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ABSTRACT 

 

In order to further improve the management of contaminated materials in nuclear facilities subject to a 

decommissioning programme, as well as during post-accidental site remediation and clearance, the definition 

and selection of the most appropriate intervention scenarios producing well-characterized radioactive waste for 

which storage and disposal routes are clearly identified is needed. 

As a step towards this accomplishment, we propose a methodology for the organization and analysis of 

coordinated interlaboratory comparisons (ILC) for the performance assessment and the uncertainty evaluation of 

available measurement techniques (methods and tools) of radioactive materials. This methodology is new for this 

type of comparison and demonstrated on the BR3 (Belgian Reactor 3, Belgian Nuclear Research Center, Mol) 

case study from the H2020 INSIDER project (2017-2021), for which barium 133, cobalt 60 and europium 152 

are analysed with gamma spectroscopy in ILC, based either on irradiated concrete from the BR3 bioshield or 

from spiked concrete certified reference material (CRM). 

On one hand, we show the advantage of organizing ILC on CRM for a more reliable uncertainty evaluation 

taking bias into account following ISO 21748:2017. But using CRM may be impossible due to their scarcity or 

too costly for performance assessment thus limiting the use of CRM in ILC in practice. 

On the other hand, we show that for performance evaluation and monitoring, ILC can be alternately performed 

on reference materials provided that laboratories’ uncertainties are reported and the most appropriate analysis of 

data is performed using dark uncertainty (excess variance) in the presence of inconsistent data.  

 

Keywords: certified reference material (CRM) ; proficiency test (PT) ; Interlaboratory comparison (ILC) ; 

measurement uncertainty ; analysis of variance 

 

 

1. Introduction 

 

The nuclear industry is entering a period when its first installations approach the end of their lifetimes. The 

stakes are high: it is imperative to show that the life cycle of nuclear facilities can be brought to an end, leaving 

clean sites after use, and using optimized methods with limited costs. The dismantling and decommissioning 

(D&D) process of a site always follows the same steps: site characterization, elaboration of a scenario for the 

operations (including the preliminary decontamination of surfaces), cutting and dismantling operations, and 

management of waste and effluents. The European H2020 project INSIDER (Improved Nuclear SIte 

characterization for waste minimization in D&D operations under constrained EnviRonment) aims to develop a 

new integrated characterization methodology during D&D operations for nuclear power plants, post-accident 

land remediation, or nuclear facilities under constrained environments. Concerning the dismantling of reactors, 

the Belgian Nuclear Research Centre provided a case study: the characterization of the biological shield of 

Belgian Reactor 3 (BR3, Mol), which is made of irradiated heavy concrete.  

The overall goal of the paper is to provide guidance on a smart organization and analysis of interlaboratory 

comparisons on radioactive materials to demonstrate the performance of measurement techniques and to evaluate 

the uncertainty associated with measurement results.  

For these purposes, coordinated interlaboratory comparisons (ILCs) are performed on a certified reference 

material (CRM-ILC) concrete sample made from non-irradiated heavy concrete from the biological shield of 

BR3 as well as on two real irradiated concrete reference materials (RM-ILC) sampled from BR3 biological 

shield.  

The organization of ILC on a CRM, as done in this study, is very valuable as it provides estimates of bias of 

laboratories that are used for a comprehensive uncertainty analysis including trueness and precision e.g. within 

ISO 21748:2017 [1] which we briefly recall. However, since it requires the production of the CRM (with the 

associated cost), CRM-ILC cannot frequently be organized in practice.  

The organization of ILC on RMs is a fair compromise and should target a large variety of ILC. Since RM-ILC 

would yield an incomplete uncertainty evaluation w.r.t. CRM-ILC, we choose to focus in this paper on the use of 



 

 

RM-ILC for proficiency assessment, where the consensus value is estimated from the participants and 

proficiency is assessed w.r.t. the consensus value. Due to inconsistency of data (the reported estimation of 

measurement uncertainties is not always fully mastered by the laboratories), dark uncertainty also called excess 

variance methods are required and guidance for the use of these methods is provided. To the best of our 

knowledge, these approaches are new for this type of measurements. In the paper, we choose to focus on the 

latest versions of derSimonian Laird algorithm and Bayesian analysis [2]. 

The paper is organized as follows. Section 2 presents the coordinated ILCs applied to radioactivity 

measurements and standard approaches for performance assessment and uncertainty evaluation. Section 3 

provides guidance towards advanced statistical tools using dark uncertainty for the analysis of ILCs for 

performance assessment. Section 4 presents the results of all ILCs in terms of proficiency testing and uncertainty 

evaluation with a more general discussion on the scope of the results obtained from such interlaboratory studies. 

Conclusion is made in section 5. 

 

 

2. Coordinated ILCs of radiological measurement methods 

2.1. RM scarcity and use of ILCs in radioactivity measurements 

The use of CRM is useful for the validation of analytical methods. However, radioactive CRMs are few in 

number, out of stock or close to it, and do not meet the specific needs of decommissioning, in terms of matrix 

and radioactive composition [3], [4], [5], [6]. Decommissioning requirements include the simultaneous 

measurement of several radionuclides and even their isotopic ratios. In this case, to validate the analytical 

methods, it may be necessary to use CRMs with a less than ideal composition (soil rather than steel or ion 

exchange resins [7]). Few CRM of matrices adapted for decommissioning needs, certified for their radioactivity 

contents, exist and even fewer whose values are traceable to the SI units [8].  

The use of CRM from real materials taken from decommissioning sites is delicate because the samples are 

often inhomogeneous in nature. Typically, the steel of a reactor vessel or the concrete of its biological protection 

will have been the site of a neutron activation depending on the reactor flux, which varies according to the 

operating conditions of the reactor, to the distance to the fuel or to the elemental composition of the materials 

crossed, among others. The realization of CRMs from real samples will be adapted to the needs of 

decommissioning because their matrix will be representative as well as their radiological composition, but it will 

be all the more expensive because it may contain relatively low levels of radioactive elements to be measured (or 

types of emissions that are not very penetrating, such as pure alpha or beta emitters), and because it will require 

verification of the homogeneity of the final material. 

To overcome these difficulties and to provide materials for calibration, inactive materials contaminated by 

radioactive spiking have been developed, but they are intended for verification of the criteria for free-release of 

final very-low-active waste (200-liter drum [9] or special Euro-pallet container [10]) and are therefore not 

suitable for on-site sampling measurements during decommissioning, intended to optimize the dismantling 

operations so as to minimize the wastes that are being produced. 

To meet the needs of RMs in the field of D&D, it is tempting to make one from the samples taken on the 

construction sites and dedicated to destructive analyses in the laboratory [11], [12]. However, in the field of 

radiological analysis, often an ILC will allow verifying that the material is suitable for use as RM, from the 

consensus values obtained. However, this process can lead to high uncertainties, which will limit its use for the 

validation of analytical methods. 

In volume, most of the wastes during D&D of a nuclear plant come from construction materials, especially 

concrete. In particular, it represents most of the low and intermediate level wastes. Accurate measurements of 

this matrix are thus needed in order to assign the material to the right waste treatment route, which depends on its 

activity levels. This is why the matrix chosen for the production of both RM and CRM was concrete. Moreover, 

the duration of the project being limited, non-destructive assays were favored because they are quicker and do 

not involve a prior dissolution step, which would increase measurement uncertainties. Gamma spectrometry is 

widely used, particularly in the early stages of decommissioning, because it allows relatively rapid identification 

and quantification of the radioactive content of a sample. It is adapted to the measurement of gamma-emitting 

radioactive elements with a sufficiently long half-life. All these aspects make it a method of choice for ILCs. In 

addition, as a non-destructive measurement method, gamma-ray spectrometry. 

 

 

2.2. Purpose of coordinated ILCs 



 

 

For CRM-ILC, laboratories are required to provide 5 individual measurements that will be processed for both 

performance assessment and uncertainty evaluation. 

For RM-ILC, laboratories are required to provide a measurement result and its associated uncertainty for 

performance assessment. 

Since the matrix, measurement technique and the activity level (for some radionuclides only) are the same for 

RM-ILC and CRM-ILC, the coordinated ILCs allow  

- to compare the reported uncertainties from each laboratory with the global uncertainty estimated from all 

individual laboratory results. This information is very valuable for laboratories e.g. to have feedback on 

their uncertainty budgets ; 

- to compare performance assessment on individual measurements (CRM-ILC) with performance 

assessment using reported uncertainties (on RM) to show that a more reliable performance assessment 

can be achieved by taking into account reported uncertainties (where the participants were asked to 

specify their coverage factor k). 

 

 

2.3.  Proficiency testing for performance assessment  

Proficiency testing is the evaluation of participant performance against pre-established criteria by means of 

interlaboratory comparisons (ref 17043). The aim of PT is to compare a result on a proficiency test item with an 

assigned value, where a result is the average of all the measurement results 𝑥𝑗 from a participant on the test item.  

In order to assess proficiency in this study, two different situation types of proficiency test items were taken 

into account:  

1) An ILC on a CRM for which the methods using performance scores according to ISO 13528:2015 [13] can 

be considered suitable: when using the concrete CRM as the test item, the assigned value 𝑥𝑝𝑡  for the proficiency 

test is the certified value and the standard uncertainty of the assigned value 𝑢(𝑥𝑝𝑡) is the uncertainty associated 

with the certified value. Standardized performance statistics (difference, z-score and ζ-score) are considered in 

this study. PT analyses were done using JMP SAS 14.00 statistical analysis software [14]. 

2) An ILC on real concretes where the assigned value is obtained from all the participants results (no CRM is 

used as a test item). This situation is a complex problem for which a variety of statistical approaches has been 

suggested [15] and is the object of section 3. In this paper, we present the DerSimonian-Laird (DL) procedure as 

well as the Bayesian procedure, and compare them with the uncertainty-weighted mean estimate in order to deal 

with excess variance. Performance is assessed with degrees of equivalence. 

 

2.4. Accuracy of the measurement method  

The accuracy of each of the methods used is characterized by its trueness and its precision. A method is true 

when there is no bias. To determine the trueness of a method, it is necessary to estimate its bias in relation to the 

certified reference value and test whether it is significant: in the present study, this is only possible for the test on 

the concrete CRM. 

The precision of the method can be assessed by respecting the characteristic conditions described below: 

– repeatability conditions; these are attained when the measurements are made by the same operator, on 

the same instrument, using a single method, within a short period of time in order to obtain measurements under 

conditions which are as identical as possible. In the present work, repeatability was taken to mean that the 

measurements were carried out by the same laboratory (identified with the respective same laboratory code). 

– reproducibility conditions; these are attained when the following working conditions change: operator, 

instrument, slight modification in the method used, time (usually long time periods) between analyses, or any 

other cause which may add sources of variability.  

 

 

2.4.1. Measurement uncertainty evaluation  

According to ISO 21748:2017 [1], a general model for uncertainty evaluation can be expressed as 

 

𝑢2(𝑦) = 𝑠𝑅
2 + 𝑢2(�̂�) + ∑𝑐𝑖

2𝑢2(𝑥𝑖) 
(1) 

where 𝑠𝑅 is the reproducibility standard deviation, 𝑢(�̂�) is the uncertainty associated with the bias of the 

method and  ∑𝑐𝑖
2𝑢2(𝑥𝑖) is the sum of all of the effects due to other variations. 



 

 

ISO 21748:2017 [1] standard extends the scope of ISO 5725-2:2019 [16] (using analysis of variance to 

estimate repeatability and reproducibility of the measurement method) when an estimate of trueness of the 

method is available, typically when a CRM is used as a test item. 

For the CRM-ILC, we assume that there are no other steps to take into account during the analysis of an 

unknown sample (for example dissolution, additional dilution) with gamma spectrometry with a similar activity 

level, so that the third term of (1) 

can be neglected and uncertainty may be estimated with the following equation: 

 

𝒖𝟐(𝒚) = 𝒔𝑹
𝟐 + 𝒖𝟐(�̂�)  (2) 

 

2.4.2. Trueness 

For a given analytical method, its trueness, 𝛿, is the closeness of agreement between the best estimator of the 

result coming from a high number of results and a value considered to be the true value of the measurand, 

estimated by the certified reference value, which is equal to 𝑥𝑝𝑡. 𝛿 is estimated by 𝛿 and 𝑥𝐼𝐿𝐶  is the best estimate 

coming from the laboratory results to the comparison. 

  

𝛿 𝑥𝐼𝐿𝐶𝑥𝑝𝑡  (3) 

 

Trueness evaluation requires the use of a CRM as the test item. The compatibility between 𝑥𝐼𝐿𝐶  and the certified 

value 𝑥𝑝𝑡, i.e. the absence of significative bias in the method, can be quantified by the normalized deviation 𝐸𝑛 

using (note that uncertainties at the denominator are not expanded as in ISO/IEC 17043:2010): 

𝐸𝑛 =
𝑥𝐼𝐿𝐶− 𝑥𝑝𝑡

√𝑢2(𝑥𝐼𝐿𝐶) + 𝑢2(𝑥𝑝𝑡)

=  
�̂�

𝑢(�̂�)
    (4) 

 

where 𝑢(𝑥𝐼𝐿𝐶) is the standard uncertainty for the measurand estimation based on all the laboratory results, 

𝑢(𝑥𝑝𝑡) is the standard uncertainty for the certified value, �̂� is the estimate of the bias due to the method, and 

𝑢(�̂�) is the estimate of the standard uncertainty associated with the bias of the method. 

 

The normalized deviation values can be interpreted as follows:  

|𝐸𝑛 |≤2.0: when the normalized deviation is between -2.0 and +2.0, there is no proven relevant difference 

between the two values 𝑥𝐼𝐿𝐶  and xpt : the estimated bias �̂� is not significant. The risk associated with this 

conclusion is close to 5%. 

|𝐸𝑛 |≥2.0: when the normalized deviation is less than -2.0 or greater than +2.0, there is a bias between the two 

values (and therefore in the method). The risk associated with this conclusion is close to 5%. 

There are several ways to calculate the best measurand estimator based on laboratory results. For example, 

calculation of the mathematical mean, the robust mean, the weighted mean in general (weighted by a factor 

which is inversely proportional to the square of the uncertainty supplied by the laboratory), etc. In the present 

ILC on concrete CRM, the weighted mean was not used as some laboratories failed to adequately manage their 

uncertainty estimation. The normalized deviation was thus calculated by using the robust mean.  

 

  

2.4.3. Precision 

 

For a given analytical method, the individual measurement result 𝑥𝑖𝑗  is modeled according to:  

𝑥𝑖𝑗 = μ + αj + εij, j = 1, … , k  i = 1, … , n (and 𝑥𝑗 = μ + αj+ 
1

𝑛𝑗
∑ 𝜀𝑖𝑗

𝑛𝑗

𝑖=1
)    (5) 

where 𝜇 is the overall mean response, 𝛼𝑗  is the effect of level j of laboratory factor and εij is a random error 

term. This model is called a one-way random effects model, also frequently encountered for method validation 

as in [17]. 

The analysis of variance (anova) of this model is performed under the following hypotheses: 

𝛼𝑗 ∼𝑖𝑖𝑑1

𝑁(0, 𝜎𝐿
2), 𝜀𝑖𝑗 ∼𝑖𝑖𝑑 𝑁(0,  𝜎𝑟

2) (homoscedasticity), and 𝛼𝑗 , and 𝜀𝑖𝑗  are pairwise independent. Significance 

testing of factors was performed with p-values obtained as the probability 𝑃(𝐹 > 𝐹𝑐𝑟𝑖𝑡) where F is the value of a 

test statistic estimated on the data and 𝐹𝑐𝑟𝑖𝑡  is the value corresponding to a risk level 𝛼 = 5%. A p-value less than 

                                                           
1 iid : independent, identically distributed  



 

 

𝛼 = 5% indicates a significant effect. Under these assumptions (normality, homoscedasticity also known as 

homogeneity of variance and independence), variance components can be obtained from the anova sum of 

squares decomposition (for calculation details see [16]).  

The reproducibility variance 𝑠𝑅
2 in (1) is the sum of the repeatability variance 𝑠𝑟

2 and the laboratory variance 

𝑠𝐿
2   

 

𝑠𝑅
2 = 𝑠𝑟

2 + 𝑠𝐿
2  (6) 

 

where 𝑠𝑟
2 and 𝑠𝐿

2 are respectively the estimates of 𝜎𝑟
2 and 𝜎𝐿

2. 

 

 

3. Analysis of RM-CIL for proficiency assessment using dark uncertainty  

 

In the current study, specific statistical methods had to be used to deal with excess variance (also called 

heterogeneity or inconsistency of data) corresponding to situations where measured values are substantially more 

dispersed than what would be expected based on their reported uncertainties. Such methods produce results 

similar to those achieved by the uncertainty-weighted mean when there is no excess variance.  

 

3.1. Uncertainty-weighted mean 

When the {𝑥𝑗} are consistent among each other with respect to the quoted uncertainties {𝑢𝑗}, the uncertainty-

weighted mean, expressed as shown in (7) can be used to derive a combined estimate �̂�𝑤 of the measurement 

result and its associated uncertainty 𝑢(�̂�𝑤).  

 

�̂�𝑤 = 𝑢2(�̂�𝑤) ∑
𝑥𝑗

𝑢𝑗
2

𝑛
𝑗=1 , 𝑢(�̂�𝑤) = (∑

1

𝑢𝑗
2

𝑛
𝑗=1 )

−1/2

 

(7) 

However, in order for this approach to be applicable, the results analysed need to be checked for consistency 

as the hypotheses underlying the use of the uncertainty-weighted mean do not hold true when working with 

inconsistent results. Inconsistency is usually verified by using the Cochran test of consistency. Under the 

consistency hypothesis, the following 𝑄 statistics follows a Chi-squared distribution with 𝑛 − 1 degrees of 

freedom [18]:  

𝑄 = ∑
(𝑥𝑗−�̂�𝑤)

2

𝑢𝑗
2

𝑛
𝑗=1 ∼ 𝐶ℎ𝑖2(𝑛 − 1)  (8) 

 

If the p-value, defined as Pr(𝐶ℎ𝑖2(𝑛 − 1) > 𝑄), is less than 0.05 then consistency is rejected at the level 5%. 

However, for small datasets the power of this test (capacity of the test to detect inconsistency) is usually poor and 

too sensitive  for large datasets. For this reason, the rejection of consistency could be applied at a level of 10% in 

order to achieve a compromise [19].  

It is worth noting that in “real world” situations, reported measurement results are often inconsistent, meaning 

that the uncertainty weighted mean cannot be considered applicable and random effects models need to be used 

instead.  

 

3.2. Random effects model  

The random effects model is written as:  
 

𝑥𝑗 = 𝜇 + 𝜆𝑗 + 𝜀𝑗  (9)  

 

where 𝑥𝑗 is the measured value reported by laboratory 𝑗, 𝜇 is the overall arithmetic mean response, the {𝜆𝑗}
𝑗=1,…,𝑛

 

are the laboratory effects (which are assumed to have a Gaussian distribution with a mean of 0 and a common 

standard deviation 𝜏), the {𝜀𝑗}
𝑗=1,…,𝑛

 are random effects assumed Gaussian with mean 0 and standard deviation 

the reported standard uncertainties {𝑢𝑗 }
𝑗=1,…,𝑛

. The difference with model (5) lies in the specification of 

individually reported measurement uncertainties instead of a common residual variance parameter. 

The parameter 𝜏, often called dark uncertainty, accounts for heterogeneity amongst the measured values i.e. 

when the measured values are substantially more dispersed than would be expected from their stated laboratory-

specific uncertainties [20]. As stated in [21] and [22], the rationale behind excess variance procedures is to 

enlarge reported variances by a common factor 𝜏2 which represents unexplained laboratory effects in order to 

avoid giving undue weight to results with a small reported uncertainty. In this paper, we focus on the DL 



 

 

procedure and the Bayesian hierarchical procedure to estimate the parameters 𝜇 and 𝜏 of the random effects 

model Erreur ! Source du renvoi introuvable.). Proficiency is assessed in terms of degrees of equivalence, 

implemented as described in the NIST Consensus Builder (NICOB, version 1.4) [20]. For the benefit of the 

reader, all the necessary details regarding the statistical procedures utilized during this study, have been provided 

in this text. It is important to note that the classical DL procedure [23] has been enhanced to take into account the 

uncertainty on 𝜏.   

 

3.2.1. DerSimonian Laird procedure 

 

The DL procedure [23] can be expressed as:  

 

�̂�𝐷𝐿 = 𝑢2(�̂�𝐷𝐿) ∑
𝑥𝑗

𝑢𝑗
2+�̂�𝐷𝐿

2
𝑛
𝑗=1  with 𝑢(�̂�𝐷𝐿) = (∑

1

𝑢𝑗
2+�̂�𝐷𝐿

2
𝑛
𝑗=1 )

−1/2

        (10) 

 

where �̂�𝐷𝐿
2 = max{0, �̂�𝑀

2  }, �̂�𝑀
2 = (𝑄 − 𝑛 + 1)/(∑ 𝑢𝑗

−2 − ∑ 𝑢𝑗
−4/ ∑ 𝑢𝑗

−2𝑛
𝑗=1

𝑛
𝑗=1

𝑛
𝑗=1 ), and 𝑄 = ∑ 𝑢𝑗

−2(𝑥𝑗 − �̂�𝑤)𝑛
𝑗=1  

is the Cochran statistics. When 𝜏 = 0, the DL estimates are reduced to the uncertainty-weighted mean estimates. 

The Knapp-Hartung adjustment (KH) [22] can be used for building confidence intervals on these estimates, thus 

taking into account the unrecognized uncertainty around both the estimation of 𝜏2 and the reported 𝑢𝑗
2 by using 

the following pivotal quantity: 
�̂�𝐷𝐿−𝜇

√𝑢𝐾𝐻
2 (�̂�𝐷𝐿)

∼ 𝑡𝑛−1           (11) 

where 𝑢𝐾𝐻
2 (�̂�𝐷𝐿) is the KH estimate of the variance of �̂�𝐷𝐿 defined as: 

 

𝑢𝐾𝐻
2 (�̂�𝐷𝐿) = (

∑ (𝑥𝑗−�̂�𝐷𝐿)
2

/(𝑢𝑗
2+�̂�𝐷𝐿

2 )𝑛
𝑗=1

𝑛−1
) 𝑢2(�̂�𝐷𝐿)        (12) 

 

The resulting confidence interval for 𝜇 at the level 1 − 𝛼 is [�̂�𝐷𝐿 ± 𝑡𝑛−1,1−
𝛼

2
 𝑢𝐾𝐻(�̂�𝐷𝐿)] where 𝑡𝑛−1,1−

𝛼

2
 is the 1 −

𝛼/2 quantile of the 𝑡 distribution with 𝑛 − 1 degrees of freedom. A further enhancement of the method 

implemented in [20] (building on the KH adjustment) consists in sampling from the approximate distribution of 

the excess variance parameters using the parametric bootstrap Monte Carlo (PBMC) method as represented in 

Fig 1. 

 

Fig. 1. Comparison of the DerSimonian-Laird and the Bayesian procedures to estimate consensus values. 

3.2.2. Bayesian procedure 

 

A Bayesian approach is used to estimate the posterior distributions of μ and 𝜏 given data d = {xj, uj
2}

j=1,…,n
. 

Bayesian inference combines one's prior knowledge about the parameters 𝜇 and 𝜏 with the information contained 

in the data. The result is the posterior distribution 

 

𝜋(𝜇, 𝜏|𝑑) =
𝑙(𝑑|𝜇, 𝜏)𝜋(𝜇,𝜏)

𝑚(𝑑)
           (13) 

 



 

 

where 𝑙(𝑑|𝜇, 𝜏) is the likelihood of the data and 𝜋(𝜇, 𝜏) is the prior distribution expressing one's prior beliefs 

about 𝜇, 𝜏 and 𝑚(𝑑) is a normalization constant. Equivalently, Bayes’ formula can be expressed using the 

proportionality relation: 

𝜋(𝜇, 𝜏|𝑑) ∝ 𝑙(𝑑|𝜇, 𝜏)𝜋(𝜇, 𝜏)        (14) 
 

A poorly informative prior can be chosen for 𝜇, e.g. a Gaussian distribution with mean 0 and a very large 

standard deviation (say 105). Prior for variance components should be more carefully addressed in particular for 

low expected values. We follow here the recommendation [24] and assume that 𝜏 follows a half-Cauchy prior 

distribution parameterized by a scale parameter 𝜎𝜏 as follows:  

 

𝜋(𝜏|𝜎𝜏) =
2

𝜋𝜎𝜏

1

1+𝜏2/𝜎𝜏
2 if 𝜏 ≥ 0 and 0 otherwise        (15) 

 

A recommendation of [20] is to take 𝜎𝜏 = mad(𝑥1, … , 𝑥𝑛) where mad() is the median absolute deviation of 

the sample in the argument. Since the posterior distribution usually has no closed form, Markov Chain Monte 

Carlo (MCMC) methods [25] are employed to sample from the posterior distribution. These methods construct a 

sequence of dependent values which form a Markov chain with stationary distribution equal to the sought-after 

distribution. Amongst MCMC methods, the Metropolis-Hastings algorithm constitutes a popular class of 

methods as it only requires knowledge of the right hand part of equation (13) to sample from the posterior 

distribution. In this algorithm, the sequence of values is usually considered only after a first period of burn-in 

(e.g. discard the first 1000 simulations), and often the chains are thinned (e.g. only each 10th value is used) in 

order to reduce the correlation between successive values. A general introduction to these methods can be found 

in [26], and [27], whilst [28] provides introductory example of their use in metrology.  

 

 

3.2.3. Degrees of equivalence for performance assessment 

 

Degrees of equivalence 𝑑𝑗 and their 95% expanded uncertainties 𝑈95(𝑑𝑗) are used to assess the agreement of 

laboratory values 𝑥𝑗 ± 𝑈95(𝑥𝑗) with the consensus estimate �̂� i.e. the performance of the method. In practice, 

degrees of equivalence are used to identify outliers with respect to the random effects model. The unilateral 

degree of equivalence (DoE) for laboratory 𝑗 is defined as 𝑑𝑗 = 𝑥𝑗 − �̂�. As 𝑥𝑗 is used to build the estimate �̂�, the 

covariance cov(𝑥𝑗 , �̂�) between 𝑥𝑗 and �̂� should be estimated such that it has a reliable estimate of the uncertainty 

associated with each DoE according to the formula for the propagation of variances: 𝑢2(𝑑𝑗) = 𝑢𝑗
2 + 𝑢2(�̂�) −

2cov(𝑥𝑗 , �̂�). In order to avoid such complex computations, it was recommended in [29] that leave one out (LOO) 

estimates of the 𝑑𝑗 defined as shown in equation (16), where 𝜇−�̂� is the consensus estimate computed from all 

results but 𝑥𝑗, be considered.  

 

𝑑𝑗
𝐿𝑂𝑂 = 𝑥𝑗 − 𝜇−�̂�            (16) 

 

In practice, LOO consists in repeating 𝑛 times the estimation process. Once 𝑑𝑗
𝐿𝑂𝑂 is obtained either with the DL 

or the Bayesian procedure, measurement uncertainty 𝑥𝑗 ± 𝑈95(𝑥𝑗) must still be taken into account. A schematic 

representation of the full procedure leading to the estimation of 𝑑𝑗 and their associated uncertainty can be seen in 

Fig.  1. and Fig. 2Fig. . 

 



 

 

 
Fig. 2. Comparison of the DerSimonian-Laird and the Bayesian procedures to estimate unilateral degrees of 

equivalence 

 

3.2.4. Comments on the DerSimonian-Laird and Bayesian procedures 

In this paper, we present the enhanced version of the DL algorithm [23] as implemented in [20], with the KH 

adjustment and parametric bootstrap Monte Carlo (PBMC) method for the estimation of the consensus estimate, 

its associated uncertainty and coverage interval. These enhancements make the resulting uncertainty estimates 

comparable to the Bayesian estimates in their ability to take into account all the uncertainty sources, which is the 

usual justification for preferring Bayesian approaches. The resulting DL/KH/PBMC algorithm produces the same 

mean estimate of the consensus estimate as the initial DL algorithm from [23]. However, the enhanced algorithm 

differs significantly in terms of the uncertainty estimates in that the new, more conservative, estimates remain 

larger than those presented by the standard model. It is worth noting that, instead of producing analytical 

formulas for the mean and variance estimates, the new version relies on an iterative algorithm. For both the 

DL/KH/PBMC and Bayesian methods, the 95% coverage and credible intervals respectively are computed from 

simulated samples.  

 

 

4. Results 

In this section, we provide the analysis of the CRM-ILC and RM-ILC for proficiency testing with the most 

appropriate methods as explained in section 2.3. For RM-ILC we compare the excess variance consensus estimates 

with the uncertainty-weighted mean (called UW-mean), which is appropriate when data are consistent.  

From CRM-ILC we are able to perform a complete uncertainty evaluation including bias. Individual reported 

standard uncertainties provided by laboratories for RM-ILC are compared with the global uncertainty computed 

from the CRM-ILC individual results (note that, as indicated in the text, the activity levels may differ). 

 

 

4.1. Analysis of CRM-ILC 

 

4.1.1. Proficiency testing results 

A summary of the PT results analysed according to section 2.3 can be found in Table 1. 

For clarity, only the Ba-133 is presented in the main text of this article with the PT results for the other 

measurands - activity per unit mass (Bq/g) or mass activity in the following of Co-60, and of Eu-152 presented 



 

 

in supplementary data (part A). Results for Ba-133 are displayed in Fig. 3 : 𝑥𝑝𝑡 = 𝑥𝐶𝑅𝑀 = 0.0960 Bq/g 

(𝑢(𝑥𝑝𝑡) = 𝑢𝐶𝑅𝑀 = 0.0018 Bq/g (𝑘 = 1)). There is one outlier (sample 2 of code 12).  

 

 

black dot: laboratory results ; bars: Uj (k=2); solid and dotted red line : xpt and Upt (k=2) ; solid and dotted green line: x* and U(x*) (k=2)  

Fig. 3. Ba-133 results for each of the two samples for PT analysis 

 

For Ba-133 (at 0.0960 Bq/g), it can be seen that one result is an outlier. Additionally, of the remaining 23 

results, only one z score is considered unacceptable (or action signal) whilst 8 zeta scores - corresponding to 

laboratory codes 5, 8, 10, and 11 each time for both of the studied samples - are unacceptable (or action signal). 

These results suggest that the laboratories are underestimating their uncertainty in the measurement of Ba-133 by 

gamma spectrometry.  

For Co-60 (at 3.018 Bq/g), one result is an outlier. Additionally, of the remaining 23 results, only one z score 

is considered unacceptable whilst 2 zeta-scores - corresponding to laboratory codes 5 and 12 - are unacceptable. 

This suggests that these two laboratories are underestimating their uncertainty in the measurement of Co-60 by 

gamma spectrometry.  

For Eu-152 (at 0.853 Bq/g), one result is an outlier. Additionally, all 23 remaining z scores are satisfactory 

whilst 4 zeta-scores - corresponding to laboratory codes 5 and 7 each time for both of the studied samples - are 

unacceptable. These results suggest that these two laboratories are underestimating their uncertainty in their 

measurement of Eu-152 by gamma spectrometry. Furthermore, it should be noted that laboratory 5 received an 

action signal for all of the gamma spectrometry measurements performed.  

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1  

Summary of the performance indicators for ILC on concrete CRM. 

 

 

4.1.2. Accuracy of measurement methods on concrete CRM and uncertainty evaluation 

 

 

Following the approach from section 2.4.2, the evaluation of the trueness of the gamma spectrometry method for 

each of the radionuclides of interest, based on the results of the comparison on the concrete CRM, is summarised 

in Table 2.  

 

Table 2  

Trueness evaluation of the gamma spectrometry method for Ba-133, Co-60 and Eu-152 measurement. 

 

 
 

The normalized deviation calculated for each of the radionuclides is less than 2 in absolute value, which 

indicates that the bias of the gamma spectrometry method is non-significant, which translates into  �̂� = 0. As 

such, the method is not different from a true method for Ba-133, Co-60, and Eu-152 analysis in the ranges of this 

concrete CRM mass radioactivity. 

 

Continuing the example of Ba-133, 4 of the 53 individual measurement results (corresponding to 3 results from 

code 10 and 1 result from code 5) can be considered outliers (according to the Grubbs test) and their distribution 

does not differ significantly from a normal distribution. It is therefore possible to carry out a variance analysis of 

these results (one way Anova, the studied factor is laboratory) whose outputs are presented in Fig. 4 and Table 3. 

 

Lab code

Dj% zeta j z j Dj% zeta j z j Dj% zeta j z j

1 - sample 1 17 1.7 0.7 7.4 0.9 1.5 -0.9 -0.1 -0.1
1 - sample 2 5.2 0.6 0.2 5.4 0.7 1.1 -4.0 -0.5 -0.3
2 - sample 1 2.1 0.1 0.1 5.7 0.6 1.2 7.9 0.6 0.6
2 - sample 2 1.0 0.1 0.0 1.7 0.2 0.3 0.8 0.1 0.1
3 - sample 1 4.2 0.4 0.2 4.4 0.5 0.9 6.1 0.6 0.5
3 - sample 2 4.2 0.4 0.2 6.4 0.7 1.3 10 1.0 0.8
4 - sample 1 _ _ _ _ _ _ _ _ _
4 - sample 2 _ _ _ _ _ _ _ _ _
5 - sample 1 86 8.2 3.8 16 3.4 3.3 27 5.9 2.2
5 - sample 2 48 5.6 2.1 7.7 1.7 1.6 17 3.9 1.4
6 - sample 1 1.0 0.2 0.0 2.8 0.5 0.6 -0.2 0.0 0.0
6 - sample 2 -0.3 -0.1 0.0 1.9 0.3 0.4 -2.8 -0.5 -0.2
7 - sample 1 -8.3 -1.5 -0.4 2.7 0.3 0.6 -23 -4.4 -1.8
7 - sample 2 -8.3 -1.1 -0.4 6.0 1.0 1.2 -18 -3.5 -1.5
8 - sample 1 15 3.1 0.6 0.1 0.0 0.0 2.0 0.2 0.2
8 - sample 2 15 3.7 0.6 -0.6 -0.2 -0.1 3.2 0.8 0.3
9 - sample 1 2.1 0.4 0.1 1.6 0.4 0.3 -1.4 -0.4 -0.1
9 - sample 2 3.1 0.6 0.1 3.0 0.8 0.6 -1.1 -0.3 -0.1

10 - sample 1 -52 -3.0 -2.3 -2.4 -0.4 -0.5 -18 -1.3 -1.5
10 - sample 2 -51 -4.6 -2.3 -5.0 -0.9 -1.0 -18.6 -1.7 -1.5
11 - sample 1 -39 -7.2 -1.7 -2.4 -0.4 -0.5 6.3 1.1 0.5
11 - sample 2 -42 -5.5 -1.8 -4.5 -0.7 -0.9 2.8 0.4 0.2
12 - sample 1 6.9 0.4 0.3 -8.5 -4.4 -1.7 -12 -2.9 -1.0
12 - sample 2

Ba-133 Co-60 Eu-152

Outlier Outlier Outlier

Radionuclide Ba-133 Co-60 Eu-152

xpt 0.0960 3.018 0.853

u(xpt) 0.0018 0.042 0.012

xILC 0.0954 3.084 0.844

u(xILC) 0.0058 0.040 0.028

-0.00059 0.066 -0.0094

u(  ) 0.0061 0.058 0.031

En -0.1 1.1 -0.3

𝛿

𝛿



 

 

 
Fig. 4.  Ba-133 by gamma spectrometry in CRM represented here as individual measurements from the 

two samples for variance analysis 

 

Table 3  

Ba-133 by gamma spectrometry - determination of the repeatability and the reproducibility uncertainties. 

 

ANOVA Ba-133   

(Bq/g) 
 total   between within 

         nk = 49  k =  11 

  global mean= 0.0916   

sum of the squares of the 

deviations  
 

0.03842 0.03493 0.003498 

number of degrees of 

freedom 
48 10 38 

variance 

 

reprod. lab repeat. 
0.0008744 

 
0.0007824 0.00009200 

uncertainty estimation  

(k = 1) 
sR sL sr 

 0.030 0.028 0.0096 

  
31% 

 
29% 

 
10% 

 

 

 

For measuring Ba-133 by gamma spectrometry, the relative intralaboratory standard uncertainty 

(repeatability) (10%) is lower than the relative standard uncertainty due to the laboratory factor (29%). From 

this, the reproducibility relative standard uncertainty for gamma spectrometry can be calculated to be 31%.  

The measurement uncertainty 𝑢(𝑦) associated with the measurement of Ba-133 by gamma spectrometry at a 

level around 0.096 Bq/g can be estimated as shown in Table 4, meaning a measurement standard uncertainty 

𝑢(𝑦) equal to 0.030 Bq/g and a relative standard measurement uncertainty (k = 1) of 32% for a Ba-133 mass 

activity around 0.096 Bq/g. 

 

 

 

 

 

 

 

 



 

 

Table 4  

Ba-133 by gamma spectrometry - estimation of measurement uncertainty. 

 

Ba-133 by gamma 

spec. Bq/g 
𝑢𝐶𝑅𝑀 𝑢(�̂�) 𝑠𝑅 u(𝑦) (k=1) 

0.0960  

 

0.0018 0.0061 0.0296 0.030 

32% 

 

Summary results of the other certified radionuclides can be found in Table 5.  

The standard measurement uncertainty by gamma spectrometry is estimated at 5.2% for Co-60 at a level of 

about 3 Bq/g, at 12% for Eu-152 at a level of about 0.85 Bq/g, and at 32% for Ba-133 at a level of about 0.1 

Bq/g.  

It should be noted that the outliers eliminated before the analysis of variance come mainly from laboratory 

codes 5, 12, and - to a lesser extent - from laboratory codes 10 and 11; these codes are those that performed the 

worst with not satisfactory performance in the proficiency test.  

 

Table 5  

Characteristics of analytical methods on CRM and corresponding measurement uncertainty. 

 

      analytical method characteristics     

      trueness precision     

analytical 

method 

Measurand : 

mass activity per 

unit mass 

Value 

(Bq/g) 
En repeatability sr reproducibility sR 

measurement 

uncertainty u 

(k=1) (Bq/g) 

gamma 

spectrometry 
Ba-133 0.0960 -0.1 0.0096 (10%) 0.030 (31%) 0.030 (32%) 

gamma 

spectrometry 
Co-60 3.018 1.1 0.071 (2.3%) 0.14 (4.7%) 0.16 (5.2%) 

gamma 

spectrometry 
Eu-152 0.853 -0.3 0.035 (4.1%) 0.10 (12%) 0.10 (12%) 

 

 

 

4.2.  Analysis of RM-ILC for proficiency testing using excess variance procedures 

 

4.2.1. RM low real concrete 

 

Comparison between the DL procedure and the Bayesian procedure 

 

A summary of the consensus estimates achieved using the DL procedure and the Bayesian procedure for the 

three measurands in the RM low real concrete sample is given in Table 6 and Table 7, respectively. It can be 

seen that there is a good agreement of the two methods. In order to allow for a comparison of the results, 100000 

iterations of each procedure were performed for each radionuclide. Columns µ̂ and u(µ̂) give the estimates of the 

assigned value and its associated uncertainty, respectively, with columns 2.5%(µ̂) and 97.5%(µ̂) respectively 

giving the lower and upper bounds of a 95% credible interval calculated from the samples. For the DL 

procedure, only a point estimate for 𝜏 in column �̂� is available, whereas uncertainty and quantile estimates in 

columns u(�̂�), 2.5%(�̂�) and 97.5%(�̂�) are obtained as by-products of the Bayesian procedure. The difference 

between the methods comes primarily from the excess variance estimation process.  

 

In the remaining of the section, when DL and Bayesian results yield similar interpretation, only results 

obtained with DL are presented and only results for Ba-133 are displayed, for clarity. All the results obtained 

with the Bayesian analysis are displayed in the supplementary data part C. Results using DL for Co-60 and Eu-

152 are displayed in Supplementary data part B. 



 

 

 

 

 
Table 6  

Results (Bq/g) for the consensus estimates using the DerSimonian-Laird procedure with 100 000 bootstrap 

simulations for RM low real concrete. 

  
µ̂ u(µ̂) 2.5%(µ̂) 97.5%(µ̂) �̂� 

Ba-133 3.25 0.19 2.85 3.66 0.56 

Co-60 0.0420 0.0010 0.0400 0.0450 0.0020 

Eu-152 0.3159 0.0068 0.3023 0.3300 0.0124 

 

 
Table 7  

Results (Bq/g) for the consensus estimates using the Bayesian procedure with 100 000 MCMC simulations for 

RM low real concrete. 

  
µ̂ u(µ̂) 2.5%(µ̂) 97.5%(µ̂) �̂� u(�̂�) 2.5%( �̂�) 97.5%(�̂�) 

Ba-133 3.25 0.23 2.79 3.72 0.68 0.18 0.42 1.12 

Co-60 0.0424 0.0010 0.0406 0.0445 0.0018 8.0 10-04 8.0 10-04 0.0038 

Eu-152 0.3155 0.0072 0.3012 0.3301 0.0126 0.0081 9.0 10-04 0.0325 

 

Interpretation of results for the three radionuclides 

  

For Ba-133 (low) mass activity, the consensus graph in Fig. 5 (left) shows a huge shift of the UW-mean (blue 

line) from the DL consensus estimate (green line), that can be interpreted as the mean of laboratories 8 and 13 

having the smallest uncertainties. In addition, the uncertainty associated with the UW-mean (blue band) is also 

too small, which makes UW-mean not reliable as a consensus. Taking into account dark uncertainty produces a 

more consensual estimate (green line) with a larger uncertainty band (in yellow) representative of the 

discrepancy of the results. The consensus plot also makes visible the “enlarged” uncertainties that are actually 

processed in the DL algorithm (green vertical bars) where the blue vertical bars represent the reported standard 

uncertainties. The result from laboratory 11 appears as an outlier, which is confirmed by the computation of its 

degree of equivalence in Fig. 5 (right), but we want to keep it in the analysis in case there is no 

instrumental/technical reason to doubt the reported result and uncertainty. So that excess variance approach can 

be considered as a robust method. For all other laboratories, the 95% credible intervals of the DOEs contain zero 

so that performance is achieved. In particular, for laboratories 5, 8 and 10 for which the zeta score was too large 

(a suspicion of underestimated uncertainties was raised section 4.1.1), correcting for too small reported 

uncertainties using dark uncertainty allows a more reliable performance evaluation.  

 

For Co-60 (low) mass activity: the consensus graphs in supplementary data part B.a and part C.a show that 

the UW-mean is shifted towards the value of laboratory 8 which reports a very small uncertainty. Taking into 

account excess variance allows to retrieve a consensual value with an enlarged associated uncertainty with 

respect to the uncertainty associated with UW- mean, which is more representative of all of the reported results. 

Besides, the performance of laboratory 8 assessed with DOEs is nearly (but not) achieved whereas no suspicion 

was raised with the zeta score section 4.1.1, which suggests that the uncertainty at the level 0.04 Bg/g is 

underestimated but not the uncertainty reported at 3.018 Bq/g in the CRM. The results for laboratory 8 were 

nonetheless maintained in order to build the consensus value. Indeed, from the analysis of the consensus graph 

for Co-60, its effect on the consensus value is lowered with the excess variance approach, whereas the 

uncertainty-weighted estimate is almost confused with the result of this laboratory.  On the contrary, laboratory 5 

whose results were unacceptable at 3.018 Bq/g with both the z-score and the zeta score, now achieves 

performance at 0.04 Bg/g with the excess variance method which suggests that the uncertainty at the level 3.018 

Bq/g was underestimated but not the uncertainty reported at 0.04 Bg/g. 

 

For Eu-152 (low) mass activity: the consensus graph shows close results for the UW-mean and the excess-

variance approach due to a lesser heterogeneity between results and reported uncertainties than those observed in 



 

 

the results for Ba-133 and Co-60.  Laboratories 5 and 7 whose results were unacceptable with the zeta score at 

0.853 Bq/g (in the CRM) now achieve performance at 0.3155 Bq/g (in RM low), whereas laboratory 10 nearly 

reaches performance at 0.3155 Bq/g with the excess variance method, which suggests that the uncertainty of 

laboratory 10 at 0.3155 Bq/ may be slightly underestimated. 

 

 

  
  a) Consensus estimate        b) Degrees of equivalence 

Fig. 5.  Left: Plot of the laboratory results and the consensus estimates using uncertainty-weighted mean and DL 

procedure. Right: Plot of the 95% credible interval for the degrees of equivalence for Ba-133 (low) mass activity. 

       

 

4.2.2. RM high real concrete 

 

Table 8 and Table 9 give a summary of both the consensus estimates and the dark uncertainty estimates 

achieved using the DL procedure and the Bayesian analysis respectively, for the three measurands in the RM 

high real concrete. As for the RM low real concrete, a good agreement of the two methods can be observed. 

All the graphs referenced in this section are displayed in the supplementary data parts B and C for the DL and 

the Bayesian procedure respectively. 

For Ba-133 high, the relative position of results is similar for all laboratories compared to results for Ba-133 

low. The only difference with the low level analysis lies in the position of the UW-mean which is now at a 

central position but still with a too small associated uncertainty. Again, the effect of excess variance can be seen 

at is produces a more consensual estimate.For Co-60 high, the excess variance estimate is 0 with DL procedure, 

which is visible on the consensus graph in section B.c, where the vertical bars for the reported uncertainties and 

the vertical bars after taking dark uncertainty into account are the same. For this radionuclide, the difference 

between the DL and Bayesian procedure observed by comparing graphs in supplementary data part B.c. and part 

C.c. results from a significantly larger excess variance estimate obtained with the Bayesian approach. Since the 

Bayesian approach relies on the “true” distribution of the excess variance parameter given the model, Bayesian 

results should be preferred.  

For Eu-152 high, a moderate effect of heterogeneity can be observed, which yields to a consensus uncertainty 

estimate not too far from UW-mean uncertainty. 

Estimates and plots of degrees of equivalence are displayed in Supplementary material B.d. and C.d for the 

DL and the Bayesian procedure respectively. 

In brief, the comparison with performance results on CRM yields to similar results and interpretations for Ba-

133: only laboratory 11 does not achieve performance at 9.5316 Bq/g. All laboratories achieve performance for 

measuring Co-60 at 0.1272 Bq/g. For Eu-152, laboratory 10 does not achieve performance. 

 



 

 

Table 8 

Results for the consensus estimates using the DerSimonian-Laird procedure with 100 000 bootstrap simulations 

for RM high real concrete. 

  

�̂� 𝑢(�̂�) 2.5%(�̂�) 97.5%(�̂�) �̂� 

Ba-133 9.5316 0.7213 8.0932 10.9865 2.0873 

Co-60 0.1272 0.0016 0.1239 0.1303 0 

Eu-152 0.836 0.023 0.788 0.881 0.052 

 

 
Table 9 

Results for the consensus estimates using the DerSimonian-Laird procedure with 100 000 MCMC simulations 

for RM high real concrete. 

  

�̂� 𝑢(�̂�) 2.5%(�̂�) 97.5%(�̂�) �̂� u(�̂�) 2.5%(�̂�) 97.5%(�̂�) 

Ba-133 9.53 0.69 8.16 10.89 2.01 0.53 1.23 3.24 

Co-60 0.1269 0.0017 0.1233 0.1301 0.0019 0.0016 1.0010-04 0.0057 

Eu-152 0.837 0.022 0.792 0.882 0.051 0.026 0.007 0.109 

 

 

 

4.3. Discussion 

 

In the concrete CRM, the gamma spectrometry method has been successfully assessed for its trueness for the 

measurement of Ba-133, Co-60, and Eu-152. As the matrix is the same as that of the real concretes, it can be 

stated that this applies also to the two real concretes studied. For Ba-133, the estimated reproducibility relative 

standard uncertainty decreases from about 31% at 0.1 Bq/g to about 6% at 10 Bq/g; for Co-60, from 9% at 0.05 

Bq/g to 5% at 3 Bq/g; for Eu-152, the reproducibility relative standard uncertainty is about 10% at 0.3-0.8 Bq/g.  

For Co-60 and Eu-152, the measurement uncertainties estimated from the results of the ILC for the CRM are 

consistent with the ones estimated by the laboratories:  

- Co-60: relative standard uncertainty from ILC: 5% - relative standard uncertainty of the laboratories 

between 1% and 6% 

- Eu-152: relative standard uncertainty from ILC: 12% - relative standard uncertainty of the laboratories 

between 3% and 17%  

This tends to demonstrate that the evaluation of measurement uncertainty has been well controlled by the 

laboratories. This promising result can be attributed to the fact that the evaluation of measurement uncertainty in 

gamma spectrometry is well described in the literature [30], [31], [32]. 

As an example, considering that the measurement methods are the same for CRM and RM analysis, Fig.6 

shows the comparison between reported uncertainties, excess variance uncertainties and uncertainties from the 

ILC on the CRM for the analysis of Eu-152 high for which the level of activity of RM high is close the level of 

activity of the CRM. From this example, it can be concluded that for all but one laboratory uncertainty from 

CRM is larger than the reported uncertainties which is to be expected.  

However, for Ba-133, the conclusions are different. In that case, the measurement uncertainty estimated from 

the results of the ILC for the CRM (32%) is higher than most of the ones estimated by the laboratories (3 – 

36%). This result can have several technical explanations:  

- The very low activity of Ba-133 makes this radionuclide difficult to measure and makes its 

measurement very sensitive to background fluctuations. The background corrections applied by the 

laboratories can thus induce higher uncertainties than expected. 

- The energies of Ba-133 gamma emission lines are lower than those of Co-60 and Eu-152 for which 

several high energy lines are available. The Ba-133 lines could therefore be more sensitive to matrix 

effects and efficiency variation. This is particularly relevant as the sample matrix (concrete) is different 

from that of the standard sources used for the calibration of the spectrometer. 

 



 

 

 
Fig. 6.  Comparison between reported uncertainties (in blue), excess variance based uncertainties (in 

green) and uncertainties obtained from the comparison on the CRM (in yellow), all uncertainties are 

standard uncertainties. The horizontal blue line is the consensus estimate with the excess variance 

approach 

 

5. Conclusion and perspectives 

 

In this work, we propose a methodology for performance assessment and uncertainty evaluation using inter-

laboratory comparisons. From a metrological perspective, the study confirms the importance of using a CRM to 

quantify bias and take into account the uncertainty due to bias in the uncertainty evaluation (otherwise restricted 

to the reproducibility variance). The resulting uncertainty can then be associated with the measured level of 

activity and could be used as the “default” uncertainty attributed to laboratories measuring the same activity with 

the same method on a similar matrix. For this kind of ILC, performance can be evaluated according to the ISO 

13528:2015 [13] could be extended to assess the performance of laboratories reporting their own uncertainties in 

an ILC on reference (non certified) materials. For such ILCs, the phenomenon of excess variance is frequently 

encountered and must be taken into account (here with simulation based algorithms) for a sound performance 

assessment using degrees of equivalence and their associated 95% credible interval (instead of z-scores or zeta-

scores for instance). The effect of considering excess variance (dark uncertainty) when supplied data is 

heterogeneous was studied, showing that when the data are close to homogeneous only a small difference (or 

even no difference, in case of full homogeneity) can be observed with the traditionally uncertainty-weighted 

mean. Finally, the study also showed that the comparison of the two approaches (ILCs on CRM and on RM with 

the same matrix) could be used to give insight into the completeness of the uncertainty budgets of participating 

laboratories. Indeed, the statistically based excess variance parameter (equivalent to 0 in the case of complete 

data homogeneity), which is usually used as an indicator of underestimated reported uncertainty, can be 

compared with the CRM based uncertainty. The dark uncertainty arising from excess variance approaches is an 

indicator of a measurement process not fully controlled. The sources of such uncertainty are always difficult to 

identify but should be investigated. In the case of gamma spectrometry, uncertainty sources such as background 

correction, calibration issues due to the differences between calibration sources and samples can cause such dark 

uncertainty. For the Ba-133 example, complementary work would be necessary to address the Ba-133 

measurement issues. It would be worth studying and comparing the uncertainty estimation made by each 

laboratory in order to verify that the approaches were equivalent and that all sources of uncertainty were taken 

into account in the estimation. In a second step, it would be useful to estimate the impact of this benchmark 

measurement uncertainty estimated on the uncertainty associated with the radiological characterisation of the 

installation to be dismantled. 
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Supplementary data 

 

A. Proficiency test on concrete CRM - measurands: mass activity of Co-60 and of Eu-152 

 

Co-60 mass activity: 𝑥𝑝𝑡 = 𝑥𝐶𝑅𝑀 = 3.018 Bq/g (𝑢(𝑥𝑝𝑡) = 𝑢𝐶𝑅𝑀 = 0.042 Bq/g  (𝑘 = 1))  

1 outlier 

 

 

 
 

 
 

 



 

 

 
 

 
A: black dot: laboratory results ; bars: Uj (k=2); solid and dotted red line : xpt and Upt (k=2) ; solid and dotted green line: x* and U(x*) (k=2)  

Fig. 7. Laboratory results (A), deviation (B) and z and zeta scores (C) for Co-60 mass activity in concrete CRM. 

 



 

 

Eu-152 mass activity: 𝑥𝑝𝑡 = 𝑥𝐶𝑅𝑀 = 0.853 Bq/g (𝑢(𝑥𝑝𝑡) = 𝑢𝐶𝑅𝑀 = 0.012 Bq/g (𝑘 = 1)) 

1 outlier 

 

 
 

   
 

 



 

 

  
 
A: black dot: laboratory results ; bars: Uj (k=2); solid and dotted red line : xpt and Upt (k=2) ; solid and dotted green line: x* and U(x*) (k=2)  

Fig. 8. Laboratory results (A), deviation (B) and z and zeta scores (C) for Eu-152 mass activity in concrete CRM. 

 

 

  



 

 

B. Results with DerSimonian Laird procedure 

 

a. DerSimonian Laird estimates for consensus estimates for low level real concrete 

 

 

 
 
Fig. 9. Low level real concrete: DerSimonian-Laird estimates for Co-60 and Eu-152 mass activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

b. DerSimonian-Laird estimates for degrees of equivalence for low level 

 

  

 

Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 0.0055 0.0251 -0.0199 0.0303 

1 6.00 10-04 0.0086 -0.008 0.0092 

9 -3.00 10-04 0.0059 -0.0062 0.0057 

11 -0.0032 0.0068 -0.01 0.0036 

8 -0.0034 0.0018 -0.0052 -0.0015 

7 0.0057 0.0095 -0.0038 0.0151 

2 0.0015 0.0101 -0.0085 0.0116 

13 0.0029 0.004 -0.0011 0.0068 

5 0.0014 0.0061 -0.0047 0.0075 

6 -1.00 10-04 0.0067 -0.0068 0.0065 

 
 
Fig. 10. Low level real concrete: DerSimonian-Laird estimate of degrees of equivalence for Co-60.  



 

 

 

Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 -0.0571 0.0533 -0.1109 -0.0044 

1 -0.02 0.0544 -0.075 0.0336 

9 0.0145 0.0488 -0.0343 0.0633 

11 0.0255 0.0459 -0.0215 0.0703 

8 -0.0067 0.0421 -0.0483 0.0357 

7 0.0152 0.0574 -0.043 0.0719 

2 0.0209 0.0816 -0.0606 0.1025 

13 -0.012 0.0375 -0.0492 0.026 

5 0.0294 0.0314 -0.0026 0.0605 

6 -0.0105 0.0448 -0.0548 0.0346 

 

Fig. 11. Low level real concrete: DerSimonian-Laird estimate of degrees of equivalence for Eu-152. 

 

  



 

 

c. DerSimonian-Laird estimates for consensus estimates for high level 

 

 
 

 
 
Fig. 12. High level real concrete: DerSimonian-Laird estimates for Ba-133, Co-60 and Eu-152 mass activity. 

  



 

 

 

 

d. DerSimonian estimates for degrees of equivalence for high level 

 

 

Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 -1.5193 4.7638 -6.2196 3.2933 

1 1.4755 4.8786 -3.5101 6.249 

9 0.2534 4.8064 -4.542 5.0832 

11 -5.1098 1.9962 -7.0942 -3.103 

8 1.6438 4.7067 -3.0659 6.3259 

7 -0.2943 4.8387 -5.123 4.5531 

2 0.6914 5.1582 -4.4878 5.8322 

13 0.2821 5.2281 -4.9041 5.54 

5 2.7805 4.5375 -1.7142 7.3522 

6 0.1018 4.8278 -4.7095 4.9521 

 

 

 
Fig. 13. High level real concrete: DerSimonian-Laird estimate of degrees of equivalence for Ba-133. 
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Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 -3.00 10-04 0.0326 -0.032 0.033 

1 0.0068 0.0212 -0.014 0.0282 

9 8.00 10-04 0.0085 -0.0077 0.0094 

11 -0.0085 0.014 -0.0224 0.0058 

8 -0.0078 0.0093 -0.0171 0.0015 

7 0.0048 0.0193 -0.0144 0.0242 

2 0.0038 0.0268 -0.0226 0.031 

13 0.0024 0.0054 -0.003 0.0078 

5 -0.0013 0.0114 -0.0128 0.0098 

6 0.0019 0.0135 -0.0116 0.0154 

 

 
Fig. 14. High level real concrete: DerSimonian-Laird estimate of degrees of equivalence for Co-60. 
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Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 -0.2227 0.1078 -0.3298 -0.1145 

1 -0.0039 0.1719 -0.1792 0.1655 

9 0.0301 0.144 -0.116 0.1733 

11 0.0796 0.1472 -0.0686 0.2257 

8 0.0153 0.1483 -0.1375 0.1607 

7 -0.0183 0.1551 -0.1752 0.135 

2 0.0863 0.2356 -0.1506 0.3201 

13 -0.0167 0.1464 -0.1642 0.1289 

5 0.0748 0.1299 -0.056 0.2033 

6 -0.0041 0.1509 -0.1538 0.1479 

 

 
 
 

Fig. 15. High level real concrete: DerSimonian-Laird estimate of degrees of equivalence for Eu-152. 
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C. Results with the Bayesian procedure 

a. Bayesian estimates for consensus estimates for low level 

 

 

 
 

Fig. 16. Low level real concrete: Bayesian estimates for Co-60 and Eu-152 mass activity. 
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b. Bayesian estimates for degrees of equivalence for low level 

 

Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 0.0056 0.0244 -0.0197 0.0295 

1 7.00 10-04 0.0087 -0.0083 0.0091 

9 -2.00 10-04 0.0055 -0.0058 0.0052 

11 -0.003 0.0068 -0.0099 0.0037 

8 -0.0033 0.0032 -0.0066 -2.00 10-04 

7 0.0058 0.0093 -0.0032 0.0155 

2 0.0017 0.01 -0.0085 0.0114 

13 0.003 0.0046 -0.002 0.0071 

5 0.0015 0.006 -0.0047 0.0074 

6 0 0.0063 -0.0062 0.0063 

 

 
 

 
Fig. 17. Low level real concrete: Bayesian estimate of degrees of equivalence for Co-60. 
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Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 -0.0574 0.0546 -0.1121 -0.0034 

1 -0.0198 0.0562 -0.076 0.0365 

9 0.0148 0.0517 -0.0366 0.0669 

11 0.0257 0.0495 -0.0229 0.0763 

8 -0.0068 0.0445 -0.051 0.038 

7 0.0154 0.0596 -0.0438 0.0753 

2 0.0213 0.0828 -0.0622 0.1033 

13 -0.0123 0.0418 -0.0538 0.0297 

5 0.0293 0.0348 -0.0068 0.0626 

6 -0.0101 0.049 -0.0605 0.0371 

 
 

 
Fig. 18. Low level real concrete: Bayesian estimate of degrees of equivalence for Eu-152. 
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c. Bayesian estimates for consensus estimates for high level 

 
 
Fig. 19. High level real concrete: Bayesian estimates for Ba-133, Co-60 and Eu-152 mass activity. 

 
Table 10  

Results for the consensus estimates using the Bayesian procedure with 100 000 MCMC simulations 

  

�̂� 𝑢(�̂�) 2.5%(�̂�) 97.5%(�̂�) �̂� u(�̂�) 2.5%(�̂�) 97.5%(�̂�) 

Ba-133 9.53 0.69 8.16 10.89 2.01 0.53 1.23 3.24 

Co-60 0.1269 0.0017 0.1233 0.1301 0.0019 0.0016 1.0010-04 0.0057 

Eu-152 0.837 0.022 0.792 0.882 0.051 0.026 0.007 0.109 
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d. Bayesian estimates for degrees of equivalence for high level 

 
 

Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 -1.5133 5.0282 -6.6496 3.4008 

1 1.4989 4.8926 -3.4342 6.3408 

9 0.2501 4.7968 -4.4328 5.1246 

11 -5.1121 2.3026 -7.367 -2.7563 

8 1.6539 4.457 -2.8873 6.0681 

7 -0.2873 4.8695 -4.9424 4.7039 

2 0.6943 5.3928 -4.6223 6.1236 

13 0.2782 4.5911 -4.4225 4.7939 

5 2.7863 4.3973 -1.5644 7.2074 

6 0.1146 4.7163 -4.6285 4.7858 

 

 
 

 
Fig. 20. High level real concrete: Bayesian estimate of degrees of equivalence for Ba-133. 
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Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 1.00 10-04 0.0324 -0.0327 0.032 

1 0.0073 0.0219 -0.0148 0.0288 

9 0.0014 0.0102 -0.0085 0.0119 

11 -0.0083 0.015 -0.0232 0.0068 

8 -0.0077 0.0103 -0.0181 0.0025 

7 0.0053 0.0197 -0.0144 0.0251 

2 0.0042 0.0274 -0.0233 0.0315 

13 0.0022 0.0083 -0.0061 0.0103 

5 -0.001 0.0125 -0.0135 0.0115 

6 0.0024 0.0147 -0.0124 0.0169 

 
 

 
Fig. 21. High level real concrete: Bayesian estimate of degrees of equivalence for Co-60. 

 

  



  36 

 

 

Lab DoE.x DoE.U95 DoE.Lwr DoE.Upr 

10 -0.2253 0.1158 -0.3412 -0.1102 

1 -0.0048 0.1838 -0.1932 0.1763 

9 0.0289 0.1553 -0.1256 0.1853 

11 0.0786 0.1599 -0.0771 0.242 

8 0.0147 0.1547 -0.1379 0.17 

7 -0.0189 0.1652 -0.1814 0.1493 

2 0.0858 0.246 -0.1578 0.3351 

13 -0.0181 0.1528 -0.1672 0.1383 

5 0.0744 0.1344 -0.0592 0.2085 

6 -0.0051 0.1714 -0.1746 0.1684 

 

 
 

 
Fig. 22. High level real concrete: Bayesian estimate of degrees of equivalence for Eu-152. 

 

 

 

 

 

 

 

 


