of Eqs.(44-45) in the form(

cl
il

)
=

(
a cosh(kx)
b sinh(kx)

)
(46)

where a, b are constants to be determined, and k is an eigenvalue. With the ansatz Eq.(46), the system
(44-45) becomes [

a

(
k2 − i

ω

2πfel

)
+ bk(1− t+)

]
cosh(kx) = 0[

b
(
k2Zpart − 1

)
+

ak

αlt+

]
sinh(kx) = 0

The above system has a non-trivial solution if the system discriminant is zero, which means that k satis�es
the equation (

k2 − i
ω

2πfel

)(
k2Zpart − 1

)
− k

αlt+
k(1− t+) = 0

or equivalently

Zpartk
4 −

(
iω

2πfel
Zpart +Nel

)
k2 + i

ω

2πfel
= 0 (47)

The Eq.(47) has four solutions, but the solutions k and −k are physically equivalent. Let then k1, k2 be
the two independent solutions of Eq.(47), such that k21 ∼

ω→+∞
iω

2πfel
and k22 ∼

ω→+∞
1

Zpart
. For k satisfying the

eigenvalue equation, the constants a and b are related by

a

(
k2 − i

ω

2πfel

)
= −bk(1− t+) (48)
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Let α be the constant related to the �rst eigenmode of eigenvalue k1, the relation Eq. (48) is satis�ed by
setting {

a = −αk1(1− t+)

b = α
(
k21 − i ω

2πfel

) (49)

An equivalent relation holds with the constant β related to the eigenmode of eigenvalue k2. The general
solution (cl, il) can be written as the linear combination of the two eigenmodes de�ned by Eqs. (46-49)(

cl
il

)
=

(
−k1(1− t+) cosh(k1x) −k2(1− t+) cosh(k2x)(
k21 − i ω

2πfel

)
sinh(k1x)

(
k22 − i ω

2πfel

)
sinh(k2x)

)
.

(
α
β

)
(
cl
il

)
= A(x).

(
α
β

)
(50)

where we have introduced A(x) the eigenmodes matrix of the system.

The next step is to relate the constants (α, β) to the boundary conditions at the interface with the
separator. Let assume that we are dealing with the positive electrode, and let x = Lp be the location of the
electrode-separator interface (see Fig. 1). We have the two constrains{

cl(Lp) = cp

il(Lp) = Ip

where cpis the concentration on top of the electrode (unknown), and Ip is the (non-dimensional) total current
outwards the electrode The value of Ipis related to the total current density I [A/m2] imposed to the cell by

Ip =
λpI

Fc0Deff
p

(
1 + ∂ ln f

∂ ln c

) (51)

according to the adimensionalization of Eq.(39), where Deff
p is the value of Deff

l for the positive electrode,
and λp is the penetration length of the positive. From Eq.(50) we have the relation

A(Lp).

(
α
β

)
=

(
cp
Ip

)
The general solution can thus be expressed as(

cl
il

)
= A(x).A−1(Lp)

(
cp
Ip

)
(
cl
il

)
= M(x).

(
cp
Ip

)
(52)

where we have introduced the new matrix M(x) = A(x).A−1(Lp). There exists another matrix N(x) for the
negative electrode such that the �elds (cl, il) in the negative are given by(

cl
il

)
= N(x).

(
cn
In

)
(53)

The computation of N(x) is completely similar to that of the positive electrode described above.

Continuity relations at the interfaces

The next step is to compute the unknown concentrations values cp and cn at the two interfaces between
the electrodes and the separator. They can be found by expressing the continuity of mass transport be-
tween the two electrodes and the separator. This is done by enforcing the continuity of the mass �ux
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−Deff
l

(
1 + ∂ ln f

∂ ln c

)
∇cl at the interfaces. In the present section, we come back to dimensional variables, and

we write with a tild the non-dimensional ones.
The mass �ux at the interface between the positive and the separator can be expressed as

−Deff
p

(
1 +

∂ ln f

∂ ln c

)
∂cl
∂x

(Lp) = −Deff
p

(
1 +

∂ ln f

∂ ln c

)
c0
λp

∂c̃l
∂x̃

(Lp) (54)

Using the matrix of eigenvectors M(x) given by Eq.(52), the concentration derivative in Eq.(54) can be
written

−Deff
p

(
1 +

∂ ln f

∂ ln c

)
∂cl
∂x

(Lp) = −Deff
p

(
1 +

∂ ln f

∂ ln c

)
c0
λp

(
c̃pM

′
11(L̃p) + ĨpM

′
12(L̃p)

)
(55)

where we have introduced the derivative M ′(x) = ∂A(x)
∂x .A−1(L̃p). Using the same procedure for the negative

electrode, the mass �ux at the interface with the separator can be expressed as

−Deff
n

(
1 +

∂ ln f

∂ ln c

)
∂cl
∂x

(Ln) = −Deff
n

(
1 +

∂ ln f

∂ ln c

)
c0
λn

(
−c̃nM

′
11(L̃n) + ĨnM

′
12(L̃n)

)
(56)

Please note that the sign of −c̃n in Eq. (56) comes from the fact that the negative electrode is reversed
compared to the positive electrode.

We do not display the computation of the mass �ux inside the separator, as it can be obtained straightfor-
ward by solving the di�usion equation in the electrolyte Eq.(15) without source terms. Let l be the separator
width, and

ξ2 =
εsepω

Deff
sep

be characteristic di�usion length inside the separator. The mass continuity at the two interfaces is given by
the system−Deff

p

(
1 + ∂ ln f

∂ ln c

)
c0
λp

(
c̃pM

′
11(L̃p) + ĨpM

′
12(L̃p)

)
= −Deff

sep

(
1 + ∂ ln f

∂ ln c

)
ξc0

sinh(ξl) (c̃n − c̃p cosh(ξl))

−Deff
n

(
1 + ∂ ln f

∂ ln c

)
c0
λn

(
−c̃nN

′
11(L̃n) + ĨnN

′
12(L̃n)

)
= −Deff

sep

(
1 + ∂ ln f

∂ ln c

)
ξc0

sinh(ξl) (c̃n cosh(ξl)− c̃p)

or equivalently 
(
−M ′

11(L̃p)−
Deff

sep

Deff
p

λpξ
tanh(ξl)

)
c̃p +

Deff
sep

Deff
p

λpξ
sinh(ξl) c̃n = ĨpM

′
12(L̃p)

−Deff
sep

Deff
n

λnξ
sinh(ξl) c̃p +

(
N ′

11(L̃n) +
Deff

sep

Deff
n

λnξ
tanh(ξl)

)
c̃n = ĨnN

′
12(L̃n)

(57)

The set of equations Eq.(57) can be solved to �nd the two boundary concentrations cp, cn as function of the

applied current. This last step completely solves the problem. It can be seen from Eq.(51) that Ĩpand Ĩn are
both proportional to I, and thus cp, cn are also proportional to I by linearity.

Computation of the impedance

The individual particle impedance is known from Eq.(36). The electrolyte concentration and current �elds
can be computed by the eigenmodematrices M and N given by Eqs.(52-53). The interfaces concentrations
are computed from the linear system Eq.(57). The only remaining step is to express the positive and negative
impedances from the current and potential �elds.

The electrode positive impedance should be understood as the di�erence between the uniform electric
potential of the electrode and the ionic electrochemical potential on top of the electrode ϕ− φl(Lp), divided
by the current density

Z+ =
ϕ− φl(Lp)

I

=
λp

σeff
p

1

2αlt+(1− t+)
(
1 + ∂ ln f

∂ ln c

) ϕ̃− φ̃l(L̃p)

Ĩp
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Using the relation Eq.(43) to replace the potential, we get

Z+ =
λp

σeff
p

Z̃+
part.

ĩ′l(L̃p)

Ĩp

Z+ =
λp

σeff
p

Z̃+
part.

(
M ′

22(L̃p) +
c̃p

Ĩp
M ′

21(L̃p)

)
(58)

The following similar relation holds for the negative electrode impedance

Z− =
λn

σeff
n

Z̃−
part.

(
N ′

22(L̃n)−
c̃n

Ĩn
N ′

21(L̃n)

)
(59)

In an experimental setup, the impedance contribution of the separator cannot be separated from that of
the electrode, and should be included in the computation of the total positive and negative impedance. The
positive and negative impedances of the cell are de�ned from the potential drop between the current collector
and the middle of the separator, as represented in Fig. 1. We do not detail the calculation, it can be done
straightforward from the resolution of the charge transport equation in the separator. We get for the positive

Zpos = Z+ +
l

2σeff
sep

+
λp

αlt+σeff
p

1

Ĩp

(
c̃p −

c̃p + c̃n
2 cosh(ξl/2)

)
(60)

and for the negative

Zneg = Z− +
l

2σeff
sep

+
λn

αlt+σeff
n

1

Ĩn

(
c̃p + c̃n

2 cosh(ξl/2)
− c̃n

)
(61)

F Negligible electrolyte di�usion limit

The negligible electrolyte di�usion limit corresponds to t+ → 1 in Eqs. (44-45). The source term in the
mass transport Eq. (44) disappears, which means that the electrolyte concentration pro�le remains uniform.
The limit can be interpreted as that of vanishing anions mobility. If the anions can't move, the lithium ion
concentration pro�le can't be distorted because it would break electroneutrality.

The charge transport equation is then

il = λ2Fj0
RT

Zparti
′′
l

with the boundary conditions{
il(x = 0) = 0 at the electrode-collector interface

il(x = L) = I at the electrode-separator interface

The solution is

il(x) = I

sinh

(
x

λ
√

Fj0
RT Zpart

)

sinh

(
L

λ
√

Fj0
RT Zpart

) (62)

The relation (35) allows to express the potential di�erence from the electrolyte current density by

∇.il
Sa

Zpart = ϕ− φl (63)

and the electrode impedance is then simply given by

Z =
ϕ− φl(L)

I
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Using Eqs. (62) and (63) we get

Z =
Zpart

Saλ
√

Fj0
RT Zpart

1

tanh

(
L

λ
√

Fj0
RT Zpart

)

=
λ

σeff
l

√
Fj0
RT Zpart

tanh

(
L

λ
√

Fj0
RT Zpart

)

which is the distributed particle impedance given by Eq. (10).

G low frequency limit of the electrolyte di�usion

In the present section, we give the analytic expression for the vanishing frequency limit f → 0 of the P2D
model, with negligible solid di�usion. This limit can be achieved with ϕ′

ocv = 0, because the solid di�usion
has no contribution in the overpotential. The solid di�usion impedance is Zs = 0.

It should �rst be noted from Eq. (36) that

Zpart −→
f→0

RT

Fj0
(64)

Imposing this limit in Eqs. (37-38), with ω = 0, gives

c̃′′l = −(1− t+)̃i′l (65)

ĩl = ĩ′′l +
c̃′l

αlt+
(66)

Integrating Eq. (65) with the boundary condition at the current collector interface c̃′l(0) = 0 gives

c̃′l = −(1− t+)̃il

and using this result in Eq. (66) gives a close equation for ĩl

ĩ′′l = ĩl

(
1 +

1− t+

αlt+

)
ĩ′′l = Nel̃il (67)

The solution of Eq. (67) with vanishing current density at the collector, and il = I is (with dimensional
variables)

il = I
sinh

(√
Nel

x
λ

)
sinh

(√
Nel

L
λ

) (68)

Once the current density is found, the electrode impedance can be computed straightforward using the same
equations as in appendix F, and gives

Z −→
f→0

λ

σeff
l

√
Nel

tanh
(√

Nel
L
λ

)
From that expression, Rl in Eq. (13) can be computed by subtracting the low frequency limit of the TLM
impedance. The low-frequency limit of the separator impedance can be computed straightforward using the
mass and charge transport equations without source terms, and the continuity relations for il and Deff

l ∇cl
at the electrode interfaces.
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