
HAL Id: cea-04156793
https://cea.hal.science/cea-04156793

Preprint submitted on 9 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Configuring the IEEE 802.1Qbv Time-aware shaper with
deep reinforcement learning

Adrien Roberty, Siwar Ben Hadj Said, Frederic Ridouard, Henri Bauer, Annie
Geniet

To cite this version:
Adrien Roberty, Siwar Ben Hadj Said, Frederic Ridouard, Henri Bauer, Annie Geniet. Configuring
the IEEE 802.1Qbv Time-aware shaper with deep reinforcement learning. 2023. �cea-04156793�

https://cea.hal.science/cea-04156793
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Configuring the IEEE 802.1Qbv Time-Aware Shaper with
Deep Reinforcement Learning

ADRIEN ROBERTY, University Paris-Saclay, CEA, List, France and ISAE-ENSMA - LIAS, France
SIWAR BEN HADJ SAID, University Paris-Saclay, CEA, List, France
FREDERIC RIDOUARD, ISAE-ENSMA - LIAS, France
HENRI BAUER, ISAE-ENSMA - LIAS, France
ANNIE GENIET, University of Poitiers - ISAE-ENSMA - LIAS, France

One of the breaking changes induced by Industry 4.0 will be the networking of production equipment. To
achieve this, the Time-Sensitive Networking (TSN) set of network standards has been developed. However,
this new networking paradigm will create new challenges. For example, TSN standards allow a certain level of
flexibility and modularity in the data plane, however, the configuration of these standards depends on many
parameters (e.g., network topology, routing strategy, critical flows requirements, etc.) making the configuration
task cumbersome. The IEEE 802.1Qbv standard is among the main TSN standards that propose a mechanism
allowing to achieve deterministic latency when it is appropriately configured. Today’s main approach to
configure this mechanism relies on exact or heuristic methods. These are adequate for closed network (when
all flows are known beforehand and the network topology is fixed). However, in open networks (where flows
are added to the network in an incremental way and the network topology is dynamic), the scheduling in IEEE
802.1Qbv can lead to a NP-hard problem. In this paper, we address open networks such as TSN in industrial
networks with reconfigurable production lines. We propose a solution to configure the IEEE 802.1Qbv standard
by using Deep Reinforcement Learning (DRL). We use simulations to train and evaluate the configuration
agent.

CCS Concepts: • General and reference → Experimentation; • Networks → Network simulations; Net-
work management; Wired access networks; • Computing methodologies → Planning and scheduling;
Reinforcement learning.

Additional Key Words and Phrases: Time Sensitive Networking, Industry 4.0, Deep Reinforcement Learning

ACM Reference Format:
Adrien Roberty, Siwar Ben Hadj Said, Frederic Ridouard, Henri Bauer, and Annie Geniet. 2018. Configuring
the IEEE 802.1Qbv Time-Aware Shaper with Deep Reinforcement Learning. In . ACM, New York, NY, USA,
15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
One of the primary aspects of Industry 4.0 is the interconnection of production equipment, which
includes machines, production lines, robots, and storage and conveying systems. This will enable
production equipment to control, configure, and share information, but places high demands on
communication devices in terms of reliability, latency, and longevity. The most crucial objective for
Industry 4.0 from a network perspective is the real-time performance of communications, or the
addition of quality of service to the network.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
CoNEXT 2023, December 5-8, 2023, Paris, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1

HTTPS://ORCID.ORG/0000-0002-1580-2300
HTTPS://ORCID.ORG/0000-0001-9591-796X
HTTPS://ORCID.ORG/0000-0002-0349-5462
HTTPS://ORCID.ORG/0000-0001-6560-4313
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

CoNEXT 2023, December 5-8, 2023, Paris, France Roberty, et al.

Time Sensitive Networking (TSN) is a collection of standards that aims to include real-time
features to wired Ethernet networks [7, 8, 17]. TSN’s first advantage is its ability to guarantee high
bandwidth and deterministic communications, with high synchronicity, bounded and strict latency.
The second advantage is its configurable mechanisms that can handle a combination of diverse
traffic constraints on the same medium. These mechanisms can efficiently adapt to a wide range
of services and ensure that the network can be customized to meet the unique requirements and
constraints of different applications.

TSN also provides profiles that specify the TSN standards to use and how to use them in particular
application scenarios. For example, the IEC/IEEE 60802 standard project provides a TSN profile for
industrial automation1.

The main focus of this article is on the IEEE 802.1Qbv [11] amendment to the IEEE 802.1Q [12]
standard (Amendment 25: Enhancements for Scheduled Traffic). The objective of this standard is
to minimize the queuing delay in switches for important cyclic traffic, thereby achieving a low
and consistent end-to-end latency. To accomplish this, the standard proposes a time-sensitive
queue draining approach that schedules frame transmission relative to a recognized timescale. The
mechanism involves the installation of gates in front of queues that can be opened or closed based
on a configurable cycle time. This approach enables the scheduling of frame transmissions using
timing derived from the IEEE 802.1AS [14] standard.

In the anticipated scenarios of industry 4.0, the production lines can be reconfigured, resulting in
a dynamic network topology and flow. This poses a challenge for configuring TSNmechanisms. One
of the primary issues with TSN standards pertains to configuring TSN networks. The scheduling in
IEEE 802.1Qbv alone can lead to a well-known NP-hard problem [3, 15, 30]. The prevalent approach
in literature is based on engineering tools such as simulation tools like RTaW Pegase2or mathemat-
ical optimization tools like Integer Linear Programming (ILP) formulations or Satisfiability Modulo
Theories (SMT) solvers [4]. However, these engineering tools are unsuitable for the configuration of
IEEE 802.1Qbv. To provide a good Qbv configuration to deploy, these tools require prior knowledge
of all the flows that could be present in the network. Even if these tools are used for each new
flow, it would result in latency in the configuration decision and deployment process, because the
configuration process involves retrieving the list of existing flows in the network, the topology,
and the characteristics of the new flow. This information is then provided to the engineering tools
to determine the new Qbv configuration to deploy. This process can take several hours before the
flow can be accepted/rejected, and the decided configuration can be deployed. Therefore, existing
engineering tools are better suited for closed networks (where the flows are known in advance,
and no new flows are expected during network operation) and for offline use (before deploying the
network).
In order to overcome the aforementioned obstacles, there is a need for a rapid and efficient

scheduling algorithm that can determine the IEEE 802.1Qbv configuration. This algorithm must
possess the ability to promptly respond to any new occurrence (such as the emergence of a
new flow, changes in topology, or alterations in flow configuration) by selecting the appropriate
scheduling to be implemented throughout the network. Additionally, the algorithm must be capable
of accommodating the gradual implementation of application flows within the TSN network, where
not all flows are predetermined. Furthermore, unlike conventional analytical optimization tools,
the algorithm must be able to execute quickly (within seconds). As a result, we have employed
Reinforcement Learning (RL) methodologies to devise a TSN scheduling algorithm.

1Available at https://1.ieee802.org/tsn/iec-ieee-60802/
2Available at https://www.realtimeatwork.com/rtaw-pegase/

2

https://1.ieee802.org/tsn/iec-ieee-60802/
https://www.realtimeatwork.com/rtaw-pegase/

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Configuring the IEEE 802.1Qbv Time-Aware Shaper with DRL CoNEXT 2023, December 5-8, 2023, Paris, France

This article presents a solution for generating an IEEE 802.1Qbv setup. Our proposal relies on RL
methods, which are ideal for decision-making. RL is frequently employed for routing in computer
networks [16]. We aim to demonstrate that an RL agent can configure the scheduling of the IEEE
802.1Qbv within a reasonable timeframe. To accomplish this objective, we utilize simulations to
train and assess the agent. The simulations are conducted using the OMNeT++/INET network
simulator. INET is a model library with open-source features (that includes the TSN models) for
the OMNeT++ simulation environment.
The remaining part of the document is organized in the subsequent manner: Section 2 gives

an overview of the current state of the art while Section 3 delineates the various elements of the
suggested approach. In Section 4, we explain the methodology we employed for setting up the
training loop and furnish the evaluation of the schedules determined by the agent. Finally, Section 5
wraps up the article and presents future prospects.

2 RELATEDWORK
Several studies have tackled the challenge of configuring TSN. For instance, the work done by [1]
offers an analysis of the real-time traffic that traverses the TSN network, allowing for an assessment
of whether time constraints are met. The conventional method of computing a deterministic
schedule for IEEE 802.1Qbv involves using an Integer Linear Programming (ILP) formulation [3, 21].
While this approach is efficient for small networks, it can take a significant amount of time to
converge for larger networks. Additionally, these are offline techniques that are not suitable for
open and reconfigurable networks. Another example is [19]. This solution, which is based on the
IEEE 802.1Qcc standard [13], allows for online reconfiguration of an IEEE 802.1Qbv-based network.
However, it relies on an admission control mechanism and does not modify the Qbv time cycle in
the switches. The issue of online schedule reconfiguration remains an outstanding challenge in
TSN [28].

The utilization of AI methods appears to hold great potential for managing networks. It has the
capability to predict network congestion and make decisions regarding routing strategies [16, 27].
Nonetheless, there have been limited efforts to investigate the use of AI techniques for TSN
configuration. For example, the authors of [23] suggests using RL techniques to schedule streams
in 5G deterministic asynchronous networks. The proposed solution exclusively configures the
Asynchronous Traffic Shaper (ATS) mechanism described in the IEEE 802.1Qcr standard. In [20], the
authors employ AI methods to determine the feasibility of a potential configuration, i.e. whether it
satisfies the application requirements. To accomplish this, they experiment with simple supervised
and unsupervised learning algorithms to classify possible configurations as feasible or non-feasible.
The primary disadvantage of this solution is that the AI is only effective on a specific topology.
When the topology changes, their AI necessitates retraining. Moreover, the proposed solution is
unsuitable for online configuration.
A study by [32] has employed DRL to manage the routing and scheduling of mixed-criticality

traffic within a Deterministic Networking (DetNet) framework, which operates at layer 3. On the
other hand, TSN operates at layer 2. Another research by [31] has utilized DRL to support their
IEEE 802.1Qbv scheduling algorithm. Nevertheless, their approach adopts the no-wait model for
TSN scheduling, which was initially introduced in [5]. This approach involves scheduling being
carried out in the clients, necessitating a prior understanding of each flow.

The field of Reinforcement Learning is vast. A glimpse of it can be found in [29]. To help choose
the appropriate algorithm, RL algorithms can be categorized. Firstly, the algorithms are classified
as model-based (where the agent can predict the outcome of each action) or model-free. Since
we cannot predict the environment’s development, we will use model-free algorithms. Secondly,
we have to decide how the agent will learn, either on-policy (where the algorithm assesses and

3

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

CoNEXT 2023, December 5-8, 2023, Paris, France Roberty, et al.

enhances the policy employed for selecting actions) or off-policy (where the algorithm assesses and
enhances a policy that differs from the one used to select actions). Proximal Policy Optimization [26]
is a well-known on-policy model-free algorithm, whereas Deep Q-learning [18] is a well-known off-
policy model-free algorithm. Our agent employs the Soft Actor-Critic (SAC) [9] learning algorithm
(refer to subsection 3.3), which aims to balance the strengths and weaknesses of both algorithm
families.

3 RL COMPONENTS FOR SCHEDULING IEEE 802.1QBV
The aim of this article is to suggest a solution based on RL algorithm for making decisions regarding
scheduling in IEEE 802.1Qbv. In this section, we describe the environment taken into account and
the assumptions made to simplify the training process. We also introduce the formalization of RL
that will enable the configuration of IEEE 802.1Qbv.

3.1 Network modelization
The arrangement of the network can be delineated by a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is a
collection of vertices made up of end points (such as sensors, actuators, PLC controllers, and so on)
and TSN switches. 𝐸 is a set of edges that includes full-duplex connections linking all components
of the network. A model of network topology is depicted in Figure 1. All topologies are configured
to ensure that the IEEE 802.1Qbv is uniform on all switches.

TSN switch 1

End station 4

...

TSN switch N

End station 3
End station 1

End station 2

Fig. 1. General topology of the considered networks (where N can be equal to 1)

The IEEE 802.1Qbv mechanism shares a resemblance to the Time-Division Multiple Access
(TDMA) technique. The transmission time is sliced into cycles of unchanging duration, which are
further divided into time sequences of variable lengths. Each sequence is then allocated to a specific
traffic class. In Figure 2, the Qbv mechanism is illustrated within a TSN switch. The standard assigns
a queue for every flow priority and a logical gate before each queue. These gates can either be
open (allowing frames in the associated queue to be transmitted) or closed (preventing frames in
the associated queue from being transmitted). A gate control list manages these gates, defining
which gates are open and for how long at each instant. When multiple queues’ gates are opened
simultaneously, the priority determines the frame transmission order. The standard outlines eight
different priorities, starting from seven (highest) to zero (lowest), requiring the presence of eight
queues.

The network’s TSN functionality is illustrated in Figure 3. The figure depicts two types of traffic:
critical traffic and ’normal’ traffic, also known as Best Effort (BE) traffic, with low priority. This

4

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Configuring the IEEE 802.1Qbv Time-Aware Shaper with DRL CoNEXT 2023, December 5-8, 2023, Paris, France

Port 1
(ingress)

Port 2
(ingress)

Port 3
(egress)

AA

BB

BB

AA

Q0

Q6

Q7

.

.

.

.

.

.

t0 t1 t2 t3 …

Q7 1 0 1 0 …

Q6 0 0 0 0 …

Q5 0 0 0 0 …

Q4 0 1 0 1 …

Q3 0 0 0 0 …

Q2 0 0 0 0 …

Q1 0 0 0 0 …

Q0 0 0 0 0 …

Gate Control List (GCL)

BB

Fig. 2. IEEE 802.1Qbv scheduling mechanism

simplifies the scheduling of the streams, resulting in only two time sequences. The first sequence
is reserved for critical traffic, while the second sequence is for all other traffic. We assume that
the talkers and listeners at the end stations are stationary. Two talkers and two listeners were
considered:

(1) a talker that generates packets for critical traffic;
(2) a talker that generates packets for BE traffic;
(3) a listener that receives packets from critical traffic;
(4) a listener that receives packets from BE traffic.

TSN Switch S1 TSN Switch S2

Time
sequence 1

Talker 1

Talker 2 Listener 2

Listener 1
Cri�cal traffic

Best effort traffic

Scheduling in IEEE 802.1Qbv
cycle

Cycle length Cycle length

Time
sequence 2

Time
sequence 1

Time
sequence 2

Fig. 3. An illustrative example of two talkers (Talker 1 for critical traffic and Talker 2 for BE traffic) exchanging
with two listeners (Listener 1 for critical traffic and Listener 2 for BE traffic) via a TSN network composed of
two TSN switches

For successful reinforcement learning training, it is essential that the setting changes between
each occurrence. In our instance, the number of links (i.e. the number of jumps) that connect talkers

5

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

CoNEXT 2023, December 5-8, 2023, Paris, France Roberty, et al.

to listeners and the theoretical capacity of connections fluctuate. The size of the TSN payload is
arbitrarily chosen in every occurrence. Additionally, the TSN period differs from one occurrence
to the next. Moreover, a new latency deadline is randomly calculated at the commencement of
every occurrence. As outlined in the draft of the TSN Profile for Industrial Automation, version
1.23, Table 1 lists the primary environment parameters and their corresponding range of values.

Table 1. Environment parameters

Parameter Value
Number of switches 1 - 10
Links’ capacity 100 or 1000 Mbps
Payload size 30 - 1500 B
Traffic period 240 - 1000 `s
Maximum latency of critical
traffic

100 `s - 20 ms

To assess if the IEEE 802.1Qbv timetable guarantees deterministic communication, two crucial
guidelines must be followed for every critical stream:

(1) the ultimate permissible end-to-end delay (i.e., deadline) should not be surpassed;
(2) the fluctuation in end-to-end delay among packets of the identical stream (i.e., jitter) should

approach zero. This assures that the delay is foreseeable and definite.
In Ethernet TSN networks, the end-to-end delay is composed of the time it takes for data to pass

through network interfaces of end stations and switches, the delay caused by data transmission
over network links, and the delay caused by processing and queuing in TSN switches. It is assumed
that all switches have the same processing time and all links have the same capacity, resulting in
the same transmission and propagation delays. Therefore, a well-designed IEEE 802.1Qbv schedule
will minimize queueing delay in switches for critical traffic, ultimately reducing the end-to-end
delay.

To ensure that critical traffic deadlines are respected, the time sequence reserved for such traffic
should be twice the duration of one frame emission. This means that determining the appropriate
cycle duration (in nanoseconds) is a crucial aspect of configuring IEEE 802.1Qbv.
For the purposes of this study, perfect time synchronization is assumed, meaning that IEEE

802.1AS is configured and functioning properly. This assumption is reasonable as the focus of this
paper is on configuring IEEE 802.1Qbv, which relies on the proper functioning of IEEE 802.1AS.

3.2 RL formulation
The RL depends on five main components (Figure 4): the environment and the agent, along with
the RL formulation (reward, state, action). The scheduling issue of IEEE 802.1Qbv can be depicted
as a Markov Decision Process (MDP), which is characterized by a tuple (𝑆,𝐴, 𝑅), where 𝑆 and 𝐴
signify state and action spaces, and 𝑅 represents the reward by performing action 𝑎 ∈ 𝐴 at state
𝑠 ∈ 𝑆 . In the following, we elaborate on the states, actions, rewards, and the RL algorithm that we
have utilized while designing our agent. The agent-environment interactions are discrete: at each
timestep 𝑡 , the agent receives a new state and a reward, and then takes an action. An episode is a
sequence of interactions between the agent and the environment that terminates with a terminal
state. Each episode has a different length, i.e., an episode requires a different number of timesteps
before arriving at a terminal state.
3Available at https://1.ieee802.org/tsn/iec-ieee-60802/

6

https://1.ieee802.org/tsn/iec-ieee-60802/

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Configuring the IEEE 802.1Qbv Time-Aware Shaper with DRL CoNEXT 2023, December 5-8, 2023, Paris, France

Environment

Agent

Action At Reward Rt

S
t+1

R
t+1

State St

Fig. 4. The interactions between the agent and the environment

3.2.1 State. The state of the environment can be viewed as a snapshot of the environment at
a particular moment. The decision-making process of the agent is based on this snapshot. It
comprises data pertaining to the network topology, flow specifics based on priority, and end-to-end
latency measurements for critical traffic. The state also includes the Qbv configuration. The Qbv
configuration and measured end-to-end latency distinguish the state at timestep 𝑡 from that at
timestep 𝑡 + 1. Two kinds of terminal states are identified:

• the agent succeeds, implying that the problem is solved and a Qbv configuration that allow
latencies to respect the deadline is found;

• the agent fails, implying that the problem is unsolvable. This may happen in certain cases:
(1) the agent tries to explore an invalid area of the state space (after more than 100 attempts,

we can assume that the agent is lost);
(2) the new state lies outside the state space.
In such cases, we we consider that the agent reached a terminal state (otherwise, the training
would take an excessive amount of time), and the agent receives a very bad reward.

In our case, the state space (which covers all potential states) is huge. This is due to the vast range
of possible values (such as latencies).

3.2.2 Action. The action consists in modifying the IEEE 802.1Qbv configuration. In this work, we
focus on one parameter, the Qbv cycle length. This parameter is essential to the Qbv configuration
as it is needed before computing the scheduling. The objective of the agent is to determine an
appropriate cycle duration. The action therefore consists in adjusting this parameter by either
increasing or decreasing it in each iteration.

3.2.3 Reward. The reward is utilized to assess the new Qbv configuration decided by the agent. It
is established based on the measured end-to-end delay for critical traffic. It is formulated to enable
the agent to find a solution quickly. To achieve this, the agent is only provided with non-positive
rewards, which encourages it to accelerate the process (as the agent’s primary objective is to
maximize its long-term reward), except when the agent finds the solution. The agent gets:

• a very bad negative reward if it gets into a terminal state that doesn’t solve the problem;
• a negative reward if the new state is worse than the previous one;
• a neutral reward if the new state is better than the previous one;
• a positive reward if it gets into a terminal state that solves the problem

The determination of the reward depends on the critical flow’s latency and the percentage of
received packets for each flow.

7

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

CoNEXT 2023, December 5-8, 2023, Paris, France Roberty, et al.

3.3 Agent
The agent is where the learning algorithm will occur. Because of a huge state space, it is impractical
to map every state to an action in a policy, so we must use an approximation algorithm. As
demonstrated in [10], we can utilize a neural network to approximate a function, which is the
fundamental notion of DRL. Furthermore, we must adequately explore the state space; otherwise,
the agent will be unable to resolve all problems. Among the learning algorithms used in RL, we
consider that Soft Actor Critic (SAC) is the most adequate algorithm for our problem. In fact,
SAC is an algorithm that employs neural networks to estimate an optimal policy and encourages
exploration of the state space by using the policy’s entropy (i.e., making the venue unpredictable
during early training stages). The SAC algorithm relies on various parameters, the majority of
which are linked to the neural networks. At present, we have used the default values as specified
in [9].

4 EVALUATION
In this part, we provide an assessment of our TSN scheduling approach based on RL. We also
explain our implementation as shown on Figure 5. The training loop is made up of the following
three components:

(1) an environment, which is based on the use of a simulation tool allowing to model and
simulate TSN networks;

(2) an RL agent, which is a python implementation of the SAC algorithm, utilizing the RL
Baselines3 Zoo [24] training framework;

(3) the environment’s interface, named OmnetppEnv, utilizing the OpenAI Gym API [2], that
facilitates interactions between the RL agent and the environment, and defines the MDP.

4.1 Environment
The environment where the agent will undergo training is based on the OMNeT++4network
simulator and its extensions INET and NeSTiNg [6]. The IEEE 802.1 TSN Working Group has
recommended the use of OMNeT++ and NeSTiNg for carrying out TSN network simulations.

The OMNeT++ simulation can be launched via command line by providing specific parameters
as arguments. This feature facilitates the creation of a parametric simulation. The agent can launch
the simulation while specifying various parameters, such as link capacity, switch number, critical
traffic characteristics, and Qbv configuration.
Upon completion of the simulation, the results are stored in SQLite format. The agent can

retrieve the end-to-end latency per packet and the number of packets sent/received per flow from
the obtained results. These data are crucial for calculating the reward and the new state. Additionally,
the SQLite database contains a vector of Qbv gate states, the number of packets waiting in each
queue, and other relevant information that aids in evaluating the agent’s schedule.
NeSTiNg allows an easy modification of the IEEE 802.1Qbv configuration through XML files,

as well as result retrieval and analysis using Python. This feature enables the management of the
environment from a Python script, including configuration modification, simulation initiation, and
result analysis.
To speed up the training process, the simulation duration has been reduced to 0.1 seconds per

iteration. It is important to note that OMNeT++/INET simulation cannot be parallelized. Therefore,
if we were to set the simulation time to 10 seconds, our training, which includes over 50000 steps,
would take approximately 18 days to complete.

4Available at https://omnetpp.org/ and https://inet.omnetpp.org/

8

https://omnetpp.org/
https://inet.omnetpp.org/

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Configuring the IEEE 802.1Qbv Time-Aware Shaper with DRL CoNEXT 2023, December 5-8, 2023, Paris, France

Environment

SQLite database
(simulation results)

Agent

Python3

PyTorch

Stable-Baselines3

Analyses

Generates

OmnetppEnv class
inherits from gym.Env

Python3

Observation
RewardAction

Gym

Launches
Resets

Agents

Python scripts

Simulator

OMNeT++ 5.5.1

INET Framework 4.1.2

NeSTiNg

Configuration files
(TSN, simulation)

Modifies

Applies

Fig. 5. Architecture of the proposed solution

4.2 RL-agent
For the implementation of the RL-agent, the RL Baselines3 Zoo [24] framework appears to be the ap-
propriate training framework. The RL Baselines3 Zoo is constructed on top of Stable-Baselines3 [25],
which is a collection of dependable and open source RL implementations in Python. The main goal

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

CoNEXT 2023, December 5-8, 2023, Paris, France Roberty, et al.

of Stable-Baselines3 is to ensure simplicity and reliability [25], and it relies on PyTorch [22] for the
neural networks. The RL Baselines3 Zoo [24] empowers the optimization of the neural network’s
hyperparameters, and it comes with a set of scripts for training agents and visualizing the results.

One of the most challenging aspects of RL is implementing the communication between the agent
and the environment. To accomplish this, one solution is to use a library named OpenAI Gym [2].
Gym is an API that enables RL problems to be modeled, and it provides a set of environments that
are ready to use. However, OMNeT++ is not included in the list of supported environments. As a
result, we designed and developed a module named OmnetppEnv that manages the communication
between the agent and the OMNeT++ simulator. OmnetppEnv is essentially an interface between
OMNeT++ and Stable-Baselines3, and it employs the OpenAI Gym API. This module has two
primary responsibilities:

(1) interpret the actions provided by the agent and convert them into instructions that can be
understood by OMNeT++;

(2) translate the simulation outcomes from the SQLite database into a reward and a new state
that can be understood by the agent.

At the beginning of each episode, OmnetppEnv generates an environment that can be utilized
by the RL-agent. It first compiles the OMNeT++/INET simulation and sets up the topology, after
which the agent can launch it.

4.3 Agent’s evaluation
In this section, we provide two kind of evaluations:

(1) an evaluation during the training: this allows to monitor the agent’s training progress;
(2) an evaluation at the end of the training on new environment setting (i.e. not seen by the

agent during the training) to see if the agent is indeed able to achieve its goals.
During the training, we evaluated the agent at each 10000 timesteps. In other word, we stopped

the training each 10000 timesteps in order to evaluate the agent’s progression. This evaluation
consists in running the agent over 10 episodes and measure two main metrics:

(1) The mean episode length over the 10 episodes. It represents how much try (on average)
the agent needs before finding a solution. The mean episode length is computed in the
following way: 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑟𝑖𝑒𝑠 𝑜𝑣𝑒𝑟 10 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠/10.

(2) The mean reward over the 10 episodes. This metric is used to show the agent’s progression,
as its reward is supposed to become better during the training. The mean is computed the
following way: 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑔𝑎𝑖𝑛𝑒𝑑 𝑜𝑣𝑒𝑟 10 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠/10.

In overall, we conducted 5 evaluations over the whole training (which was over 50000 timesteps).
Figure 6 shows the average episode length at each evaluation. We note that the number of

timesteps needed by the agent to find the adequate Qbv configuration is decreasing over time. For
instance, in the 3rd evaluation, the agent required on average 27 tries before arriving at a terminal
state whereas in the 5th evaluation, the agent needed 24 tries on average. This shows a learning
progress of the agent.

In the same manner, Figure 7 shows the average reward that the agent gained at each evaluation.
We can see that the mean of the rewards obtained by the agent gets better at each iteration. In the
3rd evaluation, the agent gained an average reward of −23 whereas in the 5th evaluation, the agent
gained a reward of −20 on average. This shows that the agent gets less negative rewards over the
time and therefore is doing less bad actions or find a solution quicker.
Both figures show that the agent is improving itself during the training as it becomes able to

find a good solution faster.

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Configuring the IEEE 802.1Qbv Time-Aware Shaper with DRL CoNEXT 2023, December 5-8, 2023, Paris, France

0 1 2 3 4 5 6
Evaluation

24

25

26

27

28

29

30

31
Av

er
ag

e
ep

iso
de

 le
ng

th

Means of how much timesteps were nececessary
 to configure the network at each evaluation

Fig. 6. Means of steps during evaluation

0 1 2 3 4 5 6
Evaluation

26

25

24

23

22

21

20

M
ea

n
re

wa
rd

Means of the rewards obtained during the evaluation

Fig. 7. Means of rewards during evaluation

At the end of the training (i.e., after 50000 timesteps), we run the agent on a test environment.
This latter should be different from the environment seen by the agent during the training. Table 2
provides the setting parameters of the test environment.
Through this evaluation, we aim at verifying whether the designed agent is able to find a

good IEEE 802.1Qbv configuration that allow to respect the deadline imposed by TSN traffic. The
evaluation will be based on two observations:

11

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

CoNEXT 2023, December 5-8, 2023, Paris, France Roberty, et al.

Table 2. Setting parameters of the test environment

Parameter Value
Number of switches 5
Links’ capacity 1 Gbps
TSN payload size 1000 B
BE payload size 500 B
TSN packet send interval 500 `s
BE packet send interval 200 `s
TSN deadline to be respected 2.5 ms

(1) whether the TSN deadline has been respected (i.e. the end-to-end latency of each TSN
packets should be lower than the deadline);

(2) how much time was needed by the Agent to come out with a good configuration (i.e. the
running time).

The agent was tested on a laptop with an Intel®Core™i5-8265U CPU running at 1.60GHz with
15.5 Gio RAM. For this test, we simulated 10 seconds in order to have better results.

The scheduling decided by the agent is given on Table 3. We note that the agent proposes a cycle
length of 490000 nanoseconds. The gates are opened for TSN for 16000 nanoseconds, then the gates
for all other traffic are opened during the rest of the time.

Table 3. Scheduling decided by the agent

Parameter Value
Cycle length 490000 ns
TSN sequence length 16000 ns
BE sequence length 474000 ns

Figure 8 shows the measured end-to-end latency for the TSN traffic during the first 1000ms of
the simulation. We note that the scheduling decided by the agent respects the deadline imposed by
the TSN traffic.

Figure 9 shows the packet delay variation (i.e. jitter) for the TSN traffic during the first 1000ms
of the simulation. We remark that, at some instant, TSN traffic experience some jitter (less than
0.5 ms). In fact, the agent looks for an acceptable configuration and takes the first one it finds. It
doesn’t look for the best configuration. This jitter is still acceptable as the TSN traffic deadline is
respected.
In order to evaluate the time needed by the agent to come out with a good Qbv configuration,

we measured the initiation time (i.e. the time when the agent is starting) and the ending time
(i.e. the time when the agent has found the good Qbv configuration and validated it on the test
environment). The difference between both of these parameters will enables to have an idea about
the running time of the agent. In our case, the agent needed around 34 seconds to decide Qbv
configuration, test and validate it in the test environment. However, the main part of this running
time is related to the time needed to run the test simulation, that last around 33 seconds. In fact,
OMNeT++/INET and NeSTiNg provide a detailed and precise network modelization which leads to
high execution time.

12

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Configuring the IEEE 802.1Qbv Time-Aware Shaper with DRL CoNEXT 2023, December 5-8, 2023, Paris, France

0 200 400 600 800 1000
Simulation time (ms)

2.0

2.1

2.2

2.3

2.4

2.5
En

d-
to

-e
nd

 d
el

ay
s (

m
s)

End-to-end Delay
End-to-end Delays
Deadline

Fig. 8. End-to-end delays of the TSN flow during the first 1000ms of the simulation

0 200 400 600 800 1000
Simulation time (ms)

0.5

0.4

0.3

0.2

0.1

0.0

Jit
te

r (
m

s)

Instantaneous packet delay variation

Instantaneous packet delay variation

Fig. 9. Instantaneous packet delay variation of the TSN flow during the first 1000ms of the simulation

5 CONCLUSION AND FURTHERWORK
In this article, we put forth an RL-centered approach for setting up IEEE 802.1Qbv schedules in
TSN networks. Our assessments indicated that the agent we designed can present an acceptable
configuration, highlighting the potential of RL to create independent network configuration solu-
tions for TSN networks. Nonetheless, there is still much work to be done in order to establish a
fully functional architecture.

13

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

CoNEXT 2023, December 5-8, 2023, Paris, France Roberty, et al.

Our research involved some assumptions to simplify the scheduling problem, which allowed us
to examine the ability of the RL agent to configure Qbv in simple scenarios. Moving forward, we
aim to relax these assumptions and consider more complexes scenarios such as considering the
case where we have multiple TSN flows or even more complex topology. To achieve this, we must
work on enhancing our agent’s capabilities to configure multiple switches differently. A potential
area of exploration is multi-agent reinforcement learning. Ultimately, our goal is to train an agent
that has no prior knowledge of the flows, in order to be able to configure a full open network where
new flows are added in an incremental way.

REFERENCES
[1] Mohammad Ashjaei, Gaetano Patti, Moris Behnam, Thomas Nolte, Giuliana Alderisi, and Lucia Lo Bello. 2017.

Schedulability analysis of Ethernet Audio Video Bridging networks with scheduled traffic support. Real-Time Systems
53, 4 (2017), 526–577.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
2016. Openai gym. arXiv:1606.01540 (2016).

[3] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner. 2016. Scheduling real-time commu-
nication in IEEE 802.1Qbv time sensitive networks. In Proceedings of the 24th International Conference on Real-Time
Networks and Systems. 183–192.

[4] Aellison Cassimiro T dos Santos, Ben Schneider, and Vivek Nigam. 2019. TSNSCHED: Automated schedule generation
for time sensitive networking. In 2019 Formal Methods in Computer Aided Design (FMCAD). IEEE, 69–77.

[5] Frank Dürr and Naresh Ganesh Nayak. 2016. No-wait packet scheduling for IEEE time-sensitive networks (TSN). In
Proceedings of the 24th International Conference on Real-Time Networks and Systems. 203–212.

[6] Jonathan Falk, David Hellmanns, Ben Carabelli, Naresh Nayak, Frank Dürr, and Stephan Kehrer. 2019. NeSTiNg:
Simulating IEEE Time-sensitive Networking (TSN) in OMNeT++. In Proceedings of the 2019 International Conference on
Networked Systems (NetSys). Garching b. München, Germany.

[7] Janos Farkas, Lucia Lo Bello, and Craig Gunther. 2018. Time-sensitive networking standards. IEEE Communications
Standards Magazine 2, 2 (2018), 20–21.

[8] Norman Finn. 2018. Introduction to time-sensitive networking. IEEE Communications Standards Magazine 2, 2 (2018),
22–28.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine learning. PMLR, 1861–1870.

[10] Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward networks. Neural networks 4, 2 (1991),
251–257.

[11] IEEE 802.1 Working Group. 2016. IEEE Standard for Local and metropolitan area networks – Bridges and Bridged
Networks - Amendment 25: Enhancements for Scheduled Traffic. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std
802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015) (2016),
1–57. https://doi.org/10.1109/IEEESTD.2016.8613095

[12] IEEE 802.1 Working Group. 2018. IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged
Networks. IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014) (2018), 1–1993. https://doi.org/10.1109/IEEESTD.
2018.8403927

[13] IEEE 802.1 Working Group. 2018. IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged
Networks – Amendment 31: Stream Reservation Protocol (SRP) Enhancements and Performance Improvements.
IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std 802.1Qcp-2018) (2018), 1–208.
https://doi.org/10.1109/IEEESTD.2018.8514112

[14] IEEE 802.1 Working Group. 2020. IEEE Standard for Local and Metropolitan Area Networks–Timing and Synchro-
nization for Time-Sensitive Applications. IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011) (2020), 1–421.
https://doi.org/10.1109/IEEESTD.2020.9121845

[15] Joseph Y-T Leung and Jennifer Whitehead. 1982. On the complexity of fixed-priority scheduling of periodic, real-time
tasks. Performance evaluation 2, 4 (1982), 237–250.

[16] Zoubir Mammeri. 2019. Reinforcement learning based routing in networks: Review and classification of approaches.
IEEE Access 7 (2019), 55916–55950.

[17] John L Messenger. 2018. Time-sensitive networking: An introduction. IEEE Communications Standards Magazine 2, 2
(2018), 29–33.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

14

https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2018.8514112
https://doi.org/10.1109/IEEESTD.2020.9121845

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Configuring the IEEE 802.1Qbv Time-Aware Shaper with DRL CoNEXT 2023, December 5-8, 2023, Paris, France

[19] Ahmed Nasrallah, Venkatraman Balasubramanian, Akhilesh Thyagaturu, Martin Reisslein, and Hesham ElBakoury.
2019. Reconfiguration algorithms for high precision communications in time sensitive networks. In 2019 IEEE Globecom
Workshops (GC Wkshps). IEEE, 1–6.

[20] Nicolas Navet, Tieu Long Mai, and Jörn Migge. 2019. Using machine learning to speed up the design space exploration of
Ethernet TSN networks. Technical Report. University of Luxembourg.

[21] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. 2016. Time-sensitive software-defined network (TSSDN) for
real-time applications. In Proceedings of the 24th International Conference on Real-Time Networks and Systems. 193–202.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc.,
8024–8035.

[23] Jonathan Prados-Garzon, Tarik Taleb, and Miloud Bagaa. 2020. LEARNET: Reinforcement learning based flow
scheduling for asynchronous deterministic networks. In ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 1–6.

[24] Antonin Raffin. 2020. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo.
[25] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. 2021. Stable-

Baselines3: Reliable Reinforcement Learning Implementations. Journal of Machine Learning Research 22, 268 (2021),
1–8. http://jmlr.org/papers/v22/20-1364.html

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017).

[27] Viswanath Sivakumar, Olivier Delalleau, Tim Rocktäschel, Alexander H Miller, Heinrich Küttler, Nantas Nardelli, Mike
Rabbat, Joelle Pineau, and Sebastian Riedel. 2019. Mvfst-rl: An asynchronous rl framework for congestion control
with delayed actions. arXiv preprint arXiv:1910.04054 (2019).

[28] Thomas Stüber, Lukas Osswald, Steffen Lindner, and Michael Menth. 2022. A Survey of Scheduling in Time-Sensitive
Networking (TSN). arXiv preprint arXiv:2211.10954 (2022).

[29] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
[30] Ken W Tindell, Alan Burns, and Andy J. Wellings. 1992. Allocating hard real-time tasks: an NP-hard problem made

easy. Real-Time Systems 4, 2 (1992), 145–165.
[31] Xiaolong Wang, Haipeng Yao, Tianle Mai, Tianzheng Nie, Lin Zhu, and Yunjie Liu. 2022. Deep Reinforcement Learning

aided No-wait Flow Scheduling in Time-Sensitive Networks. In 2022 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 812–817.

[32] Hao Yu, Tarik Taleb, and Jiawei Zhang. 2022. Deep Reinforcement Learning based Deterministic Routing and Scheduling
for Mixed-Criticality Flows. IEEE Transactions on Industrial Informatics (2022).

Received 27 June 2023; revised 12 March 2009; accepted 5 June 2009

15

https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html

	Abstract
	1 Introduction
	2 Related Work
	3 RL components for scheduling IEEE 802.1Qbv
	3.1 Network modelization
	3.2 RL formulation
	3.3 Agent

	4 Evaluation
	4.1 Environment
	4.2 RL-agent
	4.3 Agent's evaluation

	5 Conclusion and further work
	References

