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Abstract

In this article, we propose a reduced basis method for parametrized
non-symmetric eigenvalue problems arising in the loading pattern opti-
mization of a nuclear core in neutronics. To this end, we derive a pos-
teriori error estimates for the eigenvalue and left and right eigenvectors.
The practical computation of these estimators requires the estimation of
a constant called prefactor, which we can express as the spectral norm of
some operator. We provide some elements of theoretical analysis which
illustrate the link between the expression of the prefactor we obtain here
and its well-known expression in the case of symmetric eigenvalue prob-
lems, either using the notion of numerical range of the operator, or via a
perturbative analysis. Lastly, we propose a practical method in order to
estimate this prefactor which yields interesting numerical results on actual
test cases. We provide detailed numerical simulations on two-dimensional
examples including a multigroup neutron diffusion equation.

1 Introduction
In this work, we are interested in developing a numerical method to efficiently
compute the solutions of a parametrized non self-adjoint eigenvalue problem for
a large number of parameter values. An example of application where this type
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of problem occurs and which motivates the present work is the resolution of
criticality problems in neutronics. The method we propose relies on a reduced
basis technique [20, 21].

Model order reduction methods such as reduced basis techniques [5, 15, 22]
are useful to accelerate the computation of approximate solutions to parameter-
ized problems. In the context of neutronics, parametrized problems naturally
occur when optimizing the loading pattern of a nuclear core [7, 8, 24]. Mathe-
matically, this amounts to optimizing an objective function which involves the
solution to a generalized non-symmetric eigenvalue problem, parameterized by
the fuel assemblies distribution. The objective of this work is thus to propose
a reduced basis technique in this context. It can be seen as a generalization
of [16, 11, 4], where reduced basis methods for symmetric eigenvalue problems
have been developed. A main difficulty is to obtain reliable a posteriori esti-
mators in order to build the reduced basis and certify the results obtained with
the reduced problem. We refer to [12, 14] for a posteriori error estimators for
non self-adjoint eigenvalue problems in a classical finite element context. Let us
also mention the recent work [10] and references therein for efficient a posteriori
estimators for non-symmetric problems. We refer to [6, 13, 19, 23] for some
other applications of model order reduction techniques applied to neutronics.

As mentioned above, the main bottleneck here is to propose efficient a pos-
teriori error estimators for a reduced basis approximation of non self-adjoint
eigenvalue problems. More precisely, we consider a situation where one is in-
terested in computing the eigenvalue of smallest modulus of a parameterized
eigenvalue problem, which is assumed to be simple. The a posteriori error esti-
mators read as products of norms of the residuals of the direct and associated
adjoint eigenvalue problems times a multiplicative constant, which we call here-
after the prefactor. Computing an accurate and optimal value of this prefactor is
not an easy task, compared to the case of symmetric eigenvalue problems where
it can be expressed by means of the spectral gap of the considered operator.

Three main contributions are proposed in this work. First, we derive an
expression of the prefactor in the case of non-symmetric eigenvalue problems as
the spectral norm of a composition of some well-chosen operators. Second, we
provide some elements of theoretical analysis to illustrate the close link between
the obtained expression of the prefactor and its well-known expression in the
case of symmetric eigenvalue problems. This link is highlighted in two different
ways: first, we give an expression of the prefactor using the distance between the
approximate eigenvalue and the numerical range of the non-symmetric operator
and observe that the numerical range plays a similar role as the spectrum of
the operator in the self-adjoint case; second, we use perturbative arguments to
give a second-order development of this prefactor when the operator is a small
perturbation of a symmetric operator. As our third contribution, we propose a
practical heuristic method to estimate the prefactor in the present reduced basis
context and demonstrate the efficiency of the approach on test cases stemming
from neutronics applications.

The outline of this article is as follows. In Section 2, we describe the pro-
totypical reference problem of interest as well as the model order reduction
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method we use, which relies on a greedy algorithm to build the reduced basis.
The greedy procedure requires a posteriori estimators which are presented in
Section 3. These estimators are basically built as the products of residual norms
with prefactors, whose computations are discussed in Section 4. Finally, we pro-
vide numerical results on two different examples in Section 5: a toy example of
a two-dimensional two-group problem, and a two-dimensional simple model of
a minicore.

2 Reduced basis method for non-symmetric gen-
eralized eigenvalue problems

The objective of this section is to introduce the mathematical framework and
the model order reduction method we consider. In Section 2.1, we describe the
reference high-fidelity generalized eigenvalue problem of interest. The reduced-
order model is then presented in Section 2.2, and the greedy algorithm used to
build the reduced basis is finally explained in Section 2.3.

2.1 Reference high-fidelity problem
Let us present the parametrized generalized eigenvalue problem for which we
wish to build a reduced-order problem. Let N ∈ N∗ be a positive integer which
is assumed to be large in our context. In all the following, RN is endowed with
the Euclidean scalar product1 denoted by 〈·, ·〉 and associated norm ‖ · ‖. For
all values of the vector of parameters µ belonging to the set of parameter values
P ⊂ Rp for some p ≥ 1, we consider two matrices Aµ and Bµ in RN×N and the
following generalized eigenvalue problem: Find (uµ, λµ) ∈ RN ×C such that λµ
is an eigenvalue with minimal modulus:

Aµuµ = λµBµuµ, ‖uµ‖ = 1. (2.1)

As is classical in the context of reduced basis methods, we refer to problem
(2.1) as the high-fidelity (HF) problem. We make the following additional as-
sumption which is satisfied in the problems we are eventually interested in for
neutronics applications.

Assumption 2.1. For any parameter µ ∈ P, Aµ is invertible and there exists
a unique positive eigenvalue λµ which realizes the smallest modulus solution
to (2.1). Moreover, the eigenvalue λµ is simple.

A consequence of Assumption 2.1 is that uµ is uniquely defined (up to a
sign), λµ is real, and that there is a spectral gap between λµ and the other
eigenvalues solutions to problem (2.1), a property that will also play a role in
the a posteriori analysis below. The associated adjoint problem then reads:
Find (u∗µ, λµ) ∈ RN × R∗+ such that

ATµu
∗
µ = λµB

T
µ u
∗
µ, ‖u∗µ‖ = 1. (2.2)

1It is easy to generalize the results presented below to any Hilbertian norm.
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Let us mention here that, for any A ∈ RN×N , the adjoint matrix AT ∈ RN×N
is defined relatively to the scalar product 〈·, ·〉 as follows:

∀u, v ∈ RN , 〈v,Au〉 = 〈AT v, u〉.

Similarly, for any column vector u ∈ RN , we denote by uT the unique line vector
of RN such that

∀v ∈ RN , uT v = 〈u, v〉.

From Assumption 2.1, the eigenvectors uµ and u∗µ can be chosen real. In prac-
tice, the solutions to (2.1) and (2.2) are approximated by an inverse power
method, which will be properly described in Algorithm 2.

We also define for all µ ∈ P the so-called effective multiplication factor

kµ :=
1

λµ
.

There holds

kµ =
〈u∗µ, Bµuµ〉
〈u∗µ, Aµuµ〉

. (2.3)

Remark 2.2. On the one hand, Assumption 2.1 holds for instance if Aµ is in-
vertible and the matrix A−1

µ Bµ coming from problem (2.1) satisfies the assump-
tions of the Perron–Frobenius theorem [1]. Note that under the assumption that
Aµ is invertible, λµ is solution to (2.1) if and only if kµ is an eigenvalue asso-
ciated with the matrix A−1

µ Bµ. On the other hand, in the context of neutronics
applications mentioned earlier and detailed in Section 5.1, (2.1) is obtained as
an appropriate discretization of a continuous problem where the associated resol-
vent operator satisfies the assumptions of the Krein–Rutman theorem and thus
admits a simple real greatest eigenvalue in modulus denoted kex

µ . Since 1/kex
µ is

solution to the continuous problem, the smallest eigenvalue of (2.1) in modulus
is also expected to be simple and positive for fine enough discretization, i.e. large
enough N .

We now assume in all the rest of the article that Assumption 2.1 is satisfied.

Lemma 2.3. Under Assumption 2.1, 〈u∗µ, Aµuµ〉 6= 0.

We postpone the proof of this lemma after Lemma 3.2.

Remark 2.4. Without Assumption 2.1, it is possible that 〈u∗µ, Aµuµ〉 = 0.

Indeed, a simple example is to take Aµ =

(
1 −1
0 1

)
and Bµ =

(
1 0
0 1

)
. Let

uµ = (1, 0) and u∗µ = (0, 1). Equations (2.1) and (2.2) are satisfied with λµ = 1
while 〈u∗µ, Aµuµ〉 = 0.

We are interested in situations where one has to solve the reference high-
fidelity problem (2.1) quickly and for many values of µ. The idea is to build
a reduced basis using some solutions of (2.1) (so-called snapshots) computed
offline, and to use a Galerkin method to project the problem (2.1) onto this
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reduced basis, see Section 2.2. This requires a posteriori estimators to wisely
select the parameters used to build the reduced basis, as well as to certify the
numerical results obtained online on the reduced basis: this is discussed in
Section 3.

2.2 Reduced-order model
The aim of this section is to present the reduced-order model obtained from a
given reduced basis to get an approximation of (2.1). Let us consider a reduced
linear subspace V of RN of dimension N much smaller than N , built in such a
way that that any solution of problem (2.1) can be accurately approximated by
an element of the space V (the construction of such a subspace will be discussed
in the next section). A reduced-order model for problem (2.1) can then be
obtained from the reduced space V as follows. Let (ξi)16i6N be an orthonormal
basis of V. The reduced matrices Aµ,N ∈ RN×N , Bµ,N ∈ RN×N are defined as
follows: for all 1 ≤ i, j ≤ N ,

Aijµ,N := 〈ξi, Aµξj〉,

Bijµ,N := 〈ξi, Bµξj〉.

The reduced-order model then consists in solving: Find (cµ,N , λµ,N ) ∈ RN × C
such that λµ,N is an eigenvalue with smallest modulus to

Aµ,Ncµ,N = λµ,NBµ,Ncµ,N , uµ,N =

N∑
i=1

ciµ,Nξi, and ‖uµ,N‖ = 1, (2.4)

where for all 1 ≤ i ≤ N , ciµ,N is the ith component of the vector cµ,N . Similarly
as in Section 2.1 (see Assumption 2.1), we make the following assumption.

Assumption 2.5. For any parameter µ ∈ P, the matrix Aµ,N is invertible
and there exists a unique positive eigenvalue λµ,N which realizes the smallest
modulus solution to (2.4). Moreover, the eigenvalue λµ,N is simple.

Under this assumption, cµ,N and uµ,N are uniquely defined up to a sign
and λµ,N is real. Endowing the space RN with the canonical Euclidean scalar
product 〈·, ·〉`2 , we can consider the solution to the associated reduced adjoint
problem: Find (c∗µ,N , λµ,N ) ∈ RN × R∗+ such that the eigenvalue λµ,N is the
smallest in modulus and

Atµ,Nc
∗
µ,N = λµ,NB

t
µ,Nc

∗
µ,N , u∗µ,N =

N∑
i=1

c∗,iµ,Nξi, and ‖u∗µ,N‖ = 1. (2.5)

where for all 1 ≤ i ≤ N , c∗,iµ,N is the ith component of the vector c∗µ,N and Atµ,N
and Btµ,N are respectively the transpose of the matrix Aµ,N and Bµ,N . More-
over, under this assumption, we have 〈c∗µ,N , Aµ,Ncµ,N 〉`2 = 〈u∗µ,N , Aµuµ,N 〉 6= 0
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(see Lemma 2.3), and we define

kµ,N =
〈c∗µ,N , Bµ,Ncµ,N 〉`2
〈c∗µ,N , Aµ,Ncµ,N 〉`2

=
〈u∗µ,N , Bµuµ,N 〉
〈u∗µ,N , Aµuµ,N 〉

. (2.6)

In practice, we use the inverse power method to solve (2.4) and (2.5). If
both algorithms converge, we refer to the outputs cµ,N and c∗µ,N as the right
and left eigenvectors of the reduced problem. If one of the power methods
does not converge, the reduced basis is enriched using the high-fidelity left and
right eigenvectors for the considered parameter value, see the construction of the
reduced space in the next section. Note that the power methods applied to (2.4)
and (2.5) (resp. to (2.1) and (2.2)) are guaranteed to converge if Assumption 2.5
(resp. Assumption 2.1) is satisfied. In the numerical examples presented in
Section 5, we observe that the two power methods (for the direct and adjoint
reduced eigenvalue problems) indeed converge and that 〈c∗µ,N , Aµ,Ncµ,N 〉`2 6= 0
as soon as the reduced space has a sufficiently large dimension (typically N ≥ 4
is sufficient in the numerical results presented in Section 5).

2.3 Choice of the reduced space: greedy algorithm
In practice, the reduced space V used in the reduced-order model described in the
previous section is built following the standard procedure of the reduced basis
technique [20]. We first initialize the reduced space V0 as a very low-dimensional
space spanned by the first modes obtained from a Proper Orthogonal Decom-
position of a family of vectors composed of a few snapshots of the direct and
adjoint problems. A sequence of parameter values (µn)n≥1 is then selected from
a greedy procedure described below, from which nested reduced spaces (Vn)n≥1

are built as follows:

∀n ≥ 1, Vn = Span
{
uµ1

, . . . , uµn , u
∗
µ1
, . . . , u∗µn

}
. (2.7)

In the following, we denote by Nn := dimVn and by uµ,Nn , u∗µ,Nn , λµ,Nn and
kµ,Nn the solutions of the reduced eigenvalue problems described in the previous
section for V = Vn.

Remark 2.6. The choice made in (2.7) to enrich the sequence of reduced spaces
with both the eigenvector of the direct and of the adjoint eigenvalue problem
stems from the a priori error analysis of Galerkin approximations of generalized
eigenvalue problems (see [2, 3]). Indeed, in an asymptotic regime, the error
between the approximate and exact eigenvalue scales like

|λµ − λµ,N | ≤ Cµ
1

γµ,N
εNε

∗
N ,

where Cµ is a positive constant which only depends on the parameter µ, where

εN := inf
vN∈V

‖uµ − vN‖ ,

ε∗N := inf
vN∈V

∥∥u∗µ − vN∥∥ ,
6



and where γµ,N is the inf-sup constant of the reduced eigenvalue problem. Hence,
it appears natural when it comes to the design of a greedy procedure in the present
reduced basis context to enrich the Galerkin approximation space with snapshots
of both the direct and adjoint eigenvalue problems, in order to at least get the
reference solution for the reduced problem when considering the parameter µ of
the snapshots.

In the greedy procedure, the parameters (µn)≥1 need to be selected satisfying
some criteria. In practice, it is common to choose a finite subset Ptrain ⊂ P
of parameter values, called hereafter a training set and selecting the snapshots
maximizing some error surrogate for the error between solutions of the reference
model and the reduced model ∆Nn , as is described in Algorithm 1. In an ideal
greedy procedure, we would take the exact error as the error surrogate ∆Nn . In
that case, two possible choices for the definition of ∆Nn would be:

a) either the error on the eigenvalue: ∆Nn(µ) := ekNn(µ)

b) or the error on the eigenvectors: ∆Nn(µ) := euNn(µ) + eu
∗

Nn
(µ)

with

euNn(µ) := ‖uµ − uµ,Nn‖, eu
∗

Nn(µ) := ‖u∗µ − u∗µ,Nn‖ and ekNn(µ) := |kµ − kµ,Nn |.

However, these quantities are of course not available in general, so one has to
resort to a posteriori error estimate for an efficient greedy algorithm. Therefore,
the aim of the following section is to detail different strategies to define an a
posteriori error estimator ∆N (µ) in order to obtain an estimation of the errors
on the eigenvalues and the eigenvectors for any reduced space V without having
to compute the solutions of the exact eigenvalue problem.

Algorithm 1 Greedy Algorithm
Input: Ptrain ⊂ P: training set of parameters, τ > 0 : error tolerance
threshold, V0 ⊂ RN : initial reduced space
N0 := dimV0

τ0 := max
µ∈Ptrain

∆N0
(µ)

n := 0
while τn > τ do
µn+1 := argmax

µ∈Ptrain

∆Nn(µ)

Compute uµn+1
and u∗µn+1

.
Vn+1 := Vn + Span{uµn+1 , u

∗
µn+1
}

Nn+1 := dimVn+1

τn+1 := max
µ∈Ptrain

∆Nn+1
(µ)

n := n+ 1
end while
Output: Reduced space V := Vn ⊂ RN

7



3 A posteriori error estimation
The goal of this section is to build a posteriori error bounds on the error between
the solutions of the exact eigenvalue problems (2.1) and (2.2), and the solutions
of the reduced eigenvalue problems (2.4) and (2.5).

This section is organized as follows. Sections 3.1 and 3.2 are respectively
dedicated to error estimates on the eigenvectors and on the eigenvalue. In
Section 4.1, we draw connections between the estimators we introduce in our
context of non-symmetric eigenvalue problems, and the classical ones used for
symmetric eigenvalue problems. Finally, we introduce in Section 4.2 the pratical
a posteriori error estimators that will be used for numerical experiments in
Section 5.

To simplify notation, the subscript µ is omitted in this section, as only one
parameter value µ ∈ P is considered. Therefore, the quantities u, u∗, λ, k are
the solutions of the high fidelity problem, while uN , u∗N , λN , kN are the solutions
of the reduced problem. We are therefore aiming at deriving bounds for the
quantities ekN := |k − kN |, euN := ‖u− uN‖, and eu

∗

N := ‖u∗ − u∗N‖. In order to
estimate these errors, we first define the following residual vector quantities

RN = (B − kNA)uN , (3.1)

R∗N =
(
BT − kNAT

)
u∗N . (3.2)

We moreover define the vector

ũ∗ =
ATu∗

‖ATu∗‖
, (3.3)

and the matrix
M = A−1B, (3.4)

which is well-defined since A is invertible from Assumption 2.1. Note that it
then holds that

Mu = ku, MT ũ∗ = kũ∗.

3.1 Error estimates on the eigenvectors
Let P ∈ RN×N and P ∗ ∈ RN×N be the matrices associated with the spec-
tral projection operators onto Span{ũ∗}⊥ and Span{u}⊥ respectively. More
precisely, P and P ∗ are defined by

P = I − u(ũ∗)T

〈u, ũ∗〉
, (3.5)

P ∗ = I − ũ∗uT

〈u, ũ∗〉
, (3.6)

where I denotes the identity matrix of RN×N . Before presenting the a posteriori
error estimates, we first begin by collecting a few useful auxiliary lemmas.
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Lemma 3.1. The spectral projector onto the eigenspace of M associated with
the simple eigenvalue k is I − P , where P is defined by (3.5).

Proof. Let us introduce the spectral projector Pint ∈ RN×N of M associated
with the eigenvalue k, which is defined by:

∀v ∈ RN , Pintv =

∫
Ck

(z −M)−1v dz,

where Ck is a closed contour in the complex plane such that k is the only

eigenvalue of M contained inside the loop. Let us show that Pint =
u(ũ∗)T

〈u, ũ∗〉
. As

the eigenvalue k is simple, it holds that Ran Pint = Span{u}, and PTintũ
∗ = ũ∗ by

noting that PTint is the spectral projector associated withMT and the eigenvalue
k. Let us show that Ker Pint = (Span{ũ∗})⊥. Indeed, for all v ∈ RN ,

Pintv = 0 ⇐⇒ 〈ũ∗, v〉 = 〈PTintũ
∗, v〉 = 〈ũ∗, Pintv〉 = 0.

As Ran Pint + Ker Pint = RN , we have Span{u} + [Span{ũ∗}]⊥ = RN . The
identity Pint = I − P is then an immediate consequence of this decomposition.

Lemma 3.2. There holds

(i) P 2 = P ;

(ii) Ker P = Span{u}, Ran P = [Span{ũ∗}]⊥ and these two spaces are stable
by P and M ;

(iii) MP = PM .

Proof. (i) Let v ∈ RN . Noting that Pu = 0, there holds

P 2v = P

(
v − 〈v, ũ

∗〉
〈u, ũ∗〉

u

)
= Pv − 〈v, ũ

∗〉
〈u, ũ∗〉

Pu = Pv,

hence P 2 = P .

(ii) The proof of the fact that Ker P = Span{u} and Ran P = [Span{ũ∗}]⊥
is immediate from the proof of the previous lemma. The fact that Ker P
is stable by P and M is also obvious. Now, let v ∈ Span{ũ∗}⊥, i.e. such
that 〈ũ∗, v〉 = 0. Then

〈ũ∗, Pv〉 = 〈ũ∗, v〉 − 〈ũ∗, v〉 〈ũ
∗, u〉
〈ũ∗, u〉

= 0,

and

〈ũ∗,Mv〉 = 〈MT ũ∗, v〉 = k〈ũ∗, v〉 = 0.

Therefore Pv ∈ Span{ũ∗}⊥ and Mv ∈ Span{ũ∗}⊥.
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(iii) It is obvious that for all v ∈ Ker P , PMv = MPv = 0. Besides, for all
v ∈ Ran P , it holds that Pv = v, and Mv ∈ Ran P from (ii) so that
PMv = Mv. As a consequence, PMv = Mv = MPv for any v ∈ RN ,
hence the desired result.

It is easy to check that the following Lemma holds on P ∗, using similar
arguments as in the proof of Lemma 3.2.

Lemma 3.3. There holds

(i) (P ∗)2 = P ∗;

(ii) Ker P ∗ = Span{ũ∗}, Ran P ∗ = [Span{u}]⊥ and these two spaces are
stable by P ∗ and MT ;

(iii) MTP ∗ = P ∗MT .

We have now gathered enough results to prove Lemma 2.3.

Proof of Lemma 2.3. Let us argue by contradiction. If 〈u∗µ, Aµuµ〉 = 〈ũ∗µ, uµ〉 =

0, then Span{uµ} ⊂ (Span{ũ∗µ})⊥. Yet, we have Span{uµ} + (Span{ũ∗µ})⊥ =

RN using Lemma 3.2-(ii). This yields to a contradiction and concludes the
proof.

Let us introduce some notation. By Lemma 3.2, the operator PMP − kNI
leaves RanP = [Span{ũ∗}]⊥ invariant. Besides, provided that kN /∈ σ

(
PMP |[Span{ũ∗}]⊥

)
,

the operator (PMP − kNI) |[Span{ũ∗}]⊥ is invertible, seen as an operator from
[Span{ũ∗}]⊥ onto [Span{ũ∗}]⊥. We can thus define the Moore–Penrose inverse
of this operator, denoted by (PMP − kNI)

+ and defined (by linearity) as fol-
lows:

∀v ∈ [Span{ũ∗}]⊥, (PMP − kNI)
+
v = (PMP − kNI) |−1

[Span{ũ∗}]⊥v,

∀v ∈ Span{u}, (PMP − kNI)
+
v = 0.

We define in a similar way the operator
(
P ∗MTP ∗ − kNI

)+.
Proposition 3.4 (Eigenvector estimation). Let uN , u∗N ∈ RN \{0} and let kN ∈
R such that kN /∈ σ((PMP )|[Span{ũ∗}]⊥) and kN /∈ σ((P ∗MTP ∗)|[Span{u}]⊥ .
Then, the following estimates hold:

inf
v∈Span{u}

‖uN − v‖ ≤ CuN‖RN‖, (3.7)

inf
v∗∈Span{u∗}

‖u∗N − v∗‖ ≤ Cu
∗

N ‖R∗N‖, (3.8)
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with

CuN :=
∥∥∥P (PMP − kNI)

+
PA−1

∥∥∥ ,
Cu
∗

N :=
∥∥∥A−TP ∗ (P ∗MTP ∗ − kNI

)+
P ∗
∥∥∥ .

Here and in the following, with a slight abuse of notation, we denote by ‖ · ‖ the
operator norm associated with the vector norm ‖ · ‖ on RN .

Remark 3.5. Note that uN , u∗N and kN do not have to be respectively related
to u, u∗ and k for the above estimates to hold. However, in practice, uN will
be an approximation of u, u∗N will be an approximation of u∗ and kN will be an
approximation of k, so that the norms of the residuals ‖RN‖ and ‖R∗N‖ will be
small.

Remark 3.6. The results obtained in Proposition 3.4 match those of [14, Propo-
sition 4] for k = 0, noting the slightly different definition of the residual to take
into account the generalized eigenvalue problem.

Proof. First, there holds

inf
v∈Span{u}

‖uN − v‖ ≤ ‖PuN‖ .

Second, let us show that P (PMP − kNI)
+

(PMP − kNI)P = P . Indeed for
v ∈ Span{u},
P (PMP − kNI)

+
(PMP − kNI)Pv = 0 and Pv = 0. Besides, for v ∈ [Span{ũ∗}]⊥, Pv =

v, and (PMP − kNI)Pv ∈ [Span{ũ∗}]⊥ from Lemma 3.2 (ii). As a conse-
quence, since kN /∈ σ((PMP )|[Spanũ∗]⊥ , (PMP − kNI) is invertible on [Span{ũ∗}]⊥.
Hence for v ∈ [Span{ũ∗}]⊥,

P (PMP − kNI)
+

(PMP − kNI)Pv = P (PMP − kNI) |−1
Span{ũ∗} (PMP − kNI) |Span{ũ∗}Pv = Pv.

We conclude by noting that RN = Span{u}+ [Span{ũ∗}]⊥.
Then using Lemma 3.2 (iii), we have

PuN = P (PMP − kNI)
+

(PMP − kNI)PuN

= P (PMP − kNI)
+
P (M − kNI)uN .

Using (3.1), we obtain

PuN = P (PMP − kNI)
+
PA−1RN . (3.9)

Thus,
‖PuN‖ 6

∥∥∥P (PMP − kNI)
+
PA−1

∥∥∥ ‖RN‖. (3.10)

To show the second bound, we first note that

P ∗
(
ATu∗N

)
= ATu∗N −

〈u,ATu∗N 〉
〈u, ũ∗〉

ũ∗,
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so that using (3.3) and (3.6)

inf
v∗∈Span{u∗}

‖u∗N − v∗‖ = inf
v∗∈Span{u∗}

∥∥A−T (ATu∗N −AT v∗)∥∥
= inf
ṽ∗∈Span{ũ∗}

∥∥A−T (ATu∗N − ṽ∗)∥∥
6
∥∥A−TP ∗ATu∗N∥∥ .

Now, using Lemma 3.3 (iii) and similar arguments as above, there holds

P ∗
(
ATu∗N

)
= P ∗

(
P ∗MTP ∗ − kNI

)+ (
P ∗MTP ∗ − kNI

)
P ∗ATu∗N

= P ∗
(
P ∗MTP ∗ − kNI

)+
P ∗
(
MT − kNI

)
ATu∗N

= P ∗
(
P ∗MTP ∗ − kNI

)+
P ∗ (B − kNA)

T
u∗N .

Hence
P ∗
(
ATu∗N

)
= P ∗

(
P ∗MTP ∗ − kNI

)+
P ∗R∗N . (3.11)

Then, ∥∥A−TP ∗ATu∗N∥∥ 6
∥∥∥A−TP ∗ (P ∗MTP ∗ − kNI

)+
P ∗
∥∥∥ ‖R∗N‖,

which proves (3.8).

3.2 Error estimate on the eigenvalue
We now provide an estimate for the eigenvalue.

Proposition 3.7 (Eigenvalue estimation). Let uN , u∗N ∈ RN . Under As-

sumption 2.1 and the assumptions that kN :=
〈u∗N , BuN 〉
〈u∗N , AuN 〉

is such that kN /∈

σ((PMP )|[Span{ũ∗}]⊥) and kN /∈ σ((P ∗MTP ∗)|[Span{u}]⊥ , there holds

|kN − k| ≤ CkNηkN , (3.12)

with
ηkN :=

‖RN‖‖R∗N‖
|〈u∗N , AuN 〉|

, (3.13)

and

CkN :=
∥∥∥[P ∗

(
P ∗MTP ∗ − kNI

)+
P ∗]T (M − kI)P (PMP − kNI)

+
PA−1

∥∥∥ .
(3.14)

Remark 3.8. Note that in this result, the vectors uN and u∗N may not be
solutions of a reduced eigenvalue problem of the form (2.4) or (2.5). The only
requirement of Proposition 3.7 is that kN has to be related to uN and u∗N by the
formula stated in the proposition.
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Proof. For any α, β ∈ R,

〈AT (u∗N − αu∗) , (M − kI) (uN − βu)〉 = 〈ATu∗N ,MuN 〉 − β〈ATu∗N ,Mu〉 − α〈ATu∗,MuN 〉+ αβ〈ATu∗,Mu〉
− k〈ATu∗N , uN 〉+ βk〈ATu∗N , u〉+ αk〈ATu∗, uN 〉 − αβk〈ATu∗, u〉.

Noting that Mu = ku, MTATu∗ = kATu∗ and recalling that M = A−1B, we
obtain

〈AT (u∗N − αu∗) , (M − kI) (uN − βu)〉 = 〈ATu∗N ,MuN 〉 − k〈u∗N , AuN 〉
= (kN − k) 〈u∗N , AuN 〉.

According to Lemma 2.3, we can set

α =
1

‖ATu∗‖
〈ATu∗N , u〉
〈ũ∗, u〉

, β =
〈uN , ũ∗〉
〈u, ũ∗〉

,

so that we find

kN − k =
1

〈u∗N , AuN 〉
〈P ∗

(
ATu∗N

)
, (M − kI)PuN 〉.

Using (3.9) and (3.11) finishes the proof.

4 Practical estimates of efficiencies and prefac-
tors

As in the previous section, to simplify notation, the subscript µ is again omitted
in this section.

In view of Proposition 3.4 and Proposition 3.7, it is natural to estimate the
actual errors ekN = |k − kN |, euN = ‖uµ,N − uµ‖ and eu

∗

N =
∥∥u∗µ,N − u∗µ∥∥ by,

respectively,

∆k
N := C

k

Nη
k
N , ∆u

N := C
u

N‖RN‖, ∆u∗

N := C
u∗

N ‖R∗N‖, (4.1)

where C
k

N , C
u

N and C
u∗

N are some constants which are good estimates of the

efficiencies
ekN

ηkN (µ)
,

euN
‖RN (µ)‖

, and
eu
∗

N

‖R∗N (µ)‖
. For example, one could use prac-

tical (computable) estimations of the constants CkN , CuN and Cu
∗

N appearing in
Proposition 3.4 and Proposition 3.7.

For the applications we are interested in, as will be illustrated below in
Section 5.5.1, we observe that the operators are perturbations of symmetric
operators. This is why we investigate in Section 4.1 the links between the
prefactor CkN introduced above and well-known results about this constant in
the symmetric case. However, this does not yield practical efficient formulas
for the prefactors. This is why we propose in Section 4.2 a practical heuristic
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approach to compute some prefactors C
k

N , C
u

N and C
u∗

N in the reduced basis
context, that we use in the numerical results to build practical a posteriori error
estimators in the greedy algorithm to select the reduced space. This heuristic
approach gives very interesting numerical results for neutronics applications as
will be illustrated in Section 5.

4.1 Some connections with the symmetric case
The goal of this section is to draw links between the prefactor CkN defined in
Section 3.2, and the prefactor which is traditionnally used for the computation
of a posteriori error estimators for symmetric eigenvalue problems. We begin
this section by recalling well-known results about a posteriori error estimators
for symmetric eigenvalue problems in Section 4.1.1. In particular, we recall
that the value of this prefactor in the symmetric context is directly linked with
the value of the spectral gap of the exact problem. We then provide two dif-
ferent approaches to relate the value of the constant CkN defined by (3.14) to
the value of the prefactor in the symmetric case: (i) we prove in Section 4.1.2
that in the non-symmetric case, the constant CkN can be estimated using the
distance between the approximate eigenvalue and the numerical range of the
non-symmetric operator; (ii) in Section 4.1.3 we study the perturbative regime
where the non-symmetric operator can be seen as a small perturbation of a sym-
metric operator, and check that the prefactor for the non-symmetric operator
is also a small perturbation of the well-known expression of the prefactor in the
symmetric case.

4.1.1 Symmetric case

The aim of this section is to recall some well-known results about a posteriori
error estimators for symmetric eigenvalue problems, i.e. in the case where A is
a positive definite symmetric matrix and B = I, so thatM = A−1. In this case,
all the eigenvalues of M are real and positive, k being its largest one. We still
assume that k is a simple eigenvalue of M and denote by k2 the second largest
eigenvalue of M so that k > k2. Note that in the symmetric case, there holds
that u = u∗ and P = P ∗ = PT .

As a consequence, for a given vector uN and the value kN =
〈uN , BuN 〉
〈uN , AuN 〉

> 0,

we have (from (3.14))

CkN =
∥∥∥[P (PMP − kNI)

+
P ]T (M − kI)P (PMP − kNI)

+
PA−1

∥∥∥
=
∥∥∥P (PMP − kNI)

+
P (M − kI)P (PMP − kNI)

+
PA−1

∥∥∥ ,
and we have the following proposition.

Proposition 4.1. Let A be symmetric positive definite and B = I. Let k be
the largest eigenvalue of M = A−1, let us assume that it is simple, and let us
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denote by k2 its second largest eigenvalue. Let us also assume that

k > kN > k2 > 0. (4.2)

Then, there holds

CkN =
k2(k − k2)

(kN − k2)2
=

‖PA−1‖‖M − kI‖
dist(kN , σ((PMP )|Span{u}⊥))2

. (4.3)

Proof. Denoting by k = k1 > k2 ≥ · · · ≥ kN the eigenvalues of M = A−1 and
by u1, u2, . . . , uN corresponding eigenvectors, there holds

A−1 = M =

N∑
i=1

kiuiu
T
i ,

and

P =

N∑
i=2

uiu
T
i .

Then, using functional calculus, there holds

P (PMP − kNI)
+
P (M − kI)P (PMP − kNI)

+
PA−1 =

N∑
i=2

ki(k − ki)
(kN − ki)2

uiu
T
i .

Since the operator norm is associated with the Euclidean vector norm, the
operator norm corresponds to the largest eigenvalue of the (symmetric) operator,
so that

CkN = max
2≤i≤N

ki(k − ki)
(kN − ki)2

=
k2(k − k2)

(kN − k2)2
.

Since ‖PA−1‖ = k2, ‖M−kI‖ = k−k2 using (4.2), and dist(kN , σ((PMP )|Span{u}⊥))2 =
(kN − k2)2, we easily obtain the second equality.

The constant CkN is therefore strongly linked to the spectral gap between the
first and second eigenvalue of M in this particular symmetric case. However,
this notion of spectral gap is not clear in the non-symmetric context and we
provide two points of view which enable to draw a comparison between the
symmetric and non-symmetric context.

4.1.2 Numerical range

In this section, we prove that in the general non-symmetric case, the value of
the prefactor CkN can be estimated using the so-called numerical range of the
non-symmetric operator. Let us first recall the notion of numerical range.

Definition 4.2. Let Q ∈ RN×N . The numerical range of the matrix Q is
defined by

Num(Q) = {〈v,Qv〉, ‖v‖ = 1}.

15



Lemma 4.3. Let Q ∈ RN×N let and z /∈ σ(Q). Then,∥∥∥(Q− zI)
−1
∥∥∥ 6

1

dist (z,Num (Q))
.

Proof. Let w ∈ RN be a unit vector. There holds

dist (z,Num (Q)) 6

∣∣∣∣z − 〈w,Qw〉‖w‖2

∣∣∣∣
6
|〈w, (Q− zI)w〉|

‖w‖2

6
‖(Q− zI)w‖
‖w‖

.

Taking u = (Q− zI)w, then,∥∥∥(Q− zI)
−1
∥∥∥ 6

1

dist (z,Num (Q))
.

Proposition 4.4. Under the same assumptions as in Proposition 3.7, there
holds

CkN ≤
‖M − kI‖‖PA−1‖

dist(kN ,Num((PMP )|[Span{ũ∗}]⊥)) dist(kN ,Num(P ∗MTP ∗)|[Span{u}]⊥))

Note that the bound given by Proposition 4.4 is exactly equal to the value
of the prefactor in the symmetric case since when M is symmetric and non-
negative, Num((PMP )|[Span{ũ∗}]⊥) = Num(P ∗MTP ∗)|[Span{u}]⊥ = [k2, kN ] where
k > k2 ≥ . . . ≥ kN are the ordered eigenvalues of M .

Proof. Starting from (3.14), it holds that

CkN ≤
∥∥∥P ∗ (P ∗MTP ∗ − kNI

)+
P ∗
∥∥∥ ‖M − kI‖ ∥∥∥P (PMP − kNI)

+
P
∥∥∥ ‖PA−1‖.

Using Lemma 4.3, we easily obtain the result.

The upper bound on CkN stated in Proposition 4.4 goes to infinity if kN
(which is supposed to be an approximation of k) gets close to Num((PMP )|[Span{ũ∗}]⊥)

or Num(P ∗MTP ∗)|[Span{u}]⊥ , which can be seen as an underlying spectral gap
assumption.

4.1.3 A Perturbative approach

The aim of this section is to propose another connection between the estimation
of the prefactor CkN in the non-symmetric case with its well-known expression
in the symmetric case. In all this section, we assume that{

A = Aε = S + εT with ST = S, TT = −T, ε > 0,

B = I.
(4.4)
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In other words, the matrix A is a perturbation of a symmetric positive definite
matrix S ∈ RN×N , since ε > 0 is intended to be a small parameter. We still
assume here that B = I for the sake of simplicity.

We also assume that the positive definite symmetric matrix S has a simple
positive lowest eigenvalue λS , and that uS is an associated eigenvector. We then
denote by λS < λS,2 ≤ . . . ≤ λS,N all the eigenvalues of S. We also denote by
kS := 1

λS
and by kS,i := 1

λS,i
for 2 ≤ i ≤ N . By a perturbative argument, for

any ε > 0 small enough, there exists a simple nonzero eigenvalue λε of smallest
modulus of Aε, and we denote by uε an associated direct eigenvector, u∗,ε an
associated adjoint eigenvector, ũ∗,ε defined as in (3.3) and kε := 1

λε .

For the sake of simplicity of the perturbative analysis, we assume that the
approximate value kN is independent of ε. This for example makes sense if one
uses a reduced-order model constructed from the one-dimensional reduced space
V = Span{uS}. In that case, uN = u∗N = uS and thus kN = kS .

In this section, using obvious notation, we would like to study the conver-
gence of the prefactor

Ck,εN :=
∥∥∥[P ∗,ε

(
P ∗,ε(Mε)TP ∗,ε − kNI

)+
P ∗,ε]T (Mε − kεI)P ε (P εMεP ε − kNI)

+
P ε(Aε)−1

∥∥∥
to the value

Ck,sym
N =

kS,2(kS − kS,2)

(kN − kS,2)2
(4.5)

as ε goes to 0.
We first perform a first-order expansion of the eigenvectors and eigenvalues

in ε (cf. Chapter 2 of [18]).

Lemma 4.5. Let us assume (4.4) and

‖uε‖2 = ‖uS‖2 = 1 and 〈uε, uS〉 > 0. (4.6)

Then, as ε goes to 0,

λε = λS +O(ε2),

kε = kS +O(ε2),

uε = uS − ε (S − λSI)
−1
|Span{uS}⊥ TuS +O(ε2),

u∗,ε = uS + ε (S − λSI)
−1
|Span{uS}⊥ TuS +O(ε2),

ũ∗,ε = uS + ε (S − λSI)
−1
|Span{uS}⊥ TuS +O(ε2).

Proof. Using the results of [18, Chapter 2], we decompose λε, uε, and u∗,ε at
first order as

λε = λA,0 + ελA,1 +O(ε2),

uε = uA,0 + εuA,1 +O(ε2),

u∗,ε = u∗A,0 + εu∗A,1 +O(ε2).
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Using this decomposition, the eigenvalue problem writes

SuA,0 + ε(SuA,1 + TuA,0) = λA,0uA,0 + ε(λA,0uA,1 + λA,1uA,0) +O(ε2).

At order 0 in ε, we obtain uA,0 = uS and λA,0 = λS . Then, at first order,

SuA,1 + TuA,0 = λA,0uA,1 + λA,1uA,0. (4.7)

Using (4.6), one can write

‖uε‖2 = ‖uA,0‖2 + ε(〈uA,0, uA,1〉+ 〈uA,1, uA,0〉) +O(ε2),

which implies that
〈uA,0, uA,1〉 = 0. (4.8)

Using the latter and projecting (4.7) onto uA,0 gives

〈SuA,1, uA,0〉+ 〈TuA,0, uA,0〉 = λA,1〈uA,0, uA,0〉 = λA,1.

As T is skew-symmetric, it holds 〈TuA,0, uA,0〉 = 0, so that

〈SuA,1, uA,0〉 = 〈uA,1, SuA,0〉 = λA,0〈uA,1, uA,0〉 = 0.

Hence λA,1 = 0. Then (4.7) transforms into

(S − λSI)uA,1 = −TuS .

The latter has a solution since TuS ∈ Span{uS}⊥ and (Ker (S − λSI))
⊥

=
Ran (S − λSI) . Hence

uA,1 = − (S − λSI)
−1
|Span{uS}⊥ TuS . (4.9)

We can apply the same procedure for the adjoint eigenvector to obtain the
result. Finally,

ũ∗,ε :=
(Aε)Tu∗,ε

‖(Aε)Tu∗,ε‖

=
(S − εT )(uS − εuA,1)

‖(S − εT )(uS − εuA,1)‖
+O(ε2)

=
λSuS − ε(SuA,1 + TuS)

‖λSuS − ε(SuA,1 + TuS)‖
+O(ε2)

=

(
uS −

ε

λS
(SuA,1 + TuS)

)(
1 +

ε

λS
〈uS , (SuA,1 + TuS)〉

)
+O(ε2)

= uS − εuA,1 +O(ε2),

which concludes the proof.

We now provide first-order expansions of operators which will be needed in
the subsequent estimation of the prefactor.
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Lemma 4.6. Let us assume (4.4) and (4.6). Then, as ε goes to 0,

P ε = PS + εPT +O(ε2) and P ∗,ε = PS − εPT +O(ε2),

where
PS = I − uSuTS , and PT = uA,1u

T
S − uSuTA,1,

uA,1 being defined in (4.9).

Proof. We have

P ε = I − uε(ũ∗,ε)T

〈uε, ũ∗,ε〉
,

= I − (uS + εuA,1 +O(ε2))(uS − εuA,1 +O(ε2))T

= I − uSuTS + ε(uA,1u
T
S − uSuTA,1) +O(ε2).

Similarly,

P ∗,ε = I − ũ∗,ε(uε)T

〈uε, ũ∗,ε〉
= I − (uS − εuA,1 +O(ε2))(uS + εuA,1 +O(ε2))T

= I − uSuTS + ε(−uA,1uTS + uSu
T
A,1) +O(ε2).

This concludes the proof.

We now provide a first order expansion of the operator entering the prefactor
in (3.14), namely

Mε = [P ε (P εMεP ε − kNI)
+
P ε](Mε − kεI)P ε (P εMεP ε − kNI)

+
P ε(Aε)−1.

(4.10)

Lemma 4.7. Let us assume (4.4) and (4.6). Then, as ε goes to 0,

Mε =M0 + εM1 +O(ε2), (4.11)

with

M0 = ΓS(S−1 − kSI)ΓSS
−1,

M1 = −ΓSS
−1TS−1ΓSS

−1 + ΓS(S−1 − kSI)ΓTS
−1 − ΓS(S−1 − kSI)ΓSS

−1TS−1 + ΓT (S−1 − kSI)ΓSS
−1,

and

ΓS = PS
(
PSS

−1PS − kNI
)+
PS ,

ΓT = PS
(
PSS

−1PS − kNI
)+
PT + PT

(
PSS

−1PS − kNI
)+
PS

− PS
(
PSS

−1PS − kNI
)+ (

PSS
−1TS−1PS + PTS

−1PS + PSS
−1PT

) (
PSS

−1PS − kNI
)+
PS .
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Proof. First,
Mε = (Aε)−1 = S−1 − εS−1TS−1 +O(ε2).

Therefore, as we have P ε = PS + εPT +O(ε2), there holds

P εMεP ε =
(
PS + εPT +O(ε2)

) (
S−1 − εS−1TS−1 +O(ε2)

) (
PS + εPT +O(ε2)

)
=
(
PSS

−1 − εPSS−1TS−1 + εPTS
−1 +O(ε2)

) (
PS + εPT +O(ε2)

)
= PSS

−1PS − εPSS−1TS−1PS + εPTS
−1PS + εPSS

−1PT +O(ε2)

= PSS
−1PS + ε

(
PSS

−1TS−1PS + PTS
−1PS + PSS

−1PT
)

+O(ε2).

Using a first-order expansion of the pseudo-inverse in ε, there holds

(P εMεP ε − kNI)+ =
[(
PSS

−1PS − kNI
)

+ ε
(
PSS

−1TS−1PS + PTS
−1PS + PSS

−1PT
)

+O(ε2)
]+

=
(
PSS

−1PS − kNI
)+

− ε
(
PSS

−1PS − kNI
)+ (

PSS
−1TS−1PS + PTS

−1PS + PSS
−1PT

) (
PSS

−1PS − kNI
)+

+O(ε2).

Hence, one can write

P ε (P εMεP ε − kNI)
+
P ε = PS

(
PSS

−1PS − kNI
)+
PS

+ ε

[
PS
(
PSS

−1PS − kNI
)+
PT − PS

(
PSS

−1PS − kNI
)+ (

PSS
−1TS−1PS + PTS

−1PS + PSS
−1PT

)
×
(
PSS

−1PS − kNI
)+
PS + PT

(
PSS

−1PS − kNI
)+
PS

]
+O(ε2).

Defining

Γε := P ε (P εMεP ε − kNI)
+
P ε,

we have just obtained that

Γε = ΓS + εΓT +O(ε2).

Using that

Mε = Γε(Mε − kεI)Γε(Aε)−1 =
(
ΓS + εΓT +O(ε2)

) (
S−1 − kSI − εS−1TS−1 +O(ε2)

)
×
(
ΓS + εΓT +O(ε2)

) (
S−1 − εS−1TS−1 +O(ε2)

)
,

we easily obtain (4.11).

We then estimate the prefactor CkN in the perturbative case using the pre-
vious results.

Proposition 4.8. Let us assume (4.4) and (4.6). Let us also assume that

kS ≥ kN > kS,2 > 0, (4.12)
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and that kS,2 is not degenerate. Then, for ε sufficiently small, there holds

Ck,εN = Ck,sym
N +O(ε2), Ck,skew

N +O(ε2).

where Ck,sym
N is defined by (4.5).

Proof. Starting from (4.11), let us first note thatM0 = ΓS(S−1 − kSI)ΓSS
−1

has the same spectral decomposition as S, that is eigenvectors uS,i with corre-
sponding eigenvalues {

0 for i = 1
(kS,i−kS)kS,i
(kS,i−kN )2 for 2 ≤ i ≤ N .

From this, we deduce that

‖M0‖ = max
2≤i≤N

|kS,i − kS |kS,i
|kS,i − kN |2

=
|kS,2 − kS |kS,2
|kS,2 − kN |2

= Ck,sym
N .

Note also that the same holds for ΓS with eigenvalues{
0 for i = 1

1
kS,i−kN for 2 ≤ i ≤ N .

Then, noting that kS,2 is a simple eigenvalue, we can write down the Taylor
expansion of the spectral norm as

Ck,εN = ‖M0 + εM1 +O(ε2)‖ = ‖M0‖+ εuTM,0M1uM,0 +O(ε2),

where uM,0 the unit eigenvector corresponding to the largest eigenvalue ofM0,
that is uM,0 = ±uS,2. For simplicity, let us choose uM,0 = uS,2.

Then

uTM,0M1uM,0 = −uTM,0ΓSS
−1TS−1ΓSS

−1uM,0 + uTM,0ΓS(S−1 − kSI)ΓTS
−1uM,0

− uTM,0ΓS(S−1 − kSI)ΓSS
−1TS−1uM,0 + uTM,0ΓT (S−1 − kSI)ΓSS

−1uM,0

= −
k3
S,2

(kS,2 − kN )2
uTM,0TuM,0 +

kS,2(kS,2 − kS)

kS,2 − kN
uTM,0ΓTuM,0

−
k2
S,2(kS,2 − kS)

(kS,2 − kN )2
uTM,0TuM,0 +

kS,2(kS,2 − kS)

kS,2 − kN
uTM,0ΓTuM,0

= 0,

where we used that the matrices T and ΓT are skew-symmetric. This concludes
the proof.

We now illustrate the above bounds on toy numerical examples. Let us
introduce the following matrices S, T ∈ R4×4 :

S =


2000 0 0 0

0 1500 0 0
0 0 1000 0
0 0 0 0.02

 , T0 =


0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

 , T =
‖S‖
‖T0‖

T0.
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It then holds that kS = 50 and kS,2 = 0.001. Let us consider kN = kS . A second-
order convergence of the difference |Ck,εN −C

k,sym
N | as a function of ε is observed

on Figure 1. This is a strong indication that the estimate of Proposition 4.8 is
sharp.

In our practical applications of interest, we will indeed observe that the
operator is a perturbation of a symmetric operator, but the estimate of the
prefactor by the one obtained using the symmetric part is not sufficiently good
over a large range of the values of the parameters µ, in particular because the
spectral gap (see Assumption (4.12)) is not uniformly bounded from below (see
Section 5.5.1 for a discussion). This is why we will resort to a practical heuristic
method to approximate the prefactor, as is now explained in the next section 4.2.

Figure 1: |Ck,εN − Ck,symN | as a function of ε

4.2 Practical a posteriori error estimator
The aim of this section is to present the heuristic algorithm we use in order
to estimate the prefactors CkN , CuN and Cu

∗

N defined in Proposition 3.7 and
Proposition 3.4 respectively. The algorithm then yields approximations of these
constants, denoted by C

k

N , C
u

N and C
u∗

N , which are used to build a posteriori
error estimates for the greedy algorithm presented in Algorithm 1.

This heuristic procedure is based on the use of an estimation set of param-
eters values Ppref ⊂ P, containing a finite number of elements, which does not
contain any values of the parameters belonging to the training set Ptrain. In
other words, the estimation set Ppref is chosen so that Ptrain ∩Ppref = ∅. High-
fidelity solutions of the eigenvalue problems (2.1) are computed in the offline
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phase for all µ ∈ Ppref .
For a given reduced space VN , let us introduce the efficiency ratios: for all

µ ∈ P,

EkN (µ) :=
|kµ,N − kµ|
ηkN (µ)

, EuN (µ) :=
‖uµ,N − uµ‖
‖RN (µ)‖

and Eu
∗

N (µ) :=

∥∥u∗µ,N − u∗µ∥∥
‖R∗N (µ)‖

.

(4.13)
The latter quantities are computed in the offline phase for all µ ∈ Ppref . By
definition, it holds that for all µ ∈ P,

EkN (µ) ≤ CkN (µ), EuN (µ) ≤ CuN (µ) and Eu
∗

N (µ) ≤ Cu
∗

N (µ). (4.14)

Our heuristic approach then consists in estimating the constants CkN (µ),
CuN (µ) and Cu

∗

N (µ) for all µ ∈ P by their maximum values over Ppref . More
precisely, defining

C
k

N := max
µ∈Ppref

EkN (µ), C
u

N := max
µ∈Ppref

EuN (µ), and C
u∗

N := max
µ∈Ppref

Eu
∗

N (µ),

(4.15)
the practical a posteriori error estimates used in the greedy algorithm are then
defined by

∆k
N (µ) := C

k

Nη
k
N (µ), ∆u

N (µ) := C
u

N‖RN (µ)‖, and ∆u∗

N (µ) := C
u∗

N ‖R∗N (µ)‖.
(4.16)

The efficiency of this practical approach will be illustrated in the next section,
where numerical results obtained in neutronics applications are presented.

5 Numerical results
The aim of this section is to illustrate the behaviour of the proposed reduced
basis method on examples arising from neutronics applications. The consid-
ered physical model is presented in Section 5.1. In Section 5.2, we describe the
high-fidelity discretization of the problem using a finite element method. The
parametric dependency of the coefficients of the mathematical equations de-
scribing the model enables the matrices to be assembled using a so-called affine
decomposition, discussed in Section 5.3. The eigenvalue solver is described in
Section 5.4. Finally, numerical tests presented in Section 5.5 give an application
of the reduced basis method to nuclear core computations.

5.1 The continuous model: two-group neutron diffusion
equations

The stationary neutron flux density in a reactor core is determined by solving
the transport equation which depends on six variables: position (3-dimensional),
velocity direction (2-dimensional), the velocity norm or energy (1-dimensional).
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It physically states the balance between the emission of neutrons by fission
and the absorption, scattering, and leakage of neutrons at the boundary of the
spatial domain. The most common discretization of the energy variable is the
multigroup approximation where the energy domain is divided into subintervals
called energy groups. The reactor core is modeled by a bounded, connected and
open subset Ω of Rd (where typically d = 3, but one ot two-dimensional are also
considered) having a Lipschitz boundary which is piecewise regular. In practice,
the neutron flux density is usually modeled by the multigroup neutron diffusion
equations [9, Chapter 7] at the reactor core scale.

Let us now make precise the specific two-group neutron diffusion model we
consider in this work. For a given value µ ∈ P (the parameter set P will be
presented below), we consider the two-group neutron diffusion equations where
the neutron flux uex

µ :=
(
φex

1,µ, φ
ex
2,µ

)
∈ H1

0 (Ω)2 is decomposed into the neutron
flux of high energy φex

1,µ ∈ H1
0 (Ω) and thermal energy φex

2,µ ∈ H1
0 (Ω). This model

reads as

Find
(
uex
µ :=

(
φex

1,µ, φ
ex
2,µ

)
, λex
µ

)
∈ H1

0 (Ω)2 × R such that λex
µ is an eigenvalue with minimal modulus, and

− div
(
D1,µ∇φex

1,µ

)
+ Σ11,µφ

ex
1,µ + Σ12,µφ

ex
2,µ = λex

µ F1,µ

(
φex

1,µ, φ
ex
2,µ

)
in Ω,

− div
(
D2,µ∇φex

2,µ

)
+ Σ21,µφ

ex
1,µ + Σ22,µφ

ex
2,µ = λex

µ F2,µ

(
φex

1,µ, φ
ex
2,µ

)
in Ω,

φex
i,µ = 0, on ∂Ω, i = 1, 2,

(5.1)

supplemented with a normalization condition on uex
µ . Here, for all i, j ∈ {1, 2},

all µ ∈ P and all φ1, φ2 ∈ H1
0 (Ω),

• Fi,µ (φ1, φ2) := χi,µ ((νΣf )1,µφ1 + (νΣf )2,µφ2) ;

• χi,µ : Ω→ R is the neutron total spectrum of group i;

• νi,µ : Ω → R is the average number of neutrons emitted per fission of
group i;

• Σfi,µ : Ω→ R is the fission cross section of group i;

• Di,µ : Ω→ R+ is the diffusion coefficient of group i;

• Σij,µ : Ω→ R with Σij,µ =

{
Σti,µ − Σs,0,ii,µ if i = j,

−Σs,0,ij,µ otherwise;

• Σti,µ : Ω→ R is the total cross section of group i;

• Σs,0,ij,µ : Ω→ R is the Legendre moment of order 0 of the scattering cross
section from group i to group j.

Note that in the equations above, we used the short-hand notation (νΣf )i,µ to
refer to the product νi,µΣfi,µ for i = 1, 2. The so-called effective multiplication

factor kex
µ :=

1

λex
µ

measures the balance between the production and loss of
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neutrons. If kex
µ = 1, the nuclear chain reaction is self-sustaining; if kex

µ > 1, the
chain reaction is diverging; if kex

µ < 1, the chain reaction vanishes.

Let us now describe the considered parametric dependency. We introduce a
partition (Ωm)Mm=1 of the domain Ω with M ∈ N∗ so that for all 1 ≤ m ≤ M ,
Ωm is a domain with Lipschitz, piecewise regular boundaries. For i = 1, 2, the
coefficients Di,µ, Σij,µ, χi,µ, (νΣf )i,µ are assumed to be piecewise regular on
each domain Ωm for 1 ≤ m ≤ M . The parameter set P then refers to the set
of values that each of these coefficients can possibly take on each subdomain
(Ωm)1≤m≤M . In other words, the choice of a parameter value µ ∈ P corresponds
to a choice of the values of each of these coefficients on all the subdomains.

In the following, we assume that the set of admissible parameter values P
is such that all the coefficients of the model belong to L∞(Ω) and that there
exists α > 0 and 0 < ε < 1 such that for all µ ∈ P and all i, j ∈ {1, 2}, i 6= j,
almost everywhere in Ω,

α ≤ Di,µ a.e. in Ω,

α ≤ Σii,µ a.e. in Ω,

|Σij,µ| ≤ εΣii,µ a.e. in Ω,

0 ≤ (νΣf )i,µ a.e. in Ω,

there exists ĩ, j̃ ∈ {1, 2} such that χĩ,µ(νΣf )j̃,µ 6= 0 ∈ L∞(Ω),

so that Problem (5.1) is well-posed for all µ ∈ P. The variational formulation
associated to Problem (5.1) writes:

Find
(
uex
µ :=

(
φex

1,µ, φ
ex
2,µ

)
, λex
µ

)
∈ (H1

0 (Ω)2 × R) such that λex
µ is an eigenvalue with minimal modulus and,

aµ(
(
φex

1,µ, φ
ex
2,µ

)
, (ψ1, ψ2)) = λex

µ bµ(
(
φex

1,µ, φ
ex
2,µ

)
, (ψ1, ψ2)) for all (ψ1, ψ2) ∈ H1

0 (Ω)2,

(5.2)

where for all (φ1, φ2), (ψ1, ψ2) ∈ H1
0 (Ω)2,

aµ((φ1, φ2) , (ψ1, ψ2)) :=

∫
Ω

(D1,µ∇φ1) · ∇ψ1 + Σ11,µφ1ψ1 + Σ12,µφ2ψ1

+

∫
Ω

(D2,µ∇φ2) · ∇ψ2 + Σ21,µφ1ψ2 + Σ22,µφ2ψ2,

bµ((φ1, φ2) , (ψ1, ψ2)) :=

∫
Ω

χ1,µ ((νΣf )1,µφ1 + (νΣf )2,µφ2)ψ1

+

∫
Ω

χ2,µ ((νΣf )1,µφ1 + (νΣf )2,µφ2)ψ2,

supplemented with a normalization condition on uex
µ . The associated adjoint

problem then reads,

Find
(
u∗,ex
µ :=

(
φ∗,ex

1,µ , φ
∗,ex
2,µ

)
, λex
µ

)
∈ (H1

0 (Ω)2 × R) such that λex
µ is an eigenvalue with minimal modulus and,

aµ((ψ1, ψ2) ,
(
φ∗,ex

1,µ , φ
∗,ex
2,µ

)
)) = λex

µ bµ((ψ1, ψ2) ,
(
φ∗,ex

1,µ , φ
∗,ex
2,µ

)
) for all (ψ1, ψ2) ∈ H1

0 (Ω)2,

(5.3)

supplemented with a a normalization condition on u∗,ex
µ .
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5.2 The high-fidelity discretization
We describe in this section the high-fidelity discretization of the continuous
problem introduced in the previous section, that we consider as the reference
problem in our reduced basis context. Let TN be a shape-regular mesh of Ω and
ṼN be an associated conformal finite element approximation space of dimension
Ñ . We also denote by VN := (ṼN )2 which has dimension N = 2Ñ . We assume
that the mesh is such that the cross sections are regular on each element.

The discrete variational formulation associated to Problem (5.2) writes

Find
(
uNµ :=

(
φN1,µ, φ

N
2,µ

)
, λNµ

)
∈ (VN × R) such that λNµ is an eigenvalue with minimal modulus and,

aµ(
(
φN1,µ, φ

N
2,µ

)
,
(
ψN1 , ψ

N
2

)
) = λNµ bµ(

(
φN1,µ, φ

N
2,µ

)
,
(
ψN1 , ψ

N
2

)
), for all (ψN1 , ψ

N
2 ) ∈ VN = (ṼN )2,

(5.4)

where (φN1,µ, φ
N
2,µ) satisfies a normalization condition. We refer to [17] for the a

priori error analysis of Problem (5.4). Similarly, the discrete variational formu-
lation associated to Problem (5.3) reads

Find
(
u∗,Nµ := (φ∗,N1,µ , φ

∗,N
2,µ ), λNµ

)
∈ (VN × R) such that λNµ is an eigenvalue with minimal modulus and,

aµ(
(
ψN1 , ψ

N
2

)
, (φ∗,N1,µ (µ), φ∗,N2,µ )) = λNµ bµ(

(
ψN1 , ψ

N
2

)
, (φ∗,N1,µ , φ

∗,N
2,µ )), for all (ψN1 , ψ

N
2 ) ∈ VN = (ṼN )2,

(5.5)

where (φ∗,N1,µ , φ
∗,N
2,µ ) satisfies a normalization condition.

Let us denote by (θ1, · · · , θN ) a basis of VN . Problem (5.4) reads as follows
in matrix form. For all µ ∈ P, i = 1, 2, let uµ := (uµ,k)1≤k≤N ∈ RN be the
coordinates of uNµ in the basis (θ1, · · · , θN ) so that

uNµ :=

N∑
k=1

uµ,kθ
k. (5.6)

Let us define the matricesAµ :=
(
aµ(θk, θl)

)
1≤k,l≤N andBµ :=

(
bµ(θk, θl)

)
1≤k,l≤N .

The pair (uµ, λµ) ∈ RN × R is then solution to

Aµuµ = λµBµuµ, (5.7)

where uµ satisfies a normalization condition. This is the high-fidelity eigenvalue
problem of the form (2.1) we consider in the following numerical tests.

Likewise, for Problem (5.5), the pair
(
u∗µ, λµ

)
∈ RN × R is solution to

(Aµ)Tu∗µ = λµ(Bµ)Tu∗µ (5.8)

together with a normalization condition on u∗µ. Here, u∗µ = (u∗µ,k)1≤k≤N ∈ RN

is the vector of coordinates of the function u∗,Nµ in the basis (θ1, . . . , θN ), i.e.

u∗,Nµ =

N∑
k=1

u∗µ,kθ
k.

Problem (5.8) is the adjoint high-fidelity eigenvalue problem of the form (2.2)
that we consider in the following numerical tests.
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5.3 Affine decomposition of the coefficients
In the following numerical tests, the domain Ω is chosen as [0, L]2 for some L > 0.
We introduce a partition (Ωk)Kk=1 of the domain Ω and the parameter functions
entering in the definition of Problem 5.1 are assumed to be piecewise constant
on each Ωk for 1 ≤ k ≤ K. The parameter µ is thus a K-dimensional vector of
either scalars or vectors (containing macro-parameters such as the material, the
burn up, the fuel temperature, or the boron concentration for example), which
allows to set the values of the coefficientsD1,Σ11,Σ12, D2,Σ21,Σ22, χ1, χ2,Σf1,Σf2

on the domain Ωk, for each 1 ≤ k ≤ K. We remark that for all µ ∈ P, the
matrices Aµ and Bµ write

Aµ =

K∑
k=1

6∑
p=1

fp(µk)Ak,p +Mbc and Bµ =

K∑
k=1

4∑
q=1

gq(µk)Bk,q,

where f(µk) and g(µk) are the vectors defined by

f(µk) = (D1(µk),Σ11(µk),Σ12(µk), D2(µk),Σ21(µk),Σ22(µk))

g(µk) = ((χ1νΣf1) (µk), (χ1νΣf2) (µk), (χ2νΣf1) (µk), (χ2νΣf2) (µk)) ,

Ak,p and Bk,q (1 ≤ k ≤ K, 1 ≤ p ≤ 6, 1 ≤ q ≤ 4) are parameter-independent
N × N matrices, and Mbc ∈ RN×N is a parameter-independent matrix which
stems from the discretization of the boundary condition. As a consequence, all
these matrices can be pre-computed in order to efficiently assemble the matrices
Aµ and Bµ online, and estimate the residuals RN (µ) and R∗N (µ) as we now
explain.

Thanks to the affine decomposition of the matrices Aµ and Bµ above, the
residual norm is easily computable online, as it only requires algebraic operations
over vectors of the size of the (small) reduced basis, which is N . Indeed, let
(ξ1, . . . , ξN ) be an orthonormal basis of the chosen reduced space for the scalar
product 〈·, ·〉, and let VN ∈ RN×N be the matrix containing the coordinates
of the basis (ξ1, . . . , ξN ) in the canonical basis of RN . For 1 ≤ k, l ≤ K, 1 ≤
p, p′ ≤ 6, 1 ≤ q, q′ ≤ 4, we define, in the offline stage, the reduced matrices of
dimension N ×N as follows:

DN
k,l,p,p′ = V tNA

t
k,pX−1Al,p′VN

ENk,l,p,q = V tNA
t
k,pX−1Bl,qVN

FNk,l,q,q′ = V tNB
t
k,qX−1Bl,q′VN

DN
bc,k,p = V tNM

t
bcX−1Ak,pVN

ENbc,k,q = V tNM
t
bcX−1Bk,qVN

FNbc = V tNM
t
bcX−1MbcVN ,

where X stands for the Gram matrix of size N × N for the considered scalar
product 〈·, ·〉, commonly called the mass matrix, and At denotes the transpose
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of the matrix A. Then, in the online stage, for a given parameter µ, we can
assemble the residual norm as

‖RN (µ)‖ := ‖ (Bµ − kµ,NAµ)uµ,N‖ =
√
ctµ,NGµ,Ncµ,N ,

with

Gµ,N =|kµ,N |2
 K∑
k,l=1

6∑
p,p′=1

fp(µk)fp′(µl)D
N
k,l,p,p′ +

K∑
k=1

6∑
p=1

fp(µk)
(
DN
bc,k,p + (DN

bc,k,p)
t
)

+ FNbc


− kµ,N

 K∑
k,l=1

6∑
p=1

4∑
q=1

fp(µk)gq(µl)
(
ENk,l,p,q + (ENk,l,p,q)

t
)+

K∑
k=1

4∑
q=1

gq(µk)
(
ENbc,k,q + (ENbc,k,q)

t
)

+

K∑
k,l=1

4∑
q,q′=1

gq(µk)gq′(µl)F
N
k,l,q,q′ .

A similar construction is readily possible for ‖R∗N (µ)‖.

5.4 Eigenvalue solver
The eigenvalue solver, for both high-fidelity and reduced-order models, relies on
the inverse power method given in Algorithm 2. In practice, this algorithm is
run with relative error tolerances set to τu = 10−6 and τλ = 10−7.

Algorithm 2 Inverse power method - solve Au = λBu

Input: A ∈ RM×M , B ∈ RM×M , τu: acceptance criterion for the eigenvector,
τλ: acceptance criterion for the eigenvalue
Choose a random positive unit vector u0 and k0 6= 0
Set i = 0 and STOP=false
while (STOP==false) do
Solve Avi+1 = Bui

ui+1 =
vi+1

‖vi+1‖
ki+1 = 〈vi+1, ui〉

STOP=

[
‖ui+1 − ui‖
‖ui‖

≤ τu and
|ki+1 − ki|
|ki|

≤ τλ

]
i = i+ 1

end while
Output: (u, λ) =

(
ui,

1
ki

)
The direct high-fidelity eigenvalue problem (2.1) is solved by applying Algo-

rithm 2 with A = Aµ and B = Bµ. Likewise, the adjoint eigenvalue problem (2.2)
is solved by applying Algorithm 2 with A = ATµ and B = BTµ . The resolutions of
the reduced eigenvalue problems are performed similarly.
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5.5 Numerical tests
The aim of this section is to illustrate the numerical behaviour of the reduced
basis method and the proposed a posteriori error estimators on two different
numerical test cases. Let us introduce the notation

ekN (µ) = |kµ − kµ,N | , ek,relN (µ) =
|kµ − kµ,N |
|kµ|

,

euN (µ) = ‖uµ − uµ,N‖`2 , eu,relN (µ) =
‖uµ − uµ,N‖`2
‖uµ‖`2

, eu,relN,L2(µ) =
‖uµ − uµ,N‖L2

‖uµ‖L2

,

eu
∗

N (µ) = ‖u∗µ − u∗µ,N‖`2 ,

where the `2 norm is the Euclidean norm, and L2 refers to the L2 functional
norm applied to the functions in the space VN built from the vectors in RN
through (5.6). Moreover, we denote by tHF and tRB the mean computational
times for one run (for a given parameter) of the high-fidelity and reduced solvers
respectively.

5.5.1 Test case 1: 2D two-group toy example

The reduced basis method is first run on a simple test case where L = 60 (we
use here reduced units) modeled with N = 2 × 841 degrees of freedom along
K = 4 subdomains. Figure 2 shows the mesh used for the test case as well
as the decomposition of Ω into four subdomains. Here, we set Bµ = I for all
µ ∈ P.

Figure 2: Domain of calculation for the two-group toy example with its associ-
ated mesh

The training and test sets Ptrain and Ptest are constructed using the following
random sampling scheme: in each subdomain Ωk, for 1 ≤ k ≤ K, the values of
the coefficients are independently distributed according to the following laws:
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• Σs,0,ij : uniform law on [0, 0.15] , 1 ≤ i, j ≤ 2;

• Σt1 and Σt2: uniform law on [2(Σs,0,12 + Σs,0,21), 0.7];

• Di =
1

3Σti
, i = 1, 2;

• χiνΣfj = δij , 1 ≤ i, j ≤ 2.

The coefficients are chosen so that the coercivity of Problems (5.2) and (5.3)
are ensured. The parametric spaces Ptrain and Ptest are selected following the
random sampling procedure described above so that #Ptrain = 300, #Ptest = 50
and Ptrain ∩ Ptest = ∅. In the offline stage, the greedy algorithm is performed
using the a posteriori estimator

∆N (µ) = ηkN (µ)

defined in (3.13) for all µ ∈ P (in other words, we choose here C̄kN (µ) = 1 for
all µ, following the notation (4.1)).

The left part of Figure 3 depicts the fast convergence of the reduced basis
method with respect to the size of the reduced space. The relative errors on the
eigenfunctions eu,relN (µ) and eu,relN,L2(µ) follow the same trend. The relative error
ek,relN (µ) between the high-fidelity solution and the reduced basis solution on
the multiplication factor kµ reaches the order of 10−5 for N = 100. Moreover,
this error decreases by 4 orders of magnitude from N = 10 to N = 100. As
expected, the error on the eigenvalue decreases twice faster than the error on
the eigenvector. Moreover, we checked that the value of the a posterior error
estimator ηkN (µ) stays below 10−12 for the selected parameters, as expected.

In terms of computational time, the right part of Figure 3 shows that, in the
chosen setting, while the high-fidelity solution is computed in about 5.8s, the
reduced solution is computed within up to 0.09s, which is overall 60 up to 115
times faster than the high-fidelity solver to obtain a relative error of order 10−4

to 10−5 on the eigenvalue.
It is also interesting to look at the behavior of the implemented a posteriori

error estimators. The relation between the error |kN (µ)−k(µ)| and the estimator
∆N (µ) = ηkN (µ) we used here can be first analyzed by looking at the prefactor
CkN (µ), defined in (3.14). The value of CkN (µ) on the test set Ptest is presented
in Figure 4. In that particular case, we fall into the framework developed in
Section 4.1.3. Indeed, when we compute the perturbation magnitude εµ as

εµ =

∥∥∥∥Aµ−ATµ2

∥∥∥∥∥∥∥Aµ+ATµ
2

∥∥∥ , (5.9)

we observe that εµ varies between 3×10−7 and 3×10−6 for µ ∈ Ptest. Therefore,
we expect Ck,sym

N (µ) defined in (4.5) to be a a good approximation of CkN (µ).
Unfortunately, this is not always the case as we observe on the left plot of
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Figure 3: (Left) Mean relative errors over Ptest; (Right) Relative time saving

factor
tHF

tRB
as a function of the dimension of the reduced space N .

Figure 4. Actually, in the cases where the prefactors differ a lot, we observe
that condition (4.12) in Proposition (4.8) is not satisfied, which explains why
the perturbative expansions may not be sharp.

Figure 5 compares the behavior of the simple a posteriori error estimators
‖RN (µ)‖, ‖R∗N (µ)‖ and ηkN (µ) defined in (3.13), with the corresponding errors
euN (µ), eu

∗

N (µ), and ekN (µ) over the dimension of the reduced space. The plots
of the true errors and the corresponding estimators are parallel from N ≥ 20
which confirms the similar convergence rate for the computed a posteriori esti-
mators as the associated real errors. Actually, the quantity ηkN (µ) seems to be
a reliable and efficient a posteriori estimate of the true error up to roughly a
constant multiplicative factor over a large range of parameter values, as Figure
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Figure 4: (Left) Variations of the prefactor CkN (µ) and Ck,sym
N (µ) over Ptest for

N = 100.
(Right) Parametric variations of the real eigenvalue error ekN (µ) (in blue) and
the associated a posteriori error estimator ηkN (µ) (in orange) over Ptest, for
N = 100.

4 illustrates.
In terms of absolute value, for N = 100, the estimator ηkN (µ) for the multi-

plication factor is about 10−2 while the true error is approximately 10−4: this
illustrate the importance of introducing prefactors C̄kN (µ), C̄uN (µ) and C̄u

∗

N (µ)
to estimate the true errors, see (4.1). This is important in particular in order to
stop the greedy procedure when the real error is below a given threshold. This
will be discussed below.
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Figure 5: Mean values for errors and associated a posteriori error estimators
over Ptest. (Left) euN and ‖RN‖; (Middle) eu

∗

N and ‖R∗N‖; (Right) ekN and ηkN .

5.5.2 Test case 2: 2D two-group "minicore" problem

We now provide a second, more challenging, test case called minicore. The core
is modeled as a square of side length L = 107.52 cm. As Figure 6 shows, it is
made up of K = 25 assemblies (1 fuel assembly composed of a mix of uranium
dioxyde and Gadolinium oxyde denoted UGD12 + 8 fuel assemblies composed of
uranium dioxyde labeled UO2 + 16 radial reflector assemblies named REFR),
each one being 21.504 cm long. It is discretized into N = 2602 degrees of
freedom. Here, there holds Bµ 6= I, and the Dirichlet boundary condition in
Problem (5.1) is replaced by a Robin condition called void boundary condition
which writes

Di(r, µ)∇φi(r, µ).~n+
1

2
φi(r, µ) = 0 on ∂Ω, 1 ≤ i ≤ 2,

where ~n is the outward unit normal vector to ∂Ω.
In this test case, the parameter µ stands for five parameters which deter-

mine all the physical parameters entering (5.1). More precisely, by recalling the
partition (Ωk)Kk=1 of the domain Ω, the parameter set P is the 5K dimensional
vector space

P =
{
µ = (µ1, . . . , µK) , ∀1 ≤ k ≤ K, µk ∈ R5

}
,

such that µk contains the following information attached to the subdomain Ωk:
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Figure 6: Median cross-sectional view of the MiniCore (z = 234.36 cm)

• the nature of the material in Ωk;

• the burnup value, in MWd/ton;

• the fuel temperature, in K;

• the boron concentration, in particle per million (ppm);

• the moderator density.

The parametric sets Ptrain and Ptest are randomly generated in P such that

#Ptrain = 1000, #Ptest = 50, and Ptrain ∩ Ptest = ∅.

Regarding the offline stage, in order to avoid any stability issue, a POD
procedure over a reduced space of dimension 10 (generated from 5 direct plus
5 adjoint eigenvectors snapshots) is used to initialize the greedy procedure (see
Algorithm 1). Then, the greedy procedure is continued using the a posteriori
estimator ‖RN‖ + ‖R∗N‖, as the quantity of interest here is the two-group flux
(φN1 , φ

N
2 ) as well as its adjoint (φ∗,N1 , φ∗,N2 ).

The left part of Figure 7 depicts mean relative errors ek,rel
N , eu,rel

N,L2 , and eu,rel
N

as a function of the dimension of the reduced basis. The relative error on the
multiplication factor is of the order of 10−5 for N = 80. Typically, as the left
part of Figure 8 shows, for a certain µ0 ∈ P and for N = 100, the maximum
error on the associated first-group flux does not exceed 3.2 × 10−4; as for the
second group, the right part of Figure 8 shows that the flux error is locally
gathered in an area of low flux, quite far from the hot spot.
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Figure 7: (Left) Mean relative errors over Ptest; (Right) Relative time saving

factor
tHF

tRB
as a function of the dimension of the reduced space N .

Importantly, the reduced method enables the solution to be computed faster
than the high-fidelity approach, which typically takes about 4.56 s to be com-
puted for the present test case. The right part of Figure 7 illustrates that
the relative saving time factor is a decreasing function of the dimension of the
reduced space N , and exhibits a large computational gain compared to the high-
fidelity solver. It is observed that for a relative error on keff ranging from 10−4

to 10−6, the reduced solution can be obtained with a computational time from
50 up to 300 times smaller than the high-fidelity solution.

We now study the certification of the method performed by the a posteriori
estimator. Figure 9 shows that, although the residuals display similar values as
those for the real eigenvector errors, for the eigenvalue, the order of magnitude
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Figure 8: (Left) Plots of the first energy group of high-fidelity (upper right)
and reduced (lower right) solutions uµ0

and uµ0,N , and their error (left)
|uµ0 − uµ0,N |, for N = 100 and for µ0 ∈ Ptest; (Right) Plots of the second en-
ergy group of high-fidelity (upper right) and reduced (lower right) solutions uµ0

and uµ0,N , and their error (left) ‖uµ0
− uµ0,N‖, for N = 100 and for µ0 ∈ Ptest

of the a posteriori estimator is roughly 10 times larger than the real error,
for N ≥ 30. Despite the fairly good parametric variations of the estimate,
illustrated by Figure 10, the gap between real error and estimator must be
corrected in order to implement a relevant stopping criterion in the greedy
algorithm. This points out a certain variation of the prefactor CkN (µ) over the
dimension of the reduced space N . In order to bring a correction to the model,
the practical efficiency of the estimator proposed in Section 4.2 is computed. The
right plot of Figure 10 shows that the efficiency EkN defined in (4.13) levels off
for N = 100 at the order of magnitude of 10−1, and does not depend too much
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Figure 9: Mean values for errors and associated a posteriori error estimators
over Ptest.
(Left) euN and ‖RN‖; (Middle) eu

∗

N and ‖R∗N‖; (Right) ekN and ηkN .

on the parameter µ. Therefore, we propose to apply the procedure outlined
in Section 4.2 to build a posteriori error estimators of the form (4.16), with
constants C

k

N , C
u

N and C
u∗

N approximated by (4.15). This requires to choose a
set Ppref, that we randomly chose in P such that

Ppref ⊂ P, #Ppref = 10, and Ppref ∩ Ptrain ∩ Ptest = ∅.

As a result of this procedure, Figure 11 shows that the order of magnitude of
the modified estimator corresponds to the one of the real error, showing that
the new a posteriori estimator tends to be an optimal stopping indicator.

Finally, we gather in Table 1 the measured computational times for several
quantities of interest and main stages in Python. Overall, the reduced basis
method is very useful when the number p of solutions that must be computed
is very large, such as in an optimization process. Roughly, if toffline denotes the
computational time of the offline stage, tHF the high-fidelity solver computa-
tional time, and tRB the reduced solver computational time, the reduced basis
method becomes relevant when there holds

toffline + p× tRB < p× tHF,
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Figure 10: (Left) Parametric variations of the real eigenvalue error ekN (µ) (in
blue) and its associated a posteriori error estimator ηkN (µ) (in orange) over Ptest,
for N = 100; (Right) Parametric variations of the practical efficiency EkN (µ) over
Ptest, for N = 100.

that is

p >
toffline

tHF − tRB
.

For this test case, this corresponds to p > 1743 parameter values.
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Figure 11: Maximum values for errors and associated a posteriori error estima-
tors over Ptest. Upper left: euN , ‖RN‖ and ∆u

N ; upper right: eu
∗

N , ‖R∗N‖ and
∆u∗

N ; lower: ekN , ηkN and ∆k
N .

Mean computational time
Offline stage ≈ 11 hours

Assembling residual norm (offline part) 49.19 s
Assembling residual norm (online part) 5.03 s
Solving the high-fidelity problem (tHF) 14.71 s
Solving the reduced problem (tRB) 0.44 s

Table 1: Mean computational times for the Efficient Greedy reduced basis
method applied to the 2D two-group minicore in Python, for N = 100
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