Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2024

Reduced basis method for non-symmetric eigenvalue problems: application to the multigroup neutron diffusion equations

Résumé

In this article, we propose a reduced basis method for parametrized non-symmetric eigenvalue problems arising in the loading pattern optimization of a nuclear core in neutronics. To this end, we derive a posteriori error estimates for the eigenvalue and left and right eigenvectors. The practical computation of these estimators requires the estimation of a constant called prefactor, which we can express as the spectral norm of some operator. We provide some elements of theoretical analysis which illustrate the link between the expression of the prefactor we obtain here and its well-known expression in the case of symmetric eigenvalue problems, either using the notion of numerical range of the operator, or via a perturbative analysis. Lastly, we propose a practical method in order to estimate this prefactor which yields interesting numerical results on actual test cases. We provide detailed numerical simulations on two-dimensional examples including a multigroup neutron diffusion equation.
Fichier principal
Vignette du fichier
main (1).pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

cea-04156959 , version 1 (10-07-2023)

Licence

Identifiants

Citer

Yonah Conjungo Taumhas, Geneviève Dusson, Virginie Ehrlacher, Tony Lelièvre, François Madiot. Reduced basis method for non-symmetric eigenvalue problems: application to the multigroup neutron diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2024, 58 (5), pp.1959-1987. ⟨10.1051/m2an/2024055⟩. ⟨cea-04156959⟩
230 Consultations
160 Téléchargements

Altmetric

Partager

More